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Abstract

This paper assesses the direction-of-change forecasts based on conditional variance from the

Dynamic Nelson-Siegel model. Although the literature focuses on forecasting the level of yield

curves, which is a difficult task, we propose forecasts for the direction-of-change of the yield curve

returns. The results suggest that models with information of skewness and kurtosis of returns

outperform the benchmark model, mainly in long maturities and short horizons of forecasts.
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1. Introduction

The importance of forecasts of economic and financial indicators, such as interest rates, inflation

expectations, economic activity, and asset returns, has guided governments’ decision-making in

conducting monetary policy and investors in portfolio allocation. A well-known time series studied

for academics, central bankers, and investors is the yield curves or the term structure of interest

rates. The yield curve is a graphical representation of interest rates traded on market with different

maturities, this curves often unveils agents market expectation on the short-term and long-term

of interest rates. In this sense, the literature on yield curves proposes non-arbitrage models,

equilibrium models, and factor models to capture information that is not directly observable in

the market. Researchers, notably Nelson & Siegel (1987) (henceforth NS), Svensson (1994) and

Diebold & Li (2006), investigated and developed parametric interpolation models to fitting and

forecasting the yield curve.

The reinterpretation of Diebold & Li (2006) of the NS model, however, explored the model’s

performance dynamically as a tool for forecasting the yield curve in such a way that the factors

of the NS model were interpreted as level (long-term of interest rate), slope (short-term), and

curvature (mid-term). Subsequently, Diebold et al. (2006) adds backward-looking macroeconomic



variables to the Factor-Augmented DNS model and analyzes its relation with the yield curve’s

behavior. Fernandes & Vieira (2019) employ a factor-augmented dynamic NS (FADNS) model

to predict the yield curve in the US that relies on a large data set of mostly forward-looking

macroeconomic variables. The FADNS with forward-looking macro factors significantly improves

interest rate forecasts in out-of-sample analysis relative to many extant models in the literature.

Vieira et al. (2017) suggest the same improvements in forecasting Brazilian yield curve using

forward-looking variables.

Alternatively, Koopman et al. (2010) developed two major extensions of the DNS model to fit

the yield curve, the first one is with time-varying loading factor (λt), since λt estimation indicates

the average maturity of bonds, although the standard procedure in the literature is to fixed λ. The

second is an extension with time-varying volatility, since sometimes the yield curves is more volatile,

sometimes is less volatile, a common stylized fact. As well as Diebold et al. (2006) and Koopman

et al. (2010), Yu & Zivot (2011) provides forecasts of the yield curves to the US government bonds

in a single step using the Kalman filter, an algorithm to estimate latent factors. Koopman et al.

(2010) improved the estimation method by introducing the yield curves errors as a common latent

factor into state-space framework to be filtered, as well as the loading factor with the Extended

Kalman filter. Koopman et al. (2010) prefer to preserve the Kalman filter’s elegance instead of

using other methods such as the Bayesian method to estimate this time-varying parameters.

The accuracy of yield curve forecasts, not only of magnitude but specifically of the direction

of change in financial assets, emerges as a research source in the prediction field. Greer (2003),

for instance, after conducting tests on the directional accuracy of long-term interest rates forecasts

published on The Wall Street Journal, suggests these predictions, in general, could be performed

with the same precision as flipping a coin, even if there was a combination of the best predictions

(see Greer, 2005).

On the other hand, authors such as Christoffersen & Diebold (2006) found that stock returns’

volatility forecasts generated a significant forecastability of positive return probability. In other

words, they suggest volatility predictability produces predictability in the direction of stock returns.

They also suggest it would be more likely to find forecastability in intermediate return horizons

such as monthly frequency. The authors argued the results are significant to academic studies

and by market practitioners, who usually use timing strategies linked to volatility movements

(see Rattray & Balasubramanian, 2003). Christoffersen & Diebold (2006) and Christoffersen et al.

(2006) were the first to provide a rigorous investigation between the conditional volatility dynamics

and the positive return probability in financial assets forecasts.

Our goal is to explore the literature gap on forecasting the yield curves using conditional means

and conditional volatility forecasts as inputs to predict the direction of return in the fixed income.

The main question is, will conditional mean and conditional volatility forecasts, as input to predict
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the probability of positive returns, outperform the benchmark model? We think so. Sections two

and three present the model to estimate and forecast the yields. The section four present the

models to forecast direction-of-change of returns and section six presents data set and results.

2. The Dynamic Nelson-Siegel Model

The factors model for the yield curve can represent the forms usually associated with the yield

curve, that is, monotonic, curved, and S. Diebold & Li (2006) modified the Nelson & Siegel (1987)

model by incorporating time-varying factors in the following way1

yi,t(τi) = β1,t + β2,t

(
1− e−λτi

λτi

)
+ β3,t

(
1− e−λτi

λτi
− e−λτi

)
, (1)

where yt denotes the yields at time t and τi the maturity of the bond to {t}Ti=1 and {i}Ni=1, