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Abstract

Common Asset Impact on Default Contagion

by

Osvaldo Paulo Israel Cançado Assunção

In this work we present a simulation study to show that a shock in a common asset

can be very impactful to default contagion, and we extend some analytic concepts to

this scenario with common assets. We use an inhomogeneous random graph to represent

the banking network, and, based on the possible exposures between banks, we define a

minimum amount of capital each bank must hold in order to make the system stable to

a shock that affects only a few banks. Then, we consider the case when a shock hits all

banks at the same time, making them weaker and some of them initially in default. We

analyze the final fraction of banks in default and compare it with other cases when the

shock hits only a small proportion of banks. We show that a common shock can cause

severe damage to the system.

Key words: Default Contagion, Common Assets, Inhomogeneous Random Graph,

Banking Network.

viii



Contents

Curriculum Vitae vii

Abstract viii

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Outline and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Banking Network Structure 8
2.1 Random Graphs - Basic Definitions . . . . . . . . . . . . . . . . . . . . . 8
2.2 Inhomogeneous Random Graph . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Banking Network Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Degree Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Exposures Distribution . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Default Contagion for Threshold Model . . . . . . . . . . . . . . . . . . . 21
2.5 Resilience Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Systemic Threshold Requirements . . . . . . . . . . . . . . . . . . . . . . 32

3 Common Asset Impact 34
3.1 Default Contagion for Exposure Model . . . . . . . . . . . . . . . . . . . 35
3.2 Capital Requirement for Banks . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Distribution of the Threshold function for Hypothetical Capital requirement 41

3.3.1 Distribution of Threshold Function After Constant Shock . . . . . 42
3.3.2 Distribution of the Threshold Function with Random Shock . . . 44

3.3.2.1 Shock with Exponential Distribution . . . . . . . . . . . 45
3.3.2.2 Shock with Gamma Distribution . . . . . . . . . . . . . 47

3.4 Distribution of C for Average Capital Requirement . . . . . . . . . . . . . 48
3.5 Common Asset Impact to Bank’s Capital . . . . . . . . . . . . . . . . . . 50

3.5.1 Capital After Loss in a Common Asset . . . . . . . . . . . . . . . 50

ix



3.5.2 Distribution of the Shock in the Common Asset . . . . . . . . . . 51
3.6 Dynamic Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Simulation Study 55
4.1 Simulation Study with Second Moment . . . . . . . . . . . . . . . . . . . 56

4.1.1 Hypothetical Capital Choice . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Average Capital Choice . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.3 Average Capital for Fixed Expected Loss . . . . . . . . . . . . . . 65
4.1.4 Average Capital with Comonotone Shock . . . . . . . . . . . . . . 68

4.2 Simulation Study Without Second Moment . . . . . . . . . . . . . . . . . 71
4.2.1 Hypothetical Capital Choice . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Average Capital Choice . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.3 Average Capital for Fixed Expected Loss . . . . . . . . . . . . . . 78
4.2.4 Average Capital with Comonotone Shock . . . . . . . . . . . . . . 82

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 93

x



List of Tables

2.1 Example of bank’s balance sheet . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Parameters for shock distributions. . . . . . . . . . . . . . . . . . . . . . 58
4.2 Proportion of banks in default after cascade process ends. . . . . . . . . . 61
4.3 Parameters for shock distributions for average capital. . . . . . . . . . . . 62
4.4 Proportion of banks in default after cascade process ends. . . . . . . . . . 64
4.5 Parameters for shock distributions for average capital. All distributions

have the same expected value. . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Proportion of banks in default after cascade process ends. . . . . . . . . . 66
4.7 Parameters for shock distributions for average capital. All distributions

have the same expected value. . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8 Proportion of banks in default after cascade process ends. . . . . . . . . . 67
4.9 Proportion of banks in default after cascade process ends. . . . . . . . . . 70
4.10 Parameters for shock distributions for hypothetical capital. . . . . . . . . 73
4.11 Proportion of banks in default after cascade process ends. . . . . . . . . . 74
4.12 Parameters for shock distributions for average capital. . . . . . . . . . . . 76
4.13 Proportion of banks in default after cascade process ends. . . . . . . . . . 77
4.14 Parameters for shock distributions for average capital. . . . . . . . . . . . 78
4.15 Proportion of banks in default after cascade process ends. . . . . . . . . . 79
4.16 Parameters for shock distributions for average capital. . . . . . . . . . . . 80
4.17 Proportion of banks in default after cascade process ends. . . . . . . . . . 81
4.18 Parameters for shock distributions for average capital. . . . . . . . . . . . 84
4.19 Proportion of banks in default after cascade process ends. . . . . . . . . . 85

xi



List of Figures

2.1 Inhomogeneous random graph with w+ and w− sampled from a Pareto
distribution with parameter β = 3.1. . . . . . . . . . . . . . . . . . . . . 12

2.2 Inhomogeneous random graph with w+ and w− sampled from a Pareto
distribution with parameter β = 2.1. . . . . . . . . . . . . . . . . . . . . 13

2.3 Example to explain case 1 in Theorem 1. . . . . . . . . . . . . . . . . . . 25
2.4 Example to explain case 2 in Theorem 1. . . . . . . . . . . . . . . . . . . 26
2.5 The contagion process for the unshocked system (red) starts at 0 and has

positive derivative at 0. For the shocked system (blue), the functional is
always slightly larger, and therefore has a larger root. . . . . . . . . . . . 29

2.6 The contagion process for the unshocked system (red) starts at 0 and has
negative derivative at 0. For the shocked system (blue), the contagion
process starts positive but the derivative is still negative at 0. . . . . . . 30

4.1 Histogram without common shock (blue) and with constant shock (red). 59
4.2 Histogram without common shock (blue) and with Exponential shock (red). 59
4.3 Histogram without common shock (blue) and with Gamma shock (red). . 59
4.4 Histogram without common shock (blue) and with Gamma shock (red). . 59
4.5 Functional f after different shocks are applied to initial capital. . . . . . 60
4.6 Histogram without common shock (blue) and with Exponential shock (red). 63
4.7 Histogram without common shock (blue) and with Gamma shock (red). . 63
4.8 Histogram without common shock (blue) and with Gamma shock (red). . 63
4.9 Histogram Exponential shock (blue), Gamma shock k = 2 (red) and

Gamma shock k = 3 (yellow). . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 Functional f after different shocks are applied to initial capital. . . . . . 64
4.11 Functional f after different shocks are applied to initial capital. Expected

value of different shocks have the same mean. . . . . . . . . . . . . . . . 66
4.12 Functional f after different shocks are applied to initial capital. Expected

value of different shocks have the same mean. . . . . . . . . . . . . . . . 68
4.13 Functional f after different comonotone shocks are applied to initial capital. 69
4.14 Histogram without common shock (blue) and with Exponential shock (red). 72
4.15 Histogram without common shock (blue) and with Gamma shock (red). . 72

xii



4.16 Histogram without common shock (blue) and with Gamma shock (red). . 72
4.17 Histogram Exponential shock(blue), Gamma shock k=2 (red), Gamma

shock k=3 (yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.18 Functional f after different shocks are applied to initial capital. . . . . . 74
4.19 Histogram without common shock (blue) and with Exponential shock (red). 75
4.20 Histogram without common shock (blue) and with Gamma shock (red). . 75
4.21 Histogram without common shock (blue) and with Gamma shock (red). . 75
4.22 Histogram Exponential shock(blue), Gamma shock k=2 (red), Gamma

shock k=3 (yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.23 Functional f after different shocks are applied to initial capital. . . . . . 77
4.24 Functional f after different shocks are applied to initial capital. Expected

value of different shocks have the same mean. . . . . . . . . . . . . . . . 79
4.25 Functional f after different shocks are applied to initial capital. Expected

value of different shocks have the same mean. . . . . . . . . . . . . . . . 81
4.26 Histogram without common shock (blue) and with Exponential shock (red). 83
4.27 Histogram without common shock (blue) and with Gamma shock (red). . 83
4.28 Histogram without common shock (blue) and with Gamma shock (red). . 83
4.29 Histogram Exponential shock(blue), Gamma shock k=2 (red), Gamma

shock k=3 (yellow). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.30 Functional f after different comonotone shocks are applied to initial capital

with δ1 = δ2 = 0.08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.31 Functional f after different comonotone shocks are applied to initial capital

with δ1 = δ2 = 0.092. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.32 Functional f after different comonotone shocks are applied to initial capital

with δ1 = 0.2 and δ2 = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xiii



Chapter 1

Introduction

Risk management has been a research topic in financial mathematics for a long time.

In 1952, Markowitz developed a theory to maximize the expected returns of a portfolio

with a given risk, which was defined as the variance of the portfolio. This pioneered

research in risk of a portfolio of assets. Later, Value at Risk became a widely used tool

to manage the risk of an asset or a pool of assets. There were many contributions to the

risk of a single asset, including some extensions of Value at Risk. A summary of these

risk measures is described in [12].

Researchers then became interested in the risk of the failure of many banks at the

same time, for instance when the default of a few banks triggers a cascade that can harm

the entire financial system. This area received special attention after the financial crisis

in 2008. In this particular example, the loss in one asset, mortgage-backed securities,

could have started a cascade process that put the entire financial system in risk of failure.

However, in this case, the default cascade was contained to just a few companies possibly

due to regulator intervention.

There is no unique definition of systemic risk. Almost every single paper cited in this

work will have their own understanding of systemic risk and what it means according to
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Introduction Chapter 1

their model. However, a generic definition given in [22] gives a good understanding of

what is systemic risk and most definitions are in agreement with this one. The authors

define systemic risk as a risk of a break of capital flow in the market which leads to

reduction in growth of the system’s GDP. Our understanding of systemic risk in this work

is the risk that a large portion of a banking system will be in default after a contagion

process started by a few banks in default. It makes sense that if a large portion of banks

are in default, the GDP of this system will have a slower growth rate, because there will

be less banks investing in the real economy, for instance.

Tom Hurd in his recent book [26] summarizes systemic risk as follows: a triggering

event, the propagation of shock through the financial system and the impact on the

macroeconomy. The triggering event can come from outside of the financial system, for

example a terrorist attack, or it can come from inside, for instance a spontaneous default

of a major financial institution. For details on these definitions see [26].

Tom Hurd, in [26], also defines possible channels of contagion: Asset correlation,

default contagion, liquidity contagion, market illiquidity and fire sales. The system is

susceptible to asset correlation when banks have some of the same assets in their port-

folios, if these assets suddenly drop price, the system can be harmed. For instance, in

the years 2000, most large banks held positions in the US sub-prime mortgage market.

Default contagion arises from interbank loans. A bankrupted bank which can no longer

pay its liabilities to other banks in the system can trigger a default cascade, in which

several other banks may go bankrupt as well. Liquidity contagion happens when banks

are short of cash or other liquid assets and have to shrink their balance sheet. Finally,

market illiquidity and fire sales happen when banks have to sell shares of a given asset

and its prices drop, which can affect other banks. This is a common source of indirect

contagion, as discussed in [14].

There are several approaches on how to model systemic risk. In [10] the authors

2



Introduction Chapter 1

define a system of diffusion processes coupled by their drifts and analyze the probability

of a large number of banks reaching a default threshold. They define a game where each

bank controls the amount of money they borrow or lend to a central bank and study

the mean field game in the limit of a large number of banks. Other approaches include

modeling the banking network with graphs, for instance the Eisenberg and Noe model

in [20], or random graphs, for instance in the work of Gai and Kapadia in [23].

There are several works and extensions which deal with a graph to model the banking

system. In 2000, Allen and Gale in [2] analyzed a network of four banks and show that

the spread of the contagion highly depends on the interconnectedness between the four

banks. In 2001, Eisenberg and Noe in [20] proposed a model with a graph given by the

interbank loans and provided, under the assumption of no-bankruptcy cost, the existence

of a unique clearing vector of payments after one or more banks default. In a recent study

in [31], the authors greatly generalize the Eisenberg-Noe model to include bankruptcy

cost and other channels of contagion: fire sales and cross holdings. Other extensions of

the Eisenberg-Noe contagion model are discussed in [4], [5], and [6].

Recent studies have considered not the actual banking network but a random graph.

In this context it is possible to make a rigorous analysis and obtain asymptotic results

when the network is large enough. In [23], Gai and Kapadia introduce a random graph

representing the financial network and assume a zero recovery rate. This work analyzes

the dynamics of the contagion process and how it is affected by the network structure.

The authors in [29] analyze how the network structure affects systemic risk by varying

several parameters of the network. In Cont et al., [3], the authors analyze the fraction

of defaulted banks and obtain some first resilience conditions when using a configuration

model for the random graph. In [16] and [18], Detering et al. introduce a directed in-

homogeneous random graph that has similar characteristics as a real banking network,

i.e., strong inhomogeneity and absence of second moment of the degree sequence. The

3
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authors analyze the default contagion on such a network and obtain analytical results,

such as resilience conditions and capital requirements for the banks in the system. Em-

pirical evidence of the properties of the banking network can be found in [13] and [8] in

which the authors do an extensive data analysis of the Brazilian and Austrian networks,

respectively. Extending the work in [16], in [18] the authors define a random graph with

weighted edges representing the exposures between two banks in the system. The au-

thors analyze the final fraction of defaulted banks and give conditions on the each bank’s

capital to make resilient network, that is, the system is stable when subject to small

shocks in its initial condition.

Another channel of contagion is fire sales. In [15], Cont et al. propose a model for

systemic risk with fire sales as a contagion mechanism and illustrate their model with

data for hedge fund losses of August 2007 and the Great Deleveraging following the

default of Lehman Brothers in Fall 2008. In [14], Cont et al. use data on European

banks to analyze indirect contagion through deleveraging effects.

Common assets, as stated in [26], is one of the main sources of systemic risk. It has

been studied in several papers, each with its own approach on how to model the impact

of common assets on systemic risk.

Systemic risk with common assets and asset fire sales, that is, after an asset has

dropped its prices, banks want to sell it quickly which leads to the price dropping even

further, has been studied in [24]. The authors use the holdings of each financial institution

in the network, a rule applied to these institutions on how to react after a shock and

liquidity of assets, to find how fire sales add up to the entire financial system. They find

that a shock in one asset has a larger impact if a levered bank holds said asset. The

mechanism of systemic risk arising from asset fire sale has also been studied in [11], in

which the authors propose a model where every bank is invested in several assets with

different prices and exogenous risk factors. The asset prices drop due to exogenous shock

4
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and the authors identify two financial responses from the network: direct effects which is

the immediate response to the shock and network effects which is the amplification of the

shock through changes in the prices of assets. The authors then identify conditions to

minimize the risk for all the banking system. In [17], the authors analyze the joint effect

of default contagion and asset fire sales in a random graph similar to the one defined in

[18].

In [1] the authors propose a model in which banks have projects with random returns

and one bank can invest in another banks project, which would create overlapping port-

folios. One project could have a low return and the bank would not have the money to

pay back the amount it invested in the project. The paper analyzes what happens to

the system of banks in such a scenario. The authors conclude that the clustering of the

network has huge impact on systemic risk. In [9], the authors propose a network where

the nodes represent portfolios chosen from multiple assets and edge wij captures the loss

bank j suffers when bank i liquidates its portfolio. Liquidation drops down the prices

of the stocks and other banks will suffer losses as well. The authors also propose some

measures of vunerability based on the network they created. In [25] the authors have a

similar network model and perform a statistical analysis the topology of the underlying

network in a system of hedge funds.

In [28] the authors analyze shared risk between agents. There is no banking network

or common asset in this paper, however the authors define a vector V of risk variables

which are shared amongst various agents. They assume each entry of V has a Pareto

distribution and find bounds for the individual risk of each agent. Even though this work

does not deal with common assets, it studies common sources of risk, similar to what a

common portfolio would do in a system of banks.

Similarly to [13], in [21] the authors analyze the Austrian banking system in the

presence of correlated assets. They integrate financial risk management for a single bank
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with a network analysis and apply a simulation study of their proposed cascade model

with the data of Austrian banks. Their results show that, despite the low probability of

default, the contagion process can affect a major portion of the network.

1.1 Outline and Results

This work will use the results in [16] and [18] to analyze the fraction of banks in

default in a scenario including assets common to many banks.

In Chapter 2 we will define an inhomogeneous random graph which models the bank-

ing network, define the interbank exposures and add to the banks balance sheet an

investment in assets that are external to the banking network. We will present the main

results from [16] which analyze default contagion in an inhomogeneous random graph

and give some results regarding resilience of the network.

In Chapter 3 we will present the results from [18] which expand the results in [16] to

include the interbank exposures. We will assume that an asset common to all banks in

the system suffers a sudden price drop, which will make some banks default and trigger

a default cascade. We show how a shock in the common asset affects each banks capital

and we analyze the default contagion after the shock. We use a two-period model: before

and after the shock in the common asset, which will highlight the effects of a common

shock into default contagion. We also propose a way to define a dynamic network model,

which is a possible extension of the two-period model analyzed in this work, where the

capital is a stochastic process which depends on the price of a given stock.

In Chapter 4 we present a simulation study where we analyze default contagion after

a shock in the common asset for different networks and shocks. We analyze how shocks

to the banking system arising from common assets holdings affects default contagion. We

also compare this scenario with the example presented in previous studies, for instance
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[18], in which some banks default initially but all the others stay as they were at first. Our

results show that when default contagion is triggered by a common shock to all banks,

the proportion of the network which ends the contagion process in default is much larger

than when just a few banks suffer a loss.

The authors in [13] analyze the Brazilian network and conclude that a shock common

to all banks increases the proportion of contagion considerably. Their study was based

on one sample of an existing network. Our results show the same conclusion with a

probabilistic approach and again, ignoring how the market outside the banking network

when analyzing default contagion can lead to underestimation of the proportion of the

network that will be affected. Similarly to [13], our results show that a common shock

introduces several contagious links, i.e., banks who will default as soon as one neighbor

is in default. In [3] the authors show that the presence of contagious links are a source

of systemic risk in networks in which the degree sequence has finite second moment. We

observe the same in the examples presented in this work. If the degree sequence of the

network does not have finite second moment, we observe that the instability is created

by shocking larger banks. In the last example, we assume that the shock to the common

asset is comonotone with the connectivity of the banks, that is, larger banks will suffer

bigger losses. We show in this case that a big shock is required to start the default

contagion, but it has catastrophic consequences to the network. This agrees with the

findings in [21]. The shock required to make the network default and trigger the cascade

is unlike to happen, however if it does it will affect a very large portion of the network.

7



Chapter 2

Banking Network Structure

In this chapter we will cover the results needed for the remainder of this work. We will

briefly introduce a random graph and some of its characteristics. Then, we will summarize

the theory presented in [16] and [18] in which the authors define an inhomogeneous

random graph and analyze the default contagion process in this network after a small

proportion of vertices are initially in default, or infected, and this infection spreads

through the system. We will also summarize some conditions, given in [18], under which

the network is stable under small shocks.

2.1 Random Graphs - Basic Definitions

A directed graph G = (V,E) consists of a set of vertices V and a set of edges E.

The set V is a finite set of size n ∈ N. We usually number the vertices as 1, 2, . . . , n,

and therefore we denote V = [n] := {1, 2, . . . , n}. An edge connects two vertices and

represent some relation between them. A directed edge from vertex i to vertex j is an

ordered pair (i, j) ∈ E, i 6= j. The set E is the collection of all edges in G = (V,E).

We can also define two important quantities based on a directed graph: the in-degree

8
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and out-degree.

Definition 1 The in-degree d−(u) of a vertex u is equal to the number of edges received

by vertex u:

d−(u) = #{v ∈ V : {v, u} ∈ E}. (2.1.1)

The out-degree d+(u) of a vertex u is equal to the number of edges sent by vertex u:

d+(u) = #{v ∈ V : {u, v} ∈ E}. (2.1.2)

A graph can also be represented by its adjacency matrix M(G), defined by:

Mvu(G) = 1((v, u) ∈ G) =


1, if (v, u) ∈ G,

0, if (v, u) /∈ G.
(2.1.3)

From the adjacency matrix (2.1.3) we can easily find the in-degree and out-degree:

d−(v) =
∑

uMuv(G) and d+(v) =
∑

uMvu(G).

With a graph well defined over n vertices, we can define a random graph.

Definition 2 Random Graph: A random graph with n vertices is a probability space

(E,F ,P) on the finite set G(V,E). The sigma-algebra F is just the power set of E.

The most common example of a random graph is the Erdős-Rényi random graph. In

Example 1 we make a slight modification to the original Erdős-Rényi random graph to

make it a directed random graph.

Example 1 In an Erdős-Rényi random graph of size n, denoted by G(n, p), all edges are

present independently of each other with probability p, except self-edges, which are not

present. So P((u, u) ∈ G(n, p)) = 0 for all u ∈ [n] and P((u, v) ∈ G(n, p)) = p for all

(u, v) ∈ [n]2, u 6= v.
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We can easily write the adjacency matrix for G(n, p) in terms of independent and

identically distributed Bernouli random variables, Xu,v with parameter p:

Mu,v(G) =


Xu,v if u 6= v

0 if u = v

(2.1.4)

From the adjacency matrix (2.1.4) we can see that the distribution for both in-degree

and out-degree for the G(n, p) have a Binomial distribution X ∼ Bin(n, p). A usual

choice for p is p = λ
n

, for some λ > 0, then the limiting distribution for both in-degree

and out-degree is a Poisson distribution with parameter λ.

The Erdős-Rényi random graph has been extensively studied, see, for instance, [7]

and [30]. One downside of this random graph when modeling financial networks is that it

generates homogeneous networks, i.e., all vertices have the same in-degree and out-degree

distribution. Moreover, the in-degree and out-degree distribution have finite moments.

In a financial network, it is observed that some banks are much more connected than

others and their in-degree and out-degree may not have second moment. Therefore, in

order to model a financial network accurately we need to use another random graph.

2.2 Inhomogeneous Random Graph

In [13] the authors do an extensive statistical analysis of the Brazilian network in

which they found that the banking network has some nodes which are highly connected

to others whereas some vertices have very few connections. This property can be captured

with the inhomogeneous random graph.

The inhomogeneous random graph model used here follows the definition in [16] and

[18].

10
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(Inhomogeneous Random Graph Model) For each n ∈ N we consider the vertex

set [n] = {1, ..., n} and the set of directed edges D := {(i, j)|i, j ∈ [n], i 6= j}. Let Ω1 :=

{0, 1}|D| and F1 := 2Ω1 . We define a probability measure P1 on (Ω1,F1) in the following

way. To each vertex i ∈ [n] there are two deterministic weights w−i = w−i (n) ∈ R+ and

w+
i = w+

i (n) ∈ R+ and the probability pi,j = pi,j(n) for i 6= j that there exists a directed

edge from vertex i to vertex j by is given by

pi,j = min
{

1, w+
i w
−
j /n

}
. (2.2.1)

Furthermore, we assume that the event that an edge is present happens independent

of the presence of all other edges. Call the resulting random graph Gn(w+, w−).

The quantities w+
i and w−i determines the tendency of vertex i ∈ [n] to have incoming

or outgoing edges, respectively. The inhomogeneous random graph can capture well the

inhomogeneity observed in many networks, since vertices with higher weights are more

likely to have many neighbors than vertices with small weights.

Remark 1 Note that we are only using w+
i and w−i which determines a tendency. So

far nothing was said about the actual in-degree or out-degree of a vertex. These quantities

are related and we will describe this relationship in Section 2.3.

Figures 2.1 and 2.2 show examples of inhomogeneous random graphs with n = 50

nodes. Our examples show two inhomogeneous random graphs with different choices on

how we sample w+
i and w−i . In the first example, in Figure 2.1, the weights w+

i and

w−i are sampled from a Pareto (see Definition 3) distribution with β = 3.1. The second

example, in Figure 2.2, the weights w+
i and w−i are sampled from a Pareto distribution

with β = 2.1 which has no second moment.

Definition 3 Pareto Distribution: A random variable X has Pareto distribution with

11
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parameter β when the pdf is given by:

fX(x) =


(β − 1)(xm)β−1x−β, if x ≥ xm,

0, otherwise,

(2.2.2)

for β > 0 and xm > 0.

-4 -3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.1: Inhomogeneous random graph with w+ and w− sampled from a Pareto
distribution with parameter β = 3.1.
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-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 2.2: Inhomogeneous random graph with w+ and w− sampled from a Pareto
distribution with parameter β = 2.1.

We chose xm = 1 for the graph in Figure 2.2. The choice for xm in the first graph

was made in such a way that the number of edges in both graphs are close. In fact, the

graph in Figure 2.1 has 560 total edges and the graph in Figure 2.2 has 553 total edges.

However we notice the presence of highly connected vertices in the second example.

This is one of the advantages of the inhomogeneous random graph. It can generate

13
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random graphs with vertices that are highly connected and some vertices with only a few

edges. From our examples it is clear that a random graph with weights sampled from a

Pareto distribution without second moment we can generate such graphs.

We need to ensure that the proportion of vertices of degree k approaches a limit when

we let the size of the network n tend to infinity. We will assume that the vertex weights

satisfy the following regularity conditions state below. It turns out these conditions imply

convergence of the degree distribution in the generalized random graph.

Consider the empirical distribution of the deterministic weights (w−(n), w+(n))n≥1:

Fn(x, y) = n−1
∑
i∈[n]

1
{
w−i (n) ≤ x,w+

i (n) ≤ y
}

for all(x, y) ∈ R2. (2.2.3)

In the following (W−
n ,W

+
n ) is a random vector with distribution function Fn(x, y).

Definition 4 The sequence (w−(n), w+(n)) is regular if it satisfies the following condi-

tions:

1. There exists a distribution function F such that for all (x, y) where F is continuous,

limn→∞ Fn(x, y) = F (x, y).

2. Let (W−,W+) be a random variable with distribution F. Then lim
n→∞

E[(W−
n ,W

+
n )] =

E[(W−,W+)].

3. w+
i (n) and w−i (n) are lower bounded by a positive constant.

Here is an illustration of a regular weight sequence, adapted from [30]:

Example 2 Let F be a distribution function for which F (0) = 0. Define

w−i = w+
i = [1− F ]−1(i/n), (2.2.4)
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where [1−F ]−1 is the generalized inverse function of 1−F defined, for u ∈ (0, 1), by

[1− F ]−1(u) = inf{x : [1− F ](x) ≤ u}. (2.2.5)

By convention, we set [1 − F ]−1(1) = 0. The definition of [1 − F ]−1 is chosen such

that

[1− F ]−1(1− u) = F−1(u) = inf{x : F (x) ≥ u}. (2.2.6)

For the weights chosen as in equation (2.2.4), we can compute the empirical distribu-

tion function Fn:

Fn(x) =
1

n

∑
i∈[n]

1{wi≤x} =
1

n

∑
i∈[n]

1{[1−F ]−1(i/n)≤x} =
1

n

n−1∑
j=0

1{[1−F ]−1(1− j
n

)≤x}

=
1

n

n−1∑
j=0

1{F−1( j
n

)≤x} =
1

n

n−1∑
j=0

1{ j
n
≤F (x)} =

1

n
(bn(F (x)c+ 1) ∧ 1

We can see that lim
n→∞

Fn(x) = F (x). Note that lim
n→∞

bn(F (x)c+1
n

= F (x). A particular

example when F has a power law distribution is given below.

F (x) =

 0, for x ≤ a

1− (a/x)τ−1, for x > a,

with a ≥ 0 and τ > 1. It follows that

[1− F ]−1(u) = au−1/(τ−1)

and

w−i = w+
i = a(

i

n
)−1/(τ−1).

The example above is in one dimension. We will need to simulate two-dimensional

regular weight sequences. We start with an example where the two random variables are

independent.
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Example 3 Let FW− and FW+ be distribution functions for which FW−(0) = 0 and

FW+(0) = 0. Define

w−
jb√nc+k = F−1

W−(
j

b
√
nc

), j = 0, 1, . . . ,
⌊√

n
⌋
− 1; k = 1, 2, . . . ,

⌊√
n,
⌋

(2.2.7)

and

w+

jb√nc+k = F−1
W+(

k − 1

b
√
nc

), j = 0, 1, . . . ,
⌊√

n
⌋
− 1; k = 1, 2, . . . ,

⌊√
n.
⌋

(2.2.8)

Suppose W− and W+ are independent. For the weights chosen as defined above, we

have

Fn(x, y) =
1

n

∑
i∈[n]

1{w−i ≤x,w
+
i ≤y}

=
1

n

∑
i∈[n]

1{w−i ≤x}
1{w+

i ≤y}

=
1

n

b√nc−1∑
j=0

b√nc∑
k=1

1{w−
jb√nc+k≤x}

1{w+

jb√nc+k≤y}

=
1

n

b√nc−1∑
j=0

b√nc∑
k=1

1{F−1

W−
( j

b√nc )≤x}
1{F−1

W+ ( k−1

b√nc )≤y}

=
1

n

b√nc−1∑
j=0

b√nc∑
k=1

1{ j

b√nc≤FW− (x)}1{ k−1

b√nc≤FW+ (y)}

=
1

n

b√nc−1∑
j=0

(
1{ j

b√nc≤FW− (x)}

)b
√
nc∑

k=1

1{ k−1

b√nc≤FW+ (y)}


=

1

n

(⌊√
n
⌋
FW−(x)

⌊√
n
⌋
FW+(y) + 1

)
∧ 1 (2.2.9)

It follows that lim
n→∞

Fn(x, y) = FW−(x)FW+(y).

Remark 2 We can find lim
n→∞

(b√nc)2
n

using b
√
nc =

√
n− δ, for δ ∈ [0, 1).
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lim
n→∞

(b
√
nc)2

n
= lim

n→∞

(
√
n− δ)2

n
= lim

n→∞

n− 2
√
nδ + δ2

n
= 1.

Often in the simulations done in this work, we will need W− and W+ to be comono-

tone. Let us introduce some properties of comonotone random variables.

Proposition 1 Suppose we have a pair of random variables (X, Y ) with continuous

marginal distributions FX and FY . The pair is comonotone if and only if one of the

following equivalent properties hold:

1. FX,Y (x, y) = min {FX(x), FY (y)}, for all x, y ∈ R;

2. For U ∼ Unif(0, 1), (X, Y )
D
= (F−1

X (U), F−1
Y (U));

The proof of the properties in Proposition 1 can be found in [19] in the multivari-

ate case. A summary of the properties of comonotone and counter-monotone random

variables in the bivariate case can be found in [27].

In Example 4 we build a regular weight sequence for comonotone random variables.

Example 4 Let FW− be a distribution function for which FW−(0) = 0 and FW+ be a

distribution function for which FW+(0) = 0. Define the weights w−i and w+
i as

w−i = F−1
W−

(
i− 1

n

)
,

and

w+
i = F−1

W+

(
i− 1

n

)
.

The empirical distribution function Fn is

Fn(x, y) =
1

n

∑
i∈[n]

1{w−i ≤x,w
+
i ≤y}

=
1

n

∑
i∈[n]

1{ i−1
n
≤FW− (x), i−1

n
≤FW+ (y)}

=
1

n

∑
i∈[n]

1{ i−1
n
≤min {FW− (x),FW+ (y)}}

17
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=
1

n
(bnmin {FW−(x), FW+(y)}c+ 1) ∧ 1

(2.2.10)

We can see that lim
n→∞

Fn(x, y) = min {FW−(x), FW+(y)} = FX,Y (x, y).

2.3 Banking Network Statistics

In Chapter 4 we will simulate a default contagion process in a inhomogeneous random

graph, that is, we infect one or a few vertices in the random graph, and observe how that

infection spreads through the graph.

We will simulate a banking network with an inhomogeneous random graph where the

vertices represent banks and the edges represent the presence of interbank loans. To each

possible directed edge (i, j) with i, j ∈ [n] and i 6= j, we assign another random variable

Ei,j which represents the amount of money bank i owes to bank j in case edge (i, j) is

present in the network.

In [13] the authors did an extensive statistical analysis the Brazilian banking network.

Their findings show that the distributions of the in-degree, out-degree and interbank

exposures have a heavy-tail behavior.

2.3.1 Degree Distribution

In our model, the degree distribution is obtained through the limiting distribution

of vertex weights (W−,W+), which according to [13] have a heavy-tailed distribution.

More precisely, the authors perform a goodness of fit test for the degree sequence to a

Pareto distribution and fail to reject that the data fits said distribution. Additionally

they show that the distribution is stable over time. To find the degree distribution we

will need the following definition:
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Definition 5 A random variable X has a mixed Poisson distribution with mixing dis-

tribution F when, for every k ∈ N0,

P(X = k) = E
[
e−W

W k

k!

]
, (2.3.1)

where W is a random variable with distribution function F .

In Chapter 6 of [30], the author shows that for an undirected inhomogeneous ran-

dom graph, the degree distribution is a mixed Poisson with mixing distribution W (see

Definition 5). In Section 3 of [16] the authors extend this result for a directed random

graph.

The following Proposition shows that a mixed Poisson distribution with a Pareto

mixing distribution has a heavy-tail.

Proposition 2 Let X be a mixed Poisson random variable as in Definition 5. If the

mixing distribution of W is a power law, then the tail of the distribution of X is a power

law.

Proof: Assume the density function fW (w) of the mixing distribution of W is the

following:

fW (w) =


cw−α−1, if w > wmin,

0, otherwise,

(2.3.2)

for α,wmin > 0. Then

P(X = k) = E
[
e−W

W k

k!

]
=

∫ ∞
wmin

e−w
wk

k!
cw−α−1dw

=
c

k!
Γ(k − α,wmin).
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(2.3.3)

Here Γ(s, x) =
∫∞
x
ts−1 exp−t dt is the upper incomplete gamma function. From equa-

tion (2.3.3), if we let k →∞, we obtain

lim
k→∞

c

k!
Γ(k − α,wmin) = lim

k→∞

c

k!
(Γ(k − α)− γ(k − α,wmin)) = ck−(α+1). (2.3.4)

Here γ(s, x) =
∫ x

0
ts−1 exp−t dt is the lower incomplete gamma function and Γ(s, x) =∫∞

0
ts−1 exp−t dt is the gamma function. We used the property that Γ(s) = Γ(s, x) +

γ(s, x). To find the limit we use the following asymptotic properties of the gamma

functions:

lim
k→∞

Γ(k − α)

Γ(k)k−α
= lim

k→∞

kΓ(k − α)

k!k−α
= 1, for α ∈ R,

and

lim
k→∞

γ(k, w)

k!
= lim

k→∞

1

k!

∞∑
j=0

wk+j exp−w

j(j + 1) . . . (j + k)
= 0.

Therefore, in our simulations both W− and W+ will have Pareto distributions.

2.3.2 Exposures Distribution

In [18] the authors study default contagion in a banking network where they consider

the interbank loans. In this work we are interested in seeing how a loss in an asset common

in many bank’s balance sheet can trigger and/or increase the cascade effect. We will use

the exposure matrix Ei,j, where each element represents the amount of money bank i

owes to bank j in case the edge (i, j) is present in the network. We will also consider

that each bank has amount Ai invested in a single asset and a debt Di. These quantities

are summarized in Table 2.1.
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Assets Liabilities

Interbank assets
∑

j Eji Interbank liabilities
∑

j Eij

Other assets Ai: derivatives, bonds, real state Other debt Di: deposits, short sales

Table 2.1: Example of bank’s balance sheet

We will assume that Ei,j is pairwise independent and Exponentially distributed with

parameter λ. As mentioned in [13] the authors show that each element in Ei,j follows a

Pareto distribution. We assume Exponential distribution for analytical tractability. In

Chapter 3 we will use the interbank exposures to find the distribution of the threshold

level, an important quantity used to study the default contagion process.

2.4 Default Contagion for Threshold Model

The main Theorem in [16] gives us a tool to analyze the final fraction of banks in

default after a contagion process. First we shall define a threshold level.

Definition 6 To each vertex i ∈ [n] we associate a number ci ∈ N∞0 which we call

threshold level.

A vertex i becomes infected after a ci number of vertices that have directed edge

to vertex i are infected. Vertices that can never become infected have a threshold level

equal infinity. Vertices with threshold level 0 are infected.

We need to assume some further conditions in the sequence (w−(n), w+(n), c(n)),

which includes the threshold level.
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Definition 7 Let (w−(n), w+(n)) be a regular weight sequence and c(n) a sequence of

threshold values. We say that the sequence (w−(n), w+(n), c(n)) is a regular vertex se-

quence if there exists a distribution function F : R × R × N∞0 → [0, 1] such that for

all points (x, y, l) ∈ R × R × N∞0 for which F (x, y, l) is continuous in (x, y) we have

limn→∞ Fn(x, y, l) = F (x, y, l) where Fn(x, y, l) is the empirical distribution function

Fn(x, y, l) = n−1
∑
i∈[n]

1
{
w−i (n) ≤ x,w+

i (n) ≤ y, ci(n) ≤ l
}
∀(x, y, l) ∈ R× R× N∞0 .

(2.4.1)

Note that in Definition 7, we do not impose integrability conditions as in Definition 4.

Assume we have a random graph G, as defined in the previous section, where the

sequence (w−(n), w+(n), c(n)) converges in distribution to (W−,W+, C). Suppose there

is an initial set of vertices that are infected, which we denote as A0 := {i ∈ [n]|ci = 0}.

After k ∈ N rounds of infection, the set of infected vertices is given by:

An := {i ∈ [n]|N−G (i)
⋂
Ak−1 ≥ ci} (2.4.2)

where N−G (i) is the set of the in-neighbors of vertex i.

Equation (2.4.2) can be interpreted in the following way: if in round k − 1 a vertex

has more than ci neighbors in default, then vertex i itself becomes defaulted. We call

An the final set of infected vertices, as the contagion process stops after at most n − 1

rounds.

Theorem 1, from [16], gives us an analytical way to determine the final fraction of

infected vertices.

First let us introduce the following notation. For r ∈ N0 ∪ {∞}, let ψr(x) be defined
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as

ψr(x) =


P(Poi(x) ≥ r) =

∑
j≥r exp−x xj/j!, for r ≥ 0

0, for r =∞

(2.4.3)

Theorem 1 Let (w−(n), w+(n), c(n))n≥1 be a regular vertex sequence with limiting dis-

tribution F : R×R×N∞0 → [0, 1]. Let (W−,W+, C) be a random vector with distribution

F . Assume P(C = 0) > 0. Denote by ẑ the smallest positive solution of

f(z; (W−,W+, C)) := E[W+ψC(W−z)]− z = 0 (2.4.4)

Let An denote the final set of infected vertices in Gn(w−, w+, c). Then

1. For all ε > 0, lim
n→∞

P(n−1|An| ≥ E[ψC(W−ẑ)]− ε) = 1.

2. If there exists δ > 0 and a κ < 1 such that E[W+W−P(Poi(zW−) = C−1)1C≥1] <

κ for z ∈ (ẑ − δ, ẑ + δ), then

n−1|An|
p→ g(ẑ; (W−, C)) := E[ψC(W−ẑ)], as n→∞. (2.4.5)

In Theorem 1, the condition P(C = 0) > 0 means that the probability of default is

larger than 0. For the graph Gn(w−, w+, c) that means that a linear number of vertices

is infected. To see this, note that

lim
n→∞

1

n

∑
i∈[n]

1{ci=0} → P(C = 0).

We can see from Theorem 1 that, in a particular case, the proportion of vertices

infected in the end of the cascade process is determined by functional g, in equation

(2.4.5). This functional depends on ẑ, the root of equation (2.4.4), and is increasing with

ẑ. In Chapter 4 we will calculate numerically equation (2.4.4) and evaluate its root for

different random vectors (W−,W+, C).
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Theorem 1 gives a lower bound for the proportion of banks infected by the contagion

process when the functional f in equation (2.4.4) touches 0 but then becomes positive

again. In [18] the authors have an extension which allows us to also find an upper bound.

Theorem 2 Under the same assumptions of Theorem 1, denote by ẑ the smallest positive

solution of f(z) in equation (2.4.4), and let z∗ be the smallest value of z > 0 at which

f(z) crosses zero, i.e.,

z∗ := inf{z > 0 : f(z) < 0}. (2.4.6)

Then the following holds:

1. For all ε > 0, lim
n→∞

P(n−1|An| ≥ E[ψC(W−ẑ)]− ε) = 1

2. If further E[W+W−P(Poi(zW−) = C − 1)1C≥1]− 1 is continuous on some neigh-

borhood of z∗, then for all ε > 0, lim
n→∞

P(n−1|An| ≤ E[ψC(W−z∗)] − ε) = 1. In

particular, if ẑ = z∗, then

n−1|An|
p→ g(ẑ; (W−, C)) := E[ψC(W−ẑ)], as n→∞ (2.4.7)

The figures below show examples for each case in Theorem 1.
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Figure 2.3: Example to explain case 1 in Theorem 1.

Figure 2.3 is an example of the first case in Theorem 1, when the functional z touches 0

and then becomes positive again. In this case Theorem 1 does not specify if the contagion

process stops or not at ẑ, the first root. We can say that the final proportion of infected

vertices is bounded below by g(ẑ), where ẑ is the first positive root of f . Additionally,

by Theorem 2 we can say that the final proportion of infected vertices is bounded above

by g(z∗), where z∗ is the smallest value for which f(z) is negative.
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Figure 2.4: Example to explain case 2 in Theorem 1.

Figure 2.4 shows a more typical example which illustrates case 2 in Theorem 1. In

this example the functional becomes negative after its first positive root ẑ. In this case,

the theorem states that the contagion process stops. Moreover, the final proportion of

infected vertices is given by g(ẑ).
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2.5 Resilience Condition

In a resilient network, only a small proportion of the network should be affected after

an initial shock has been applied to it. In a non-resilient network, even small shocks can

possibly harm the entire system.

Our study considers default contagion in a network. In Chapter 4, we will apply a

small shock to the network and see how it affects the entire network, that is, we will find

what is the final proportion of infected vertices. In order to classify a network between

resilient and non-resilient, we will use an adapted definition from [18]. The proofs for

Theorems 3 and 4 can be found in [18] as well.

In Definitions 8 and 9, as well as Theorems 3 and 4, small shocks are understood as

follows: we have P(C = 0) = 0. We assume that a shock affects the network and the new

threshold level becomes C̃ = C(1 −M), where M is a Bernoulli random variable with

parameter p, that is, each bank is in default with probability p. We will assume that p

is small or going to 0.

Definition 8 A financial system is non-resilient if there exists a constant δ > 0 such

that

n−1|An| > δ with high probability, (2.5.1)

for any random variable M with parameter p > 0.

The following theorem gives a criterion to classify a system as non-resilient.

Theorem 3 Assume that (w−(n), w+(n), c(n)) is a regular vertex sequence with limiting

distribution (W−,W+, C), P(C = 0) = 0, and there exists z0 > 0 such that

f(z) > 0, for all 0 < z < z0. (2.5.2)
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Then for all M with parameter p > 0

n−1|An| > g(z0) with high probability (2.5.3)

independent of p. Therefore, the system is non-resilient.

Definition 9 A financial system is resilient if for each ε > 0 there exists δ > 0 such that

for all p < δ (i.e., P(C̃ = 0) < δ),

n−1|An| ≤ ε with high probability. (2.5.4)

The following Theorem gives a criterion to classify a system as resilient.

Theorem 4 Assume that (w−(n), w+(n), c(n)) is a regular vertex sequence with limiting

distribution (W−,W+, C), P(C = 0) = 0, and there exists z0 > 0 such that

E[W−W+P(Poi(W−z) = C − 1)1C≥1]− 1 < 0, for all 0 < z < z0. (2.5.5)

For every ε, there exists a p0 such that if P(M = 0) < p0 then

n−1|An| < ε with high probability. (2.5.6)

The system is resilient.

Figures 2.5 and 2.6 illustrates Theorems 3 and 4.

The resilience criteria given in this Section analyzes the behavior of the functional f

in Theorem 1. In Chapter 3, we will show resilience conditions for the capital of each

bank, i.e., a minimum amount of capital each bank must hold such that the network is

resilient based on the definitions above.

We can slightly generalize Theorem 3 to the cases we will study in Chapters 3 and 4.
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Figure 2.5: The contagion process for the unshocked system (red) starts at 0 and
has positive derivative at 0. For the shocked system (blue), the functional is always
slightly larger, and therefore has a larger root.

Theorem 5 Assume that (w−(n), w+(n), c(n)) is a regular vertex sequence with limiting

distribution (W−,W+, C), P(C = 0) = 0, and there exists z0 > 0 such that

f(z;W+,W−, C) > 0, for all 0 < z < z0. (2.5.7)

Now assume that we have a new C̃ such that P(C̃ ≤ C) = 1. Then

f(z;W+,W−, C̃) ≥ f(z;W+,W−, C) (2.5.8)

therefore z̃0 > z0, where z̃0 is the first positive root of f(z;W+,W−, C̃). Finally,

g(z̃0) ≥ g(z0) (2.5.9)

and the new system is still non-resilient.
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Figure 2.6: The contagion process for the unshocked system (red) starts at 0 and has
negative derivative at 0. For the shocked system (blue), the contagion process starts
positive but the derivative is still negative at 0.

Proof: If P(C̃ < C) = 1 then P(Poi(W−z) ≥ C) ≤ P(Poi(W−z) ≥ C̃). It follows

that

f(z;W+,W−, C̃) = E[W+P(Poi(W−z) ≥ C̃)]− z

≥ E[W+(P(Poi(W−z) ≥ C))]− z

= f(z;W+,W−, C).

Since f(z;W+,W−, C̃) ≥ f(z;W+,W−, C), we have that z̃0 > z0, and by the monotonic-

ity of g(z), we have that g(z̃0) ≥ g(z0).

If P(C̃ = 0) > 0, then f(z;W+,W−, C̃) > 0, and the contagion process ends when
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z = z̃0 and the final proportion of infected vertices is g(z̃0) ≥ g(z0).

If P(C̃ = 0) = 0, there is no contagion process since there is no initial infection.

Using Theorem 3 with C̃, we infect a proportion p of vertices and the final proportion of

vertices in default is n−1|A| > g(z̃0).

In [16] and [18], the authors analyzed a network in which only a small proportion

of vertices were infected, whereas the other vertices remain unchanged. In this work

we are interested in analyzing the network after a shock in the common asset. In this

case, not only will a few vertices be infected, but the other vertices can be weakened,

so the threshold value after a shock is smaller (or equal) the initial threshold value. In

Proposition 3 we show a condition under which the network with this new threshold

level C̃, after a shock in the common asset, is stable, that is, the first positive root of the

functional f is close to 0, and, therefore, the contagion process stops soon after it starts.

Proposition 3 Assume that (w−(n), w+(n), c(n)) is a regular vertex sequence with lim-

iting distribution (W−,W+, C), P(C = 0) = 0, and there exists z0 > 0 such that

f(z;W+,W−, C) < 0, for all 0 < z < z0. (2.5.10)

Let min f(z) = ε, for all 0 < z < z0. Assume further that we have a new C̃ such that

P(C̃ ≤ C) = 1 and that E[W+W−P(Poi(zW−) = C̃ − 1)1C̃≥1] − 1, the weak derivative

of f(z;W+,W−, C), is continuous . If

P(C̃ ≤ Poi(zW−) ≤ C − 1) < δ (2.5.11)

for some δ > 0, then f(z;W+,W−, C̃) < 0 for some z ∈ (0, z0), and, therefore, the

contagion process for (W+,W−, C̃) will stop before z0.

Proof: We estimate f(z;W+,W−, C̃)− f(z;W+,W−, C):
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f(z;W+,W−, C̃)− f(z;W+,W−, C)

= E[W+P(Poi(W−z) ≥ C̃)]− z −
(
E[W+P(Poi(W−z) ≥ C)]− z

)
= E

[
W+

(
P(Poi(W−z) ≥ C̃)− P(Poi(W−z) ≥ C)

)]
= E

[
W+P

(
C̃ ≤ Poi(zW−) ≤ C − 1

)]
< E[W+δ] < ε

(2.5.12)

In this case, f(z;W+,W−, C̃) − f(z;W+,W−, C) < ε, therefore for some z ∈ (0, z0)

we have that f(z;W+,W−, C̃) < 0, and, from Theorem 2, we know that the contagion

process stops, and the final proportion of infected vertices is bounded by g(z∗), where

z∗ < z0 is the smallest value of z > 0 at which f(z) crosses zero.

Remark 3 Proposition 3 assumes that f(z;W+,W−, C) is negative for 0 < z < z0. It

states that under some conditions, f(z;W+,W−, C̃) is also negative for some z ∈ [0, z].

Therefore, the contagion process stops and the new system is also resilient.

2.6 Systemic Threshold Requirements

A central bank or regulatory agency would be interested in determining a minimum

threshold level to ensure that the network is resilient to external shocks. In Section 2.5

we showed some conditions under which the system is resilient, and in [18] the authors

deduce a minimal threshold level to ensure that the system will meet these conditions.

In fact, the authors present conditions which depend on the in-weight w− and out-weight

w+.
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Theorem 6 Assume that (w−(n), w+(n), c(n)) is a regular vertex sequence with limit-

ing distribution (W−,W+, C) and that W− and W+ are Pareto distributed (see Defi-

nition 3) with parameters (β−, w−min) and (β+, w+
min), respectively, with β−, β+ > 2 and

w−min, w
+
min > 0. For each bank i ∈ [n] let the threshold value τi depend on the in-weight

w− by some functional form τi = τi(w
−), where τ : R+ → N\{0, 1}. Set

γc := 2 + β−+1
β++1

− (β−) and αc = β+−1
β+−2

w+
min(w+

min)(1−γc)

Then the system is resilient if one of the following holds:

1. γc < 0.

2. γc = 0 and lim infw→∞ τ(w) > αc + 1.

3. γc > 0 and lim infw→∞w
−γcτ(w) > αc.

Remark 4 Part 1 of Theorem 6 states that the system is resilient for constant τ(w) = 2

in case γc < 0, that is, when β−, β+ > 3. This is also stated in [3], where the authors say

a network in which both W− and W+ have finite second moment is resilient if there are

no contagious links, i.e., banks who will default as soon as one neighbor is in default. A

contagious link is, in the notation used in this work, a vertex with threshold level τ = 1.

Remark 5 In the case where W− and W+ do not have finite second moment, that is,

β−, β+ ∈ (2, 3), we will use the following threshold level, proposed in [18]:

τi(w
−) = max

{
2, αc(1 + δ1)(w−i )γc (1 + δ2)

}
,

where δ1, δ2 > 0. This choice, according to part 3 of Theorem 6, makes the network

resilient.
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Chapter 3

Common Asset Impact

The main goal of this chapter is to find out how a common shock to all banks, i.e., a

shock in a common asset, will affect each bank and, consequently, the network, in case

of a default cascade. As mentioned in Chapter 2, we will impose a random shock to each

bank’s capital and find the new threshold level for each bank. We will show, based on

[18], how the threshold model presented in Chapter 2 can be used when we include bank

exposures. The resulting cascade will be analyzed and the proportion of banks in default

will be quantified by Theorem 1.

We are interested in analyzing how the capital of each bank relates to the threshold

level. We will do this by introducing the hypothetical threshold level (see equation (3.1.2)),

as in [18]. We will assume that a regulatory agency, for instance a central bank, imposes

a minimum amount of capital bank i must hold initially, which we will call νi,0. Using

each bank’s capital we will use equation (3.1.2) to find a hypothetical threshold level ci,t

for any time t ≥ 0. The time t here can be considered as a two-period model t ∈ {0, 1},

where t = 0 is the initial state, which is determined by the regulatory agency, and t = 1

is the state after a shock is applied to the system.

Looking back at Table 2.1, we see that all banks could be invested in other assets
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Ai, which are not part of the banking system. However, if an asset common to many

banks suffer a sudden loss in its value, than the bank’s capital would decrease which may

trigger a default cascade in the system. This is the main point of interest of this study.

We assume that, at time 1, there will be a shock in a common asset and, therefore, the

new value νi,1 will be smaller than the initial capital νi,0. We suppose that the shock is

of the form νi,1 = νi,0−αi, where αi > 0 is either a constant or another random variable,

independent of the edges or exposures. Note that it is possible that the new capital is

negative, making the threshold function equal 0 with the bank now in default, since this

bank can no longer pay its liabilities. This is the scenario in which we are interested in

as the banks in default will trigger a cascade.

3.1 Default Contagion for Exposure Model

In the Chapter 2, all banks had a threshold level ci which means bank i would default

after a number ci of its in-neighbors were in default, regardless of the amount of money

banks owed each other. Now we would like to expand the model presented before to

include the exposures between banks, as in [18].

We will define the exposures, or edge-weights, on a probability space (Ω2,F2,P2),

which is different from (Ω1,F1,P1) where the inhomogeneous random graph was defined.

The random graph now has edges, which is the skeleton of the network, and edge-weigths

which represent the exposure between banks and is defined on the product space of

(Ω1,F1,P1) and (Ω2,F2,P2). The edges and exposures are independent of each other in

the product space (for details, see [18]). We will represent the possible exposure between

each pair of vertices (i, j) ∈ [n]2, i 6= j with a random variable Ei,j > 0. Since there are

no exposures between one bank with itself, Ei,i = 0 for all i ∈ [n]. This gives us a matrix

E of possible exposures.

35



Common Asset Impact Chapter 3

We will further assume that Ei,j are pairwise independent for any (i, j) ∈ [n]2, i 6= j.

Remark 6 In [18] the authors only assume that the sequence E1,j, ..., Ej−1,j, Ej+1,j, ..., En,j

is exchangeable. Our assumption here is stronger, since independence implies exchange-

ability. The proof in [18] will still hold in this case.

To understand default contagion now, we need to know the bank’s capital. Let

νt = (ν1,t, ν2,t, . . . , ν1,t) be a vector that represents each bank’s capital at time t ≥ 0.

Bank i is in default if νi,t = 0. The set of banks initially in default can be defined as

D0,t = {i ∈ [n]|νi,t ≤ 0}. These banks initially in default trigger a cascade. After k

rounds, the set of banks in default is given by:

Dk,t = {i ∈ [n]|νi,t ≤
∑

j∈Dk−1,t

Ej,i}. (3.1.1)

As before, equation (3.1.1) can be interpreted as bank i is in default if its capital νi,t

is smaller than the amount owed to bank i by the banks that are in default and no longer

paying its liabilities.

In the threshold model, defined in Section 2.4, each bank had a threshold level ci and

bank i would default after ci in-neighbors were in default. The case here is different.

From equation (3.1.1) we can see that to determine if a bank is in default we need the

interbank exposures. However, we assumed that all exposures Ei,j are independent and

identically distributed. Since we are dealing with possible exposures, it should not make

a big difference which neighbors are in default, since the distribution of their exposures

is the same. This will be clear once we define the following quantity:

Definition 10 (Hypothetical Threshold Function) Let i ∈ [n], νt be a vector of

bank’s capital and E be the matrix of exposures, all previously defined. We can define the

following random threshold level for t ∈ {0, 1}, which we will name hypothetical threshold

level.
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ci,t(n) =


0, if νi,t < 0

inf{s ∈ 0 ∪ [n]|
∑s

l=1Eil ≥ νi,t}, it νi,t ≥ 0

(3.1.2)

with the convention that inf ∅ :=∞.

We can see from equation (3.1.2) that the order in which we choose the exposures

Ei,j will result in different threshold level ci,t. However, since all the exposures are

independent and identically distributed random variables, and therefore exchangeable,

we can use the same argument as in [18] to ensure that the distribution of the threshold

function in equation (3.1.2) is the same for any given order of selection of the exposures

Ei,j. First consider a permutation πj : [n− 1]→ [n]\ {j} of all the possible exposures of

vertex j, E1,j, E2,j, ..., Ej−1,j, Ej+1,j, ..., En,j. The multivariate distribution of this vector

is the same as the multivariate distribution of any deterministic permutation π of this

same vector. Due to this fact, we can see that no matter the order that we choose the

exposures Ei,j the distribution of the random variable ci,t is the same.

In [18], the authors show that the hypothetical threshold level defined (3.1.2) captures

the actual dynamics of the contagion process if the exposures are exchangeable. In fact,

the characteristics of the contagion process of the exposure model is the same as the

threshold model with threshold level ci,t.

So, as in [18], the network is described by the vector (w−(n), w+(n), νi,t). Using the hy-

pothetical threshold level in equation (3.1.2) we find another vector (w−(n), w+(n), ct(n)).

Since we assumed that the exposures are independent, and therefore exchangeable, we

can use the threshold model in Theorem 1 with the limiting distribution (W−,W+, Ct)

to analyze the contagion process of our initial network.
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In order to use Theorem 1, we need the random vector (W−,W+, Ct). The first two

entries of this random vector, W− and W+ are chosen to fit the data, as stated in Chapter

2.

We need to find the distribution of the hypothetical threshold ci,t(n) before and after

a shock has affected the capital of the banks in the network. If ci,t(n) < 0 for any i ∈ [n]

then these banks are in default and the contagion can spread through the network. The

size of the contagion will be quantified by Theorem 1. We also need convergence of the

hypothetical threshold level to the limiting distribution Ct. In our examples this will be

ensured by independence of the interbank exposures Ei,j.

Using equation (3.1.2), we can find the pdf of ci,t as a function of the exposures Eij

and the bank’s capital νi,t at time t ∈ {0, 1}. Therefore,

P(ci,t(n) = k) =



P(νi,t < 0), if k = 0,

P(0 < νi,t < Ei,l), if k = 1,

P(
∑k−1

l=1 Ei,l < νi,t <
∑k

l=1 Ei,l), if 2 ≤ k < n.

(3.1.3)

The formula in equation (3.1.3) depends on the joint pdf of the sum of exponential

random variable.

In the following sections we will describe how to find the distribution in equation

(3.1.3) for a few different choices of initial capital.
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3.2 Capital Requirement for Banks

This section discusses how to define the initial capital νi,0 for each bank. This choice

is based on Theorem 6 in order to ensure the resilience of the network. We assume that

E1, E2, ..., En is a sequence of independent and identically distributed random variables

with E[Ei] = µi = µ.

In [18], the authors suggests a way to define the minimum capital requirements based

on E[Ei] = µi = µ. We also propose another way to define the capital which makes a

tractable example.

Remark 7 In [18] the authors actually assume that for bank i, E[Ej,i] = µi. In our case,

we assume that all Ei,j’s are independent and identically distributed, therefore µi = µ for

all i ∈ [n].

Assume that the regulatory agency imposes the minimum capital requirements through

a threshold function τi, different from ci,t above. The value τi, which could be a constant

or defined as a function of other parameters of the network, i.e. τi = τ(w−i ), is used to

calculate the capital for each bank i in the following ways:

νi,0 = max{τ(w−i )µi, max
j∈[n]\{i}

Ej,i}, (3.2.1)

and

νi,0 =

τi∑
l=1

Ei,l. (3.2.2)

Remark 8 In equation (3.2.1) the condition νi,0 > maxj∈[n]\{i}Ej,i ensures that there are

no contagious links, i.e., no bank will default when only one of its in-neighbors default.

The capital requirement in equation (3.2.2), henceforth called the hypothetical capital

requirement is proposed in this work. One can see that it takes the exposures in a natural
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order. From a regulatory view this is pointless, because two banks may have very different

capital requirements even though their exposures have the same distribution. However,

for very large networks one can expect to see intuitive results with this particular choice.

In fact we will show with simulations in Chapter 4 that the behavior of the network in

this case is similar to the capital requirements in equation (3.2.1).

Remark 9 The hypothetical capital requirement in (3.2.2) was chosen such that the hy-

pothetical threshold function ci,0 is always equal to τ(w−i ), by construction.

The capital requirements in equation (3.2.1), henceforth called the average capital

requirement, was proposed in [18]. Average capital requirement is a smart choice since

it takes into consideration just the average of the exposures for bank i. If τi is large,

we expect hypothetical capital requirement and average capital requirement to be close,

because of the law of large numbers.

The following Theorem from [18] shows that the capital requirements in equation

(3.2.1) ensures the resilience of the network for a certain choice of τ(w−i ). The quantity

c(n) in Theorem 7 is a sequence of threshold levels as in Definition 6.

Theorem 7 Assume that (w−(n), w+(n), c(n)) is a regular vertex sequence with limiting

distribution (W−,W+, C). Assume further that the empirical distribution Fn(x, y, l) of

(w−(n), w+(n), c(n)) converges almost surely to F (x, y, l) for all points (x, y, l) ∈ R×R×

N∞0 for which F (x, y, l) is continuous in (x, y). Let W− and W+ be Pareto distributed

(see Definition 3) with parameters (β−, w+
min) and (β+, w+

min) respectively, with β−, β− > 2

and w−min, w
+
min > 0. The quantities γc and αc are defined as in Theorem 6. Assume

further that νi > maxj∈[n]\{i}Ej,i almost surely for all i ∈ [n] and that E[Ei,j] = µ for all

i, j ∈ [n]2. Then the system is resilient if one the following holds:

1. If γc < 0
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2. γc = 0 and there exist a function τ : R+ → N\{0, 1} and some γ > 0 such that

lim infw→∞w
−γcτ(w) > 0 and for all i ∈ [n], νi ≥ τ(w−i )µ almost surely.

3. γc > 0 and there exist τ : R+ → N\{0, 1} such that lim infw→∞w
−γcτ(w) > αc and

for all i ∈ [n], νi ≥ τ(w−i )µ almost surely.

Remark 10 Since the capital in equation (3.2.1) does not allow for contagious links, it

ensures the resilience of the network in case W− and W+ have finite second moment.

3.3 Distribution of the Threshold function for Hy-

pothetical Capital requirement

In Section 3.1 we mentioned that we need to obtain the random vector (W−,W+, C).

In this section we will discuss how to find the distribution of the hypothetical threshold

level C for a fixed given capital as in equation (3.2.2). The random variable C will later

be used to calculate the functional f given in Theorem 1.

Previously we stated that the interbank exposures Ei,j are independent and iden-

tically distributed. For the remainder of this work we will also assume that they are

exponentially distributed with parameter λ.

The hypothetical capital requirement was defined in equation (3.2.2). In Remark 9

we stated that the initial hypothetical threshold level in this case is exactly τ(w−i ).

The capital is defined as νi,0 =
∑τi

l=1Ei,l. If we plug this into equation (3.1.2), we get

the following:

ci,t(n) =


0, if

∑τi
l=1 Ei,l < 0,

inf{s ∈ 0 ∪ [n]|
∑s

l=1Eil ≥
∑τi

l=1Ei,l}, if
∑τi

l=1Ei,l ≥ 0.

(3.3.1)
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Therefore we can see that ci,0 = τi, for all i ∈ [n], by construction of the initial capital

νi,0.

Now we need to find the distribution for the hypothetical threshold level after a shock

is applied to each bank.

3.3.1 Distribution of Threshold Function After Constant Shock

We want find the distribution of the hypothetical threshold level at time t = 1 after a

shock is applied to each bank. We assume that the new capital is given by νi,1 = νi,0−α,

where α is a constant and νi,0 is the initial capital for bank i.

From equation (3.2.2), we know that νi,0 =
∑τi

l=1Eil. We start by calculating the

probability that ci,1(n) = 0.

P(ci,1(n) = 0) = P(νi,1 < 0)

= P(

τi∑
l=1

Eil − α < 0)

= P(

τi∑
l=1

Eil < α) = FX(α)

= e−λα
∞∑
j=τi

(λα)j

j!
, (3.3.2)

where X ∼ Gamma(τi, λ) and FX(x) is the cdf of random variable X at point x. Now

for k = 1, we need to find the following probability:

P(ci,1(n) = 1) = P(0 < νi,1 < Ei1)

= P(0 <

τi∑
l=1

Eil − α < Ei1)

= P(

τi∑
l=1

Eil > α,

τi∑
l=2

Eil < α). (3.3.3)
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Let X1 = E1 ∼ Exp(λ) and X2 =
∑τi

l=2Eil ∼ Gamma(τi − 1, λ). We need the joint

pdf of (Y1, Y2), Y1 = X1 +X2 and Y2 = X2. The joint pdf of (Y1, Y2) is given by:

fY1,Y2(y1, y2) = |J |fX1(y1 − y2)fX2(y2), if 0 < y2 < y1 <∞ (3.3.4)

where |J | is the Jacobian of the transformation from (X1, X2) to (Y1, Y2), which is equal

to 1. Now substituting the known pdf’s of a Gamma and Exponential random variables,

we get the following joint pdf:

fY1,Y2(y1, y2) =
λτi

Γ(τi − 1)
y
ci,0−2
2 e−λy1 , if 0 < y2 < y1 <∞. (3.3.5)

Back to the probability of ci,1 = 1:

P(ci,1(n) = 1) = P(Y2 < α, Y1 > α)

=

∫ α

0

∫ ∞
α

λτi

Γ(τi − 1)
yτi−2

2 e−λy1dy1dy2

=
(λα)τi−1

(τi − 1)!
e−λα. (3.3.6)

Now for k = 2, ..., τi:

P(ci,1(n) = k) = P(
k−1∑
l=1

Eil < νi,1 <
k∑
l=1

Eil)

= P(
k−1∑
l=1

Eil <

τi∑
l=1

Eil − α <
k∑
l=1

Eil)

= P(

τi∑
l=k

Eil > α,

τi∑
l=k+1

Eil < α) (3.3.7)
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We need to find the joint pdf of Y1 =
∑τi

l=k Eil and Y2 =
∑τi

l=k+1 Eil. Let X1 = Eik

and X2 =
∑τi

l=k+1. The joint pdf of (Y1, Y2) can be obtained by a simple transformation:

Y1 = X1 + X2 and Y2 = X2. We know that X1 ∼ Exp(λ) and X2 ∼ Gamma(τi − k, λ).

As we did before, the joint pdf of Y1, Y2 is given by

fY1,Y2(y1, y2) = |J |fX1(y1 − y2)fX2(y2), if 0 < y2 < y1 <∞, (3.3.8)

where |J | is the Jacobian of the transformation from (X1, X2) to (Y1, Y2), which is equal

to 1 as before. Now substituting the known pdf’s of a Gamma and Exponential random

variables, we get the following joint pdf:

fY1,Y2(y1, y2) =
λτi+1−k

Γ(τi − k)
yτi−k−1

2 e−λy1 , if 0 < y2 < y1 <∞. (3.3.9)

Now we can use this joint pdf to calculate the pmf of ci,1:

P(ci,1(n) = k) = P(Y2 < α, Y1 > α)

=

∫ α

0

∫ ∞
α

λτi+1−k

Γ(τi − k)
yτi−k−1

2 e−λy1dy1dy2

=
(λα)τi−k

(τi − k)!
e−λα, (3.3.10)

which is the probability that a Poisson random variable with parameter λα is equal

to τi − k, for k = 1, ..., τi

In summary we have obtained the distribution of the hypothetical threshold level at

time t = 1 after a constant shock is applied to the bank’s capital.

3.3.2 Distribution of the Threshold Function with Random Shock

In Section 3.3.1, we assumed that the shock size α was a constant. It is very unrealistic

to expect that all banks in a given network experience the same drop in their balance
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sheet. We will now assume that α is a random variable. We will obtain the distribution

of the hypothetical threshold level for α following two distributions, namely Exponential

and Gamma distributions.

Remark 11 We choose α to have Exponential and Gamma distribution because the ex-

posures also have Exponential distribution. It would make sense that the shock in the

bank’s balance sheet have a similar distribution.

Remark 12 In this section we could use any distribution for α and obtain the distribu-

tion of the hypothetical threshold value analytically. We can easily see this from equations

(3.3.3), (3.3.7) and (3.3.11), where we have the probability distribution for the hypotheti-

cal threshold value after a constant shock. To find this distribution with a random shock

α, we just need to integrate over the distribution of α, as will be discussed in this section.

3.3.2.1 Shock with Exponential Distribution

Now we assume that the shocks are exponentially distributed with parameter γ. We

will further assume that the shock α is independent of the exposures Ei,j.

The probabilities calculated in the previous section can be interpreted as a conditional

probability given the shock size α. For instance, the equation (3.3.3) is P(ci,1(n) = 0|α).

We would like to calculate the unconditional default probability, i.e., P(ci,1(n) =

0). To find that, we will take the expectation of this probability with respect to the

distribution of α.

E[E[1ci,1(n)=0|α]] = Eα [P(ci,1(n) = 0|α)]

= Eα

[
exp−αλ

∞∑
j=τi

(αλ)j

j!

]
=

∫ ∞
0

exp−αλ γ exp−γα
∞∑
j=τi

(αλ)j

j!
dα

=
∞∑
j=τi

γλj

j!

∫ ∞
0

exp−α(γ+λ) αjdα
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=
∞∑
j=τi

γλj

j!
(γ + λ)−j−1Γ(j + 1), (3.3.11)

where Γ is the gamma function and we will use the well-known property that Γ(n) =

(n− 1)! for integer n. Thus

∞∑
j=τi

γ

γ + λ
(

λ

γ + λ
)j =

γ

γ + λ

∞∑
j=τi

(
λ

γ + λ
)j. (3.3.12)

Substituting k = j − τi, we get:

γ

γ + λ

∞∑
j=τi

(
λ

γ + λ
)j

=
γ

γ + λ

∞∑
k=0

(
λ

γ + λ
)k+τi

=
γ

γ + λ
(

λ

γ + λ
)τi

∞∑
k=0

(
λ

γ + λ
)k

=
γ

γ + λ
(

λ

γ + λ
)τi

1

1− λ
γ+λ

=
γ

γ + λ
(

λ

γ + λ
)τi
γ + λ

γ

= (
λ

γ + λ
)τi . (3.3.13)

We found the unconditional probability P(ci,1(n) = 0), which depends on the param-

eter γ of the distribution of the shock. We can now choose this parameter to fit the

desired default probability in our simulation.

Now we would like to calculate the unconditional default probability, i.e., P(ci,1(n) =

k) for k > 0.
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We will do the same calculations as above.

Eα [P(ci,1(n) = k|α)] = Eα
[
exp−αλ

(λα)τi−k

(τi − k)!

]
=

∫ ∞
0

exp−αλ γ exp−γα
(λα)τi−k

(τi − k)!
dα

=
γ

(τi − k)!

{
−α(λα)τi−k((γ + λ)α)−1−τi+kΓ(1 + τi − k, (γ + λ)α)

}
=

(
λ

γ + λ

)(τi−k)
γ

γ + λ
,

(3.3.14)

for k > 0.

3.3.2.2 Shock with Gamma Distribution

Assume now that α ∼ Gamma(k, θ). We want to find Eα [P(ci,1(n) = 0|α)]. We will

do similar calculations as in Section 3.3.2.

Following the calculations on equation (3.3.12) above, but using the Gamma pdf, we

obtain:

Eα [P(ci,1(n) = 0|α)] =
∞∑
j=τi

1

Γ(k)θk
λj

j!

∫ ∞
0

exp−α(λ+ 1
θ

) α(k+j−1)dα

=
∞∑
j=τi

1

Γ(k)θk
λj

j!

((
λ+

1

θ

)−j−k
Γ(j + k)

)

=
∞∑
j=τi

(
j + k − 1

j

)
λj

1

θk

(
θ

λθ + 1

)j+k
=

(
1

λθ + 1

)k ∞∑
j=τi

(
j + k − 1

j

)(
λθ

λθ + 1

)j
=2 F1(1, τi + k; τi + 1;

λθ

λθ + 1
), (3.3.15)

where the 2F1 is the hypergeometric function.
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To find Eα [P(ci,1(n) = k|α)] for k > 0, we do calculations analogous to equation

(3.3.14):

Eα [P(ci,1(n) = k|α)] =

∫ ∞
0

exp−αλ(λα)τi−k

(τi − k)!

1

Γ(γ)θγ
αγ−1 exp

−α
θ dα

=
λτi−k

(τi − k)!Γ(γ)θγ

∫ ∞
0

exp−α(λ+ 1
θ

) ατi+γ−k−1dα

=
λτi−k

(τi − k)!Γ(γ)θγ

[
−ατi+γ−k

(
α

(
λ+

1

θ

))−τi−γ+k

Γ

(
τi + γ − k,

(
λ+

1

θ

)
α

)]∞
0

=
λτi−k

(τi − k)!Γ(γ)θγ

(
λ+

1

θ

)−τi−γ+k

Γ(τi + γ − k)

=
λτi−k

(τi − k)!Γ(γ)θγ

(
θλ+ 1

θ

)k−τi−γ
(τi + γ − k − 1)!

=

(
τi + γ − k − 1

γ − 1

)
λτi−k

θγ

(
θ

λθ + 1

)τi−k ( θ

λθ + 1

)γ
=

(
τi + γ − k − 1

γ − 1

)(
λθ

λθ + 1

)τi−k ( 1

λθ + 1

)γ
. (3.3.16)

3.4 Distribution of C for Average Capital Require-

ment

In this section we are interested in finding the distribution of the hypothetical thresh-

old level C for the capital defined in equation (3.2.1). In this case, since τi is a given

constant, the capital νi,0 is also constant, in contrast to the previous section where the

capital was a random variable.

To find P(ci,0(n) = k) = P(
∑k−1

l=1 Eil < νi,0 <
∑k

l=1Eil), we need the joint pdf of∑k−1
l=1 Eil and

∑k
l=1 Eil.

Let X1 =
∑k−1

l=1 Eil and X2 = Ekl. The joint pdf of
∑k−1

l=1 Eil,
∑k

l=1 Eil can be obtained

by a simple transformation: Y1 = X1 and Y2 = X1 +X2. The joint pdf is given by

fY1,Y2(y1, y2) = |J |fX1(y1)fX2(y2 − y1), if 0 < y1 < y2 <∞ (3.4.1)
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where |J | is the Jacobian of the transformation from (X1, X2) to (Y1, Y2), which is 1.

Now substituting the PDF of a Gamma(k − 1, λ), f(x) = λk−1

Γ(k−1)
xk−2e−λx and the pdf of

an Exp(λ): f(x) = λeλx, we get the following joint pdf:

fY1,Y2(y1, y2) =
λk

Γ(k − 1)
yk−2

1 e−λy2 , if 0 < y1 < y2 <∞. (3.4.2)

Now we can use this pdf to calculate the desired probability:

P(ci,0(n) = k) = P(Y1 < νi,0 < Y2)

=

∫ νi,0

0

∫ ∞
νi,0

λk

Γ(k − 1)
yk−2

1 e−λy2dy2dy1

=
(λνi,0)k−1

(k − 1)!
e−λνi,0 , (3.4.3)

where νi,0 = max{τ(w−i )µi,maxj∈[n]\{i}Ej,i}.

Remark 13 The distribution in equation (3.4.3) holds for any fixed capital choice.

Remark 14 In fact, the capital defined in equation (3.2.1) is a random variable because

of the presence of maxj∈[n]\{i}Ej,i. However, this is just a technical condition and most

times the maximum will be the constant τ(w−i )µi.

To find the hypothetical threshold level after a shock has been applied to the system

we will use simulations. We describe briefly how to obtain the threshold level in this

case.

First, for each bank i, we simulate all of its possible exposures Ei,j. Then we calculate

the initial capital νi,0 according to equation (3.2.1) and simulate the random shock αi

for different distributions. We calculate the new capital νi,1 = νi,0 − αi. Finally we use

equation (3.1.2) to find ci,1, the hypothetical threshold level after the shock.

Finding the distribution in this case is theoretically possible but the calculations are

extensive. For this particular choice of capital, we do not have the simplifications which
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made the first example tractable. Therefore, we will rely on simulations to find the

distribution of the threshold level in this case.

We will use Exponential and Gamma distributions for α. The results for the hypo-

thetical threshold function both before and after the shock will be presented in Chapter

4 in the form of histograms. We will be able to see how a shock affects the distribution

of the hypothetical threshold function, and, as a consequence, it will affect the default

contagion in the network.

3.5 Common Asset Impact to Bank’s Capital

Previously we showed how to obtain the distribution of the hypothetical threshold level

after the initial capital νi,0 is decreased by a shock αi, where αi are independent random

variables and are also independent of the exposures. In this section we will show how

we can use conditionally independent random variables to model a shock in a common

asset, assuming we know the value of the common asset after a shock.

3.5.1 Capital After Loss in a Common Asset

In Section 3.2 we proposed two different ways to define the capital for each bank. We

have a vector {νi,0}i∈[n] where νi,0 is the capital of bank i at time t = 0. We assume that

νi,0 is independent of νj,0 for i 6= j. We assume further that νi,0 depends on Ai,0, which

is the monetary investment of bank i in the common asset. Also, Ai,0 is independent of

Aj,0 for i 6= j. Suppose that νi,0 is defined as:

ν∗i,0 = νi,0 − Ai,0, (3.5.1)

where ν∗i,0 is just the part of the capital which is not invested in the common asset.
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Assume that the initial price of the common asset is S0 and at time t = 1 the value

is S1 = PS0, where P is a random variable between 0 and ∞. Since we are interested in

a crisis scenario, i.e. S1 < S0, the values of P should be between 0 and 1. The capital of

each bank is now given by:

νi,1 = ν∗i,0 + PAi,0 = νi,0 + (P − 1)Ai,0, (3.5.2)

which of course depends on S1 or P . If the value S1 is known, or the value of P , we can

find each bank’s capital conditioned on this value:

νi,1|P = νi,0 − (1− p)Ai,0. (3.5.3)

Since we assumed that Ai,0’s, i ∈ [n], are independent, then we can see that the capital

after the shock is conditionally independent and the term pAi,0 can be substituted by αi.

Therefore, we can use the formulas given in Sections 3.3 and 3.4.

Finally, since the capitals νi,1|P = p, i ∈ [n], are independent and identically dis-

tributed, the sequence (w−(n), w+(n), c1(n)) is a regular vertex sequence and converges

almost surely to (W−,W+, C1) for a fixed value of p.

3.5.2 Distribution of the Shock in the Common Asset

In equation (3.5.3) we showed that the shock in the common asset is given by α =

(1 − p)Ai,0, where Ai,0 is the initial monetary amount invested in assets outside the

banking network and p is a constant in (0, 1). Assume now that each bank i invests the

entire amount Ai,0 in one asset with price S0, so each bank holds
Ai,0
S0

shares of this asset.

After the shock, at time t = 1, the investment bank i has in the asset is Ai,1 =
Ai,0
S0
S1,

where S1 is the price of the asset. The capital for bank i is given by:

νi,1 = νi,0 −
Ai,0
S0

(S0 − S1) . (3.5.4)
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Given the dynamics of the process St, we can fit the shock distribution with appropri-

ate parameters for a loss distribution of the asset St at time t = 1. In [13] the authors use

real data and impose a shock in bank’s assets based on quantiles of the price distribution.

Using data, the same could be done in this model.

In our simulations, which will be presented in Chapter 4, we will assume that the

distribution of the shock α is Exponential or Gamma. Both these random variables

are closed under scaling by a positive constant, that is, if X is a random variable with

Exponential or Gamma distribution, then cX has the same distribution with a new

parameter.

The shock is α = pAi,0, where p is a positive constant, therefore we can see that Ai,0

has the same conditional distribution as α. This is part of our model. We assumed that

the exposures Ei,j are exponentially distributed. It is a reasonable assumption that other

quantities follow similar distributions. The reason for choosing Gamma is simply the

relationship with the exponential distribution. If X and Y are independent exponentially

distributed random variables with parameter λ, then X + Y ∼ Gamma(2, λ).

Remark 15 Note that the distribution of the shock does not need to be Exponential or

Gamma. From equation (3.5.4), the shock is defined as αi =
Ai,0
S0

(S0 − S1). As long

as the distribution of the quantity on the right-hand side is known and is conditionally

independent and identically distributed, we can obtain the new value for the bank’s capital

and, as in Section 3.5.1, we can ensure almost sure convergence for C1.

3.6 Dynamic Network Model

Previously, we were dealing with a two-period model where t = 0 denoted the initial

state of the system and t = 1 the state of the system after a shock was applied to the
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common asset. Even though this is enough for the purposes of this work, this setting can

be generalized to a continuous time model with t ≥ 0.

In Section 3.5.1 we considered that the initial capital was given by νi,0 = ν∗i,0 + Ai,0,

which is just the common asset Ai,0 plus an amount the remainder of the capital which is

not invested in the common asset. We assume that the amount Ai,0 is invested in a stock,

or pool of stocks, with price at time t = 0 equal S0. Let the price of the stock {St}t>0

be a stochastic process on (Ω,F , {Ft}t>0,P), where {Ft}t>0 is the filtration generated by

the stochastic process. Note that {St}t>0 could be a random vector of many assets. We

consider the case with only one asset for simplicity.

As in the previous Section, assume that we have only one asset and bank i owns
Ai,0
S0

shares of this asset. At time t > 0, the value of the investment bank i has in this asset

is Ai,t =
Ai,0
S0
St, where St is the price of the asset. The capital for bank i at time t > 0 is

given by

νi,t = νi,0 +
Ai,0
S0

(St − S0) . (3.6.1)

So, given the value of the underlying asset {St}t>0, we can obtain the capital of each

bank at any time t > 0.

Now we have a capital for each bank i for every time t > 0. We can, similarly to

what we did before in Sections 3.3 and 3.4, obtain the distribution of the hypothetical

threshold for every time t > 0 for a given value of St. Note that as Section 3.5.1, the

capitals νi,t, i ∈ [n] are independent conditionally on the value St.

Since we assume that Ai,0’s are independent for each bank, that means that νi is

independent of νj for i 6= j. Therefore, by the strong law of large numbers, we have that,

given St, ct(n)
a.s.−→ Ct as n → ∞. Then we have a random vector {(W−,W+, Ct)}t>0,

where {Ct}t>0 is a probability measure valued stochastic process, that is, at each time

t > 0 we have a distribution Ct.
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Remark 16 We could also make W− and W+ time-dependent in (W−,W+, Ct), which

means the global parameters of the network skeleton are changing over time. However

this is not in the context of study of this work. In addition, the authors in [13] show

empirical evidence and perform a statistical test that suggest that W− and W+ are stable

over time.

Remark 17 Note that we only have almost sure convergence of ct(n) to Ct conditionally

on the value St. Although this is not a general result, in our work we deal with stress-

testing scenarios, in which we assume that the value of the common asset has dropped a

certain amount which is known. If we want to generalize this in terms of quantiles, see

for instance [13], one would need the unconditional convergence of ct(n).
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Simulation Study

In this Chapter we will focus on simulation of default contagion for different networks

and shocks on the common asset. We are interested in finding the final fraction of banks

in default. This is done by calculating functional f given in Theorem 1 and finding

its first zero. In Chapter 2 we described the contagion process in a random network

with a threshold model and then with an exposure based model. We showed in Chapter

3, based on [18], that the contagion process for the exposure model behaves like the

threshold model for a given limiting distribution C for the threshold level.

We showed how to obtain the distribution of C for one particular choice of the initial

capital, in which each bank’s capital is specifically chosen such that the hypothetical

threshold level is exactly the threshold level imposed by the regulator. For other choices

of capital we have to rely on simulation to estimate this distribution. We will use a

bootstrap method to estimate the distribution of the threshold level in these cases.

Our simulations are split into two different cases: weight sequence with and without

second moment. In [3], the authors study the contagion process in a random network

with second moment. These are generally easier to deal analytically. In [16] and [18], the

authors generalize the contagion process for a random network without second moment.
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We will analyze the simulations based on the results presented in [16] but we shall also

compare them with findings in [3].

We will assume that all exposures are independent and identically distributed with

an Exponential distribution. As stated in Chapter 2, the authors in [13] have empirical

evidence to suggest that the exposures are distributed according to a power-law. However,

dealing with Exponential distributions makes the problem analytically tractable and we

hope that, given the similar shape of these distributions, the results presented here will

give some insight for a real network.

In order to fit our simulations according to the data presented in [13], we will choose

the parameter of the Exponential distribution such that its expected value is the same

as the average exposure presented in that paper.

4.1 Simulation Study with Second Moment

In this section we will simulate default contagion on financial networks whose degree

sequence, as defined in Chapter 2, have a finite second moment. The weights W+ and

W− are sampled from a Pareto distribution (see Definition 3). Also we make W+ and

W− comonotone for all simulations.

To simulate the default contagion we need to calculate, for each choice of initial

capital, the hypothetical threshold before and after the shock, respectively, C0 and C1.

We always choose C0 such that the network is resilient according to definition 9, that

is, for the initial threshold level C0, small shocks to the network will not affect a large

portion of banks.

With the triples (W+,W−, C0) and (W+,W−, C1) we will calculate f and compare

how a shock common to all banks affects the default contagion. Our simulations will

show that,for the same initial proportion of banks in default, a common shock to all
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networks will have a much deeper impact into the contagion process compared to the

case when just a few banks are in default but the others remains unharmed. We will

show this using Theorems 3 and 4and compare the shocked systems with Figures 2.5 and

2.6.

4.1.1 Hypothetical Capital Choice

These simulations were done by choosing the capital according to equation (3.2.2),

which we name the hypothetical capital. This is because the hypothetical threshold level

ci,0 for each bank before the shock in this case will be exactly τi, which is a deterministic

number given by a regulatory agency.

In [3] the authors showed that in a random network where the degree sequence has

finite second moment, the system will be resilient if there are no contagious links. In our

setting which deals with threshold levels, this means that if there are no banks with a

threshold level equals to 1, the system will be resilient, i.e., a small shock will not create

a large cascade.

To simulate a network under these conditions we assume that τi = 2 for all i ∈ [n],

that is, all banks can withstand the default of their first two counterparts. Since we are

dealing with the hypothetical capital, it is straightforward that C0 = 2.

Remark 18 We do not have an explicit resilience condition for a network with capi-

tal requirement as in (3.2.2). We will check the resilience of the initial network using

Theorem 4 and the system will, in fact, be resilient, as we expected. Finding a general

resilience condition for the capital defined in (3.2.2) is beyond the scope of this work.

We obtain C1 for several different distributions for the shock α. First we apply a

constant shock to all banks. Next we apply random shocks to all banks, with different

distributions, namely the Exponential and Gamma distributions.
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We also obtain the distribution of C1 after shocking just a small percentage of banks

and leaving all other banks unshocked, as in [18]. In this scenario, we make a proportion

p of banks default, i.e., P(C1 = 0) = p and the other banks remain unchanged, i.e.,

P(C1 = 2) = 1− p. We would like to compare this case, which has no shock common to

all banks, with the case where the default is caused by a shock in a common asset.

In our simulations we will set p = 1%. We set P(C1 = 0) = p for all different shocks,

that is, no matter what the distribution of α is, the initial proportion of banks in default

will always be p.

The histograms for all C1 obtained are presented in Figures 4.1 to 4.4. We plotted the

histogram for C1 after a common shock with C1 after a shock to just a small percentage of

banks, to highlight the effects of the common shock. We can see that the major difference

is that a common shock introduces several contagious links.

The parameters used for each shock distribution are given in Table 4.1 below.

Type of shock Parameter Mean Variance

Exponential λ = 5 0.2 0.04

Gamma k = 2 β = 8.6207 0.232 0.0269

Gamma k = 3 β = 12.5 0.24 0.0192

Constant α = 0.2655 0.2655 0

Table 4.1: Parameters for shock distributions.

From Table 4.1 we can see that the shocks with higher expected value have smaller

variance in order to have the same initial proportion of banks in default. This pattern

will be recurring in the next simulations as well.
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Figure 4.1: Histogram without com-
mon shock (blue) and with constant
shock (red).

Figure 4.2: Histogram without com-
mon shock (blue) and with Exponen-
tial shock (red).

Figure 4.3: Histogram without com-
mon shock (blue) and with Gamma
shock (red).

Figure 4.4: Histogram without com-
mon shock (blue) and with Gamma
shock (red).
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For the C1 obtained above we calculated functional f in equation (2.4.4) from Theo-

rem 1.

0 0.2 0.4 0.6 0.8 1
z

-0.15

-0.1

-0.05

0

0.05

0.1

f(
z)

No Common Shock
Constant Shock
Exponential Shock
Gamma Shock k=2
Gamma Shock k=3

Figure 4.5: Functional f after different shocks are applied to initial capital.

As discussed in Chapter 2, functional f describes the default contagion process, which

ends at the first positive root ẑ of f if it becomes negative after ẑ (see discussion after

Theorem 1). Also, the final fraction of banks in default is given by g and is increasing

with ẑ.

From Figure 4.5 we can see that all cases when a common shock was applied to the

network have a much larger root than in the case when the shock is applied only to 1% of

the banks, even though the initial proportion of banks in default is the same. We observe

that introducing a few contagious links makes the contagion process reach a much larger

portion of the network.
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The final proportion of banks in default g(ẑ) is given in Table 4.2 below for all different

shocks.

Type of shock g(ẑ)

No Common Shock 0.0137

Exponential 0.4036

Gamma k = 2 0.4261

Gamma k = 3 0.4325

Constant 0.4488

Table 4.2: Proportion of banks in default after cascade process ends.

From Table 4.2 it is clear that the default contagion becomes much more threatening

to the system after a common shock is applied.

We can also see both from Figure 4.5 and Table 4.2 that the distribution of the shock

applied to the network is not very relevant as all different common shocks get similar

results in the end. The critical part is the introduction of contagious links, which are

very impactful to the contagion process.

4.1.2 Average Capital Choice

Now we will show simulations for the average capital : νi,0 = τ(w−i )µi. We start again

with τi = 2 for all i ∈ [n]. Note that from the definition of the Average capital any choice

of τi would make the network resilient, since it does not allow for contagious links. The

choice for τi = 2 is simply to make a comparison with the previous example.
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We follow the same procedure as in the previous section. Find C, which in this case

will not be equal τ for all vertices. Then we obtain C1 for different types of shocks applied

to the initial capital.

In this setting, it is possible that ci = 1 for some bank i, that is, the probability of

having contagious links is not zero, and therefore, we need to check if the network is

resilient for the initial choice of C0. In [18], the authors show that in a network with

degree sequeuce with finite second moment is be resilient if E[W+W−1C=1] < 1. Note

that this is weaker then saying the network has no contagious links, since it allows for

them to exist but it bounds the total number. We will check this condition numerically

and, in fact, for all our simulations it is true that the initial network is resilient.

We fix again an initial proportion of 1% infected vertices, regardless of the type of

shock applied.

As in the previous section, the histograms are plotted for C1 after a common shock

and C1 when just a proportion p of banks are in default.

The parameters for each of the distributions of the shocks are given in Table 4.3.

Type of shock Parameter Mean Variance

Exponential λ = 1.2820 0.78 0.6084

Gamma k = 2 β = 1.8518 1.08 0.5832

Gamma k = 3 β = 2.3255 1.29 0.5547

Table 4.3: Parameters for shock distributions for average capital.

Note that in this example we did not present constant shock. Since τ(w−i ) is equal 2

for all i ∈ [n], the capital is now a constant and equal for all banks, so a constant shock

is not reasonable since it would set either all or no banks to default.
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Figure 4.6: Histogram without com-
mon shock (blue) and with Exponen-
tial shock (red).

Figure 4.7: Histogram without com-
mon shock (blue) and with Gamma
shock (red).

Figure 4.8: Histogram without com-
mon shock (blue) and with Gamma
shock (red).

Figure 4.9: Histogram Exponential
shock (blue), Gamma shock k = 2
(red) and Gamma shock k = 3 (yel-
low).
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Functional f was calculated for all C1 obtained. The result is shown in Figure 4.10.
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Figure 4.10: Functional f after different shocks are applied to initial capital.

The final proportion of banks in default is given in Table 4.4.

Type of shock g(ẑ)

No Common Shock 0.0270

Exponential 0.1558

Gamma k = 2 0.2527

Gamma k = 3 0.3238

Table 4.4: Proportion of banks in default after cascade process ends.
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From Figure 4.10 and Table 4.4 we can see that a common shock in fact makes the

initial default spread to a larger portion of the network.

4.1.3 Average Capital for Fixed Expected Loss

In Section 4.1.2 the simulation considered different distributions for the shock α to

each bank’s capital such that the initial proportion of banks in default was equal p. This

means that each distribution for the shock α had different expectation and variance. In

this section we will fix the expected value of the shock α to each bank’s capital. This

way the expected loss throughout the network will be the same for different distributions

due to the Law of Large Numbers.

The same procedure is followed. We start with C0 which makes the network resilient.

We can verify this by checking if E[W+W−1C=1] < 1, according to [18]. Then we calculate

C1 after different shocks by bootstrap estimation.

In the first example, we choose α ∼ Gamma(k = 3, β) and choose β such that the

initial proportion of banks in default is 1%. The parameters of the distribution for the

other shocks are chosen such that they all have the same expected value. The parameters

used are presented in Table 4.5. Functional f was calculated for all C1 obtained. The

result is shown in Figure 4.11.

Type of shock Parameter Mean Variance

Exponential λ = 0.7751 1.29 1.665

Gamma k = 2 β = 1.5504 1.29 0.832

Gamma k = 3 β = 2.3255 1.29 0.5547

Table 4.5: Parameters for shock distributions for average capital. All distributions
have the same expected value.
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Figure 4.11: Functional f after different shocks are applied to initial capital. Expected
value of different shocks have the same mean.

The initial and final proportion of banks in default, g(0) and g(ẑ) respectively, are

given in Table 4.6.

Type of shock g(0) g(ẑ)

Exponential 0.0624 0.3669

Gamma k = 2 0.0259 0.3373

Gamma k = 3 0.0100 0.3155

Table 4.6: Proportion of banks in default after cascade process ends.
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From Figure 4.11 and Table 4.6 we see that the initial proportion of infected vertices

is much larger for the Exponential shock but the final proportion of infected vertices is

similar for all different shocks.

We did the same procedure but now we choose α ∼ Exponential(λ) and choose β

such that the initial proportion of banks in default is 1%. The parameters for each

distribution are given in Table 4.7.

Type of shock Parameter Mean Variance

Exponential λ = 1.2820 0.78 0.608

Gamma k = 2 β = 2.5642 0.78 0.3042

Gamma k = 3 β = 3.8462 0.78 0.2028

Table 4.7: Parameters for shock distributions for average capital. All distributions
have the same expected value.

Functional f was calculated for all C1 obtained. The result is shown in Figure 4.12.

The initial and final proportion of banks in default g(0) and g(ẑ), respectively, are

given in Table 4.8.

Type of shock g(0) g(ẑ)

Exponential 0.0100 0.1618

Gamma k = 2 0.0012 0.1083

Gamma k = 3 0.00016 0.1076

Table 4.8: Proportion of banks in default after cascade process ends.
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Figure 4.12: Functional f after different shocks are applied to initial capital. Expected
value of different shocks have the same mean.

From Figure 4.12 and Table 4.8 we can see, once again, that the common asset has a

large impact in the default cascade, no matter how small the initial infection is.

Also, by comparing Figures 4.11 and 4.12 as well as Tables 4.6 and 4.8, we can see

that even though the distributions for the shock α give sometimes very different initial

infections, the final proportion of banks in default is somewhat similar. Once again, the

common shock creating contagions links is very impactful to the contagion process.

4.1.4 Average Capital with Comonotone Shock

In the previous sections we obtained the distribution C1 after a shock α which was

always independent of the weights W+ and W− and the exposures Ei,j. In this section

we will make the distribution α comonotone with W− (it will also be comonotone with
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W+ since W+ and W− are comonotone). This simulates a more realistic scenario where

big banks suffer bigger shocks.

The parameters chosen for the shock α in this simulation are exactly the same as in

Table 4.3. The distributions for C1 look the same, since the parameters for α are the

same. However instead of being independent of everything else, they are now comonotone

with W−.

The functional f was calculated for all C1. The result is shown in Figure 4.13.
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Figure 4.13: Functional f after different comonotone shocks are applied to initial capital.

It is important to point out that even though f(0) is larger in this case then in Figure

4.10, the initial proportion of banks in default is the same. Value f(0) can be calculated

from equation (2.4.4):
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f(0) = E[W+P(Poi(0) ≥ C)] = E[W+1C=0] (4.1.1)

If W+ and α are independent, then from equation (4.1.1), we can see that f(0) =

pE[W+], where p is the initial proportion of banks in default. In the comonotone case,

however, this probability that ci = 0 is higher for banks with large weight w+
i ,and there-

fore f(0) should be larger because W+1C=0 will be non-zero for larger values of W+.

The final proportion of banks in default is given in Table 4.9.

Type of shock g(ẑ)

Exponential 0.2464

Gamma k = 2 0.3130

Gamma k = 3 0.3612

Table 4.9: Proportion of banks in default after cascade process ends.

If we compare the proportion of banks in default given in Tables 4.9 and 4.4, we can

see that the cascade affects a larger portion of the network when the shock is comonotone

with W−. This result agrees with the findings in [18] which mention that larger banks

have a more significant impact to the contagion process in the network. In our example,

making larger banks having a higher probability of default increases the final proportion

of banks in default.
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4.2 Simulation Study Without Second Moment

As in section 4.1, we simulate the default contagion process on a financial network,

but now we assume that the degree sequence does not have finite second moment. Again,

the weights W+ and W− are comonotone and sampled from a Pareto distribution (see

Definition 3).

We will start our simulation by imposing a minimum capital requirement for each

bank using a threshold function τi(w
−), as proposed in [18], which makes the network

resilient (see Theorem 7) for the capital choice in equation (3.2.1). We do not have a

resilience criterion if the capital is defined as in equation (3.2.2). In this case we will

check if the system is resilient using Theorem 4. The function τi(w
−) is given by:

τi(w
−) = max

{
2, αc(1 + δ1)(w−i )γc(1+δ2)

}
, (4.2.1)

where

γc = 2− β− − 1

β+ − 1
− β−,

and

αc =
β+ − 1

β+ − 2
w+
min(w+

min)(1−γc).

The parameters δ1 and δ2 are positive constants. According to Theorem 7, any

positive δ1 and δ2 will make the network resilient. Unless otherwise specified, we always

use δ1 = δ2 = 0.08.

Once we have each bank’s capital, as in equations (3.2.1) and (3.2.2), we start the same

procedure described in Section 4.1: obtain the distribution of C0, the initial hypothetical

threshold level, and C1, the hypothetical threshold level after a shock is applied to the

common asset, which will be used to calculate functional f which describes the contagion

process.
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Figure 4.14: Histogram without com-
mon shock (blue) and with Exponen-
tial shock (red).

Figure 4.15: Histogram without com-
mon shock (blue) and with Gamma
shock (red).

Figure 4.16: Histogram without com-
mon shock (blue) and with Gamma
shock (red).

Figure 4.17: Histogram Exponential
shock(blue), Gamma shock k=2 (red),
Gamma shock k=3 (yellow).

4.2.1 Hypothetical Capital Choice

In this section we analyze the default contagion process when each bank’s initial

capital is given in equation (3.2.2), with τi(w
−) as in equation (4.2.1). As mentioned in

Section 4.1.1, we do not have a resilience criterion for this particular definition of the

capital. We will check resilience using Theorem 4 by plotting functional f without any

initial banks in default and observe the derivative around 0. It will in fact be resilient in

this case.

We start by presenting the histograms of C0 and C1 in Figures 4.14-4.17 for different

distributions of the shock.

Once again, note that the common shock introduces not only default but also con-

tagious links. Also note that, for the same initial infection, the Exponential shock in-
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troduces fewer contagious links and Gamma with k = 3 introduces the most contagious

links in our examples. The parameters for each distribution used are presented in Table

4.10.

Type of shock Parameter Mean Variance

Exponential λ = 3.333333 0.3 0.09

Gamma k = 2 β = 5.952381 0.336 0.0564

Gamma k = 3 β = 8.474576 0.354 0.0418

Table 4.10: Parameters for shock distributions for hypothetical capital.

From Table 4.10 we see that, for the same initial infection, distributions with higher

expected value have smaller variances. This was also observed in the same example when

the network has finite second moment (see Table 4.1).

For the hypothetical threshold levels showed in Figures 4.14-4.17 we simulate the

default contagion process by calculating functional f . The result is presented in Figure

4.18

In Figure 4.18 the blue line represents an unshocked network. Note that the derivative

is negative for small z, so the system is resilient according to Theorem 4. We can see

that the contagion process has nearly the same behavior for different distributions of

the shock. Also we note that the derivative of the functional around z = 0 is negative,

which indicates that the networks is resilient. This suggests that the choice of capital is

sufficiently strong and the network will be stable if it subject to small shocks. However,

note that despite the initial negative derivative, it starts growing rapidly and, if the shock

is large enough, the system will be widely affected.
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Figure 4.18: Functional f after different shocks are applied to initial capital.

The final proportion of banks in default g(ẑ) is given in Table 4.11 for all different

distributions of the shock.

Type of shock g(ẑ)

Exponential 0.8051

Gamma k = 2 0.8101

Gamma k = 3 0.8116

Table 4.11: Proportion of banks in default after cascade process ends.

From Table 4.11 it is clear that the contagion process affects a huge portion of the
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Figure 4.19: Histogram without com-
mon shock (blue) and with Exponen-
tial shock (red).

Figure 4.20: Histogram without com-
mon shock (blue) and with Gamma
shock (red).

Figure 4.21: Histogram without com-
mon shock (blue) and with Gamma
shock (red).

Figure 4.22: Histogram Exponential
shock(blue), Gamma shock k=2 (red),
Gamma shock k=3 (yellow).

network. Once again we see that the distribution of the shock does not matter too much

since the final proportion is similar for all different shocks.

4.2.2 Average Capital Choice

We will now simulate default contagion for initial capital defined as in equation (3.2.1),

and τi(w
−) defined in equation (4.2.1). In this case, this particular choice for the capital

and τi(w
−) makes the network resilient. This is shown in Theorem 7 and more details

can be found in [18].

We follow the same steps: obtain C0 and C1 for different distributions of the shock

and simulate the default contagion by calculating functional f . The histograms for C0

and C1 are shown in Figures 4.19-4.22.
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In this case we can see that all shocks create a large number of contagious links. We

will see that this will impact heavily on the default contagion process. Again we see that

the Gamma shock with k = 3 seems to create more contagious links and the Exponential

shock creates fewer. The parameters for each shock distribution are given in Table 4.12.

Type of shock Parameter Mean Variance

Exponential λ = 1.086957 0.92 0.846

Gamma k = 2 β = 1.612903 1.24 0.7688

Gamma k = 3 β = 2.074689 1.446 0.697

Table 4.12: Parameters for shock distributions for average capital.

For the hypothetical threshold levels showed in Figures 4.19-4.22 we simulate the default

contagion process by calculating functional f . The result is presented in Figure 4.23

The blue line in Figure 4.23 represents the unshocked system. We can see that the

derivative is negative around z = 0 and the system is resilient. However, the shocked

systems do not seem to have negative derivatives around 0, and, as we can see, the

contagion process stops very late. Once again the behavior of the system for different

shocks is not very different. Note that this system seems less resilient than the previous

example in Figure 4.18. However, comparing Tables 4.10 and 4.12 we can see that it

takes a higher average shock to make this system have the same initial proportion of

banks in default.

The final proportion of banks in default g(ẑ) is given in Table 4.13 for all different

distributions of the shock.
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Figure 4.23: Functional f after different shocks are applied to initial capital.

Type of shock g(ẑ)

Exponential 0.6276

Gamma k = 2 0.6740

Gamma k = 3 0.7016

Table 4.13: Proportion of banks in default after cascade process ends.

Comparing Tables 4.10 and 4.12 we can see that the average shock is higher in the second

case. However, comparing , Tables 4.11 and 4.11 we see that the final fraction of banks in

default is smaller in the second case. The example given in Section 4.10 has several banks

with hypothetical threshold level 2 and even small shocks can lead to banks in default or

introduce contagious links. In the later example, in Section 4.11 we can see that banks
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have a higher initial hypothetical threshold level, and a larger shock is required to lead

banks to default. Also, these banks with very high initial threshold level do not suffer a

big loss in this case where the shocks are independent and identically distributed, which

suggests that big banks have a heavier impact on the stability of the system.

4.2.3 Average Capital for Fixed Expected Loss

In Section 4.2.2 we had different expected values for the different distributions of the

shock. In this Section, as in 4.1.3, we will fix the expected value of one distribution and

fit the parameters of the others such that all systems suffer the same expected loss after

the shock.

We start by fitting the parameter of the shock with Exponential distribution such

that the initial proportion of banks in default is 1%. The parameters for the other

distributions are chosen such that they have the same expected value.

The parameters are given in Table 4.14.

Type of shock Parameter Mean Variance

Exponential λ = 1.086957 0.92 0.846

Gamma k = 2 β = 2.173913 0.92 0.4232

Gamma k = 3 β = 3.260869 0.92 0.2821

Table 4.14: Parameters for shock distributions for average capital.

From Table 4.14 we can see that the Exponential distribution has higher variance. We

expect that the initial infection is higher for this distribution for the shock. Functional

f for the shocks in Table 4.14 is presented in Figure 4.24.
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Figure 4.24: Functional f after different shocks are applied to initial capital. Expected
value of different shocks have the same mean.

The initial and proportion of banks in default is given in Table 4.15.

Type of shock g(0) g(ẑ)

Exponential 0.0100 0.6277

Gamma k = 2 0.0017 0.6270

Gamma k = 3 0.0003 0.6263

Table 4.15: Proportion of banks in default after cascade process ends.

We can see that the initial proportion of banks in default after a shock with Gamma dis-
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tribution affects the network is negligible. However, despite some numerical instabilities

around z = 0, we can see that the functional starts with positive derivative, which means

that the network is not resilient in this case. This result is similar to Figure 4.12.

Remark 19 The evaluation of f around z = 0 for very small initial proportion of in-

fection is not precise and usually result in f(z) = −z because the expected value will be

0. In Figure 4.24 we disregard the first couple of values for the purple and yellow lines

because of this.

Analogously, we did the same example but now we fit the shock with Gamma distribu-

tion with k = such that the initial proportion of banks in default is 1%. The parameters

for the other distributions are chosen such that they have the same expected value.

The parameters are given in Table 4.15.

Type of shock Parameter Mean Variance

Exponential λ = 0.691563 1.446 2.091

Gamma k = 2 β = 1.383125 1.446 1.0455

Gamma k = 3 β = 2.074689 1.446 0.697

Table 4.16: Parameters for shock distributions for average capital.

From Table 4.16 we can see that again the Exponential shock has higher variance

and, therefore, should have a higher initial proportion of banks in default. We calculate

functional f for the shocks given in Table 4.16.

The initial and final proportion of banks in default is given in Table 4.17.
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Figure 4.25: Functional f after different shocks are applied to initial capital. Expected
value of different shocks have the same mean.

Type of shock g(0) g(ẑ)

Exponential 0.0453 0.6963

Gamma k = 2 0.0204 0.7016

Gamma k = 3 0.0100 0.7017

Table 4.17: Proportion of banks in default after cascade process ends.

We can see from Figure 4.25 that the initial proportion of banks in default is indeed

higher for the exponential shock. However, once again, regardless of the type of shock

the final proportion of infected vertices is quite similar. This result is similar to Figure

4.11.
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4.2.4 Average Capital with Comonotone Shock

In Sections 4.2.1-4.2.3 we assumed that the shock α was independent of everything

else. While the examples gave some insight into which banks are more important, it is

unrealistic to expect that big banks, which have a large balance sheet, will suffer the

same loss as a bank with a much smaller balance sheet. In this Section, as in Section

4.1.4, we will make the distribution of α comonotone with W−. Of course, since W+ and

W− are comonotone themselves, α will also be comonotone with W+.

This is the most realistic scenario considered in this work. W+ and W− both have

infinite second moment in this case, which is compatible with the findings in [13], and

big banks will suffer bigger losses.

We proceed as we did several times. First we find C0 and C1 and then we analyze the

default contagion process by calculating functional f . Histograms for these distributions

are presented in Figures 4.26-4.29.

From Figures 4.26-4.29 we can see that these shocks are quite severe. Furthermore,

we see that after the shock, there are very few banks with high hypothetical threshold

level.

In this example, since the big banks have a much larger capital requirement, the shocks

also have a much larger expected value. The parameters for the shock distributions are

given in Table 4.18.

It is clear when we compare Table 4.18 with Tables 4.12, 4.14 and 4.16 that the shock

in this case will be, on average, much higher. However, since it is comonotone with W−,

bigger banks, i.e., banks with larger hypothetical threshold level, will suffer bigger losses.

Functional f for these examples is presented in Figure 4.30. From Figure 4.30 we can

see that the initial system, represented by the blue line, is in fact resilient. However, the
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Figure 4.26: Histogram without com-
mon shock (blue) and with Exponen-
tial shock (red).

Figure 4.27: Histogram without com-
mon shock (blue) and with Gamma
shock (red).

Figure 4.28: Histogram without com-
mon shock (blue) and with Gamma
shock (red).

Figure 4.29: Histogram Exponential
shock(blue), Gamma shock k=2 (red),
Gamma shock k=3 (yellow).
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Type of shock Parameter Mean Variance

Exponential λ = 0.237529 4.2100 17.724

Gamma k = 2 β = 0.455373 4.392 9.6448

Gamma k = 3 β = 0.683060 4.392 6.4299

Table 4.18: Parameters for shock distributions for average capital.

shocked systems are non-resilient. Furthermore we see that the derivative around z = 0

is positive and the initial growth of f is quite significant for small z, contrary to other

examples, where the derivative around 0 was not quite so steep.
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Figure 4.30: Functional f after different comonotone shocks are applied to initial
capital with δ1 = δ2 = 0.08.
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The final fraction of banks in default is presented in Table 4.19

Type of shock g(ẑ)

Exponential 0.7828

Gamma k = 2 0.8433

Gamma k = 3 0.8704

Table 4.19: Proportion of banks in default after cascade process ends.

This is the example in which the largest proportion of the network is affected. It is clear

by observing the behavior of the functional f that this contagion process is indeed very

harmful to the network. Once again we show that large banks are very impactful to the

contagion process, and in order to insure stability of the system these large banks should

remain solvent. This is consistent with the findings in [21], which show that even though

the contagion process is rare, when it happens it can affect a very large portion of the

system.

Using the same quantities from this example, we increased parameters δ1 and δ2

in equation (4.2.1) to check how a larger imposed threshold level affects the default

contagion. Now we choose δ1 = δ2 = 0.092. To keep the example consistent, the same

parameters for the shock α were used. The resulting functional f is presented in Figure

4.31. The difference between Figures 4.30 and 4.31 is that in the later there are no banks

in default initially. We can see from the behavior of the functional that the system is

non-resilient, that is, even very small shocks to this system will lead to a large portion

of the system being affected. Again we show that a common shock is very impactful to

the contagion process.
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Figure 4.31: Functional f after different comonotone shocks are applied to initial
capital with δ1 = δ2 = 0.092.

If we increase the parameters δ1 and δ2 even further, it is possible to make the

functional f have negative derivative at z = 0. In Figure 4.31 we show and example

with δ1 = 0.2 and δ2 = 0.3. We chose δ2 > δ1 to make larger banks have even higher

threshold level. Again, the same parameters for the shock α were used. From Figure 4.32

we can see that a higher capital requirement will make the network resilient. However,

in this scenario where very large shocks are applied to all banks, the capital requirement

needed in order to make the system resilient is also very large. From equation (4.2.1) we

can see that τ ∝ (1 + δ1)(w−i )1+δ2 , so increasing δ2 will have a large impact, particularly

for the larger banks.
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Figure 4.32: Functional f after different comonotone shocks are applied to initial
capital with δ1 = 0.2 and δ2 = 0.3.

4.3 Methodology

In this Section we will show briefly the codes used to make the simulations in Sections

4.1 and 4.2. Note that not the entire code will be show here, just the main commands

and functions.

We analyzed the final fraction of banks in default in a given network by calculating

functional f , defined in equation (2.4.4). We need to simulate the triple (W−,W+, C0),

which describes the network prior to a shock, and (W−,W+, C1), which is after the shock.

In the first part of the code we define all the parameters of the problem: λ, which is

the parameter for the exposure distribution; the parameter for the distribution of W−
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and W+, as defined in (3); τ(w−i ), as defined in (4.2.1). Next we simulate the comonotone

vector (w−i , w
+
i ) and the shock αi:

1 % power law exponent accord ing to the d e f i n i t i o n in t h i s

work

2 exp p lus = 2 . 8 8 6 1 ;

3 exp minus = 2 . 1 3 2 ;

4

5 %f i x parameters f o r the gprnd func t i on in Matlab

6 a lpha p lu s=exp plus −1;

7 alpha minus=exp minus−1;

8

9 % simulate w plus and w minus

10 %s e t seed = 0 f o r both

11 xmin=1;

12 rand ( ’ seed ’ , 0 ) ;

13 w plus = gprnd (1/ a lpha p lu s , xmin/ a lpha p lu s , xmin , 1 , s i z e ) ;

14 rand ( ’ seed ’ , 0 ) ;

15 w minus = gprnd (1/ alpha minus , xmin/ alpha minus , xmin , 1 , s i z e ) ;

16

17 %paramater lambda f o r exposures , chosen to f i t the data

18 a lpha exposure s =2.27;

19 lambda=( ( a lpha exposure s ) /( a lpha exposures −1) ) ˆ−1;

20

21 %d e f i n e parameters f o r tau

22 de l ta1 =0.08;
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23 de l ta2 =0.08;

24 a lp c1 = a l p c ∗(1+ de l ta1 ) ;

25 gam c1 = gam c∗(1+ de l ta2 ) ;

26

27 %d e f i n e tau

28 tau=f l o o r ( a lp c1 ∗( w minus ) . ˆ ( gam c1 ) ) ;

29 tau=max(2 , tau ) ;

30

31 %i i d shock alpha

32 %k=1 ,2 ,3

33 %values beta change

34 alpha=gamrnd (k ,1/ beta , 1 , s i z e ) ;

35

36 %alpha comonotone with wˆ−

37 alpha=gaminv ( gpcdf ( w minus ,1/ alpha minus , xmin/ alpha minus ,

xmin ) ,k , 1/ beta ) ;

The final input to calculate functional f are C0 and C1. We used the following

function which simulates both vectors:

1 f unc t i on [ c0 , c1 ]=cmean ( s i z e , tau , alpha , lambda )

2

3 c0=ze ro s (1 , s i z e ) ;

4 c1=ze ro s (1 , s i z e ) ;

5

6 %i n i t i a l c a p i t a l

7 c a p i t a l =(1/lambda )∗ tau .∗ ones (1 , s i z e ) ;
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8

9 %c a p i t a l a f t e r the shock

10 newcapi ta l = nu mean − alpha ;

11

12 f o r i =1: s i z e

13 E=exprnd (1/ lambda ,10∗ tau ( i ) , 1 ) ;

14 cummexpo=cumsum(E) ;

15

16 %t h i s s tep i s u sua l l y skiped , we j u s t need to ensure that

the sum of the exposures i s sma l l e r than banks c a p i t a l

the ensure that we are not capping the hypo the t i c a l

th r e sho ld l e v e l . There are f a n c i e r ways o f doing th i s ,

but t h i s seems e f i c i e n t s i n c e c r e a t i n g ve c t o r s in Matlab

i s f a s t and the d e f i n i t i o n above i s almost always enough .

17 i f c a p i t a l ( i )>sum(E)

18 E=[E; exprnd (1/ lambda ,20∗ tau ( i ) , 1 ) ] ;

19 end

20

21 %f i n d new thre sho ld func t i on f o r each ver tex

22 [ ˜ , C0]= h i s t c ( c a p i t a l ( i ) , cummexpo ( : , 1 ) ) ;

23 c0 (1 , i )=C0+1;

24

25

26

27 [ ˜ , C1]= h i s t c ( newcapi ta l ( i ) , cummexpo ( : , 1 ) ) ;
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28 c1 (1 , i )=C1+1;

29

30 i f newcap i ta l ( i )<0

31 c1 (1 , i ) =0;

32 end

33

34 end

35 end

Finally, we need another function to calculate functional f :

1 f unc t i on [ f , g , zhat ]= f f (C, w minus , w plus )

2

3 %gr id f o r z

4 z = 0 : 0 . 0 1 : 2 ;

5 maxit=length ( z ) ;

6

7 %i n i t i a l i z e f u n c t i o n a l f

8 f=ze ro s (1 , maxit ) ;

9

10 %rout in e to c a l c u l a t e f u n c t i o n a l f at each po int from the

g r id above

11 f o r i =1: maxit

12 p s i= 1−p o i s s c d f (C−1,w minus∗z ( i ) ) ; %f o r each vertex ,

mult ip ly w− by z , and f i n d the p r o b a b i l i t y that a

Poisson with parameter z∗w− i s l a r g e r than C

13 f ( i )=mean( w plus .∗ p s i )−z ( i ) ;

91



14 end

15

16 %f i n d i n g the root o f f

17 [M, I ]=min ( abs ( f ) ) ;

18 zhat=z ( I ) ;

19

20 %f i n d g

21 g=mean(1− p o i s s c d f ( C−1,w minus∗ zhat ) ) ;
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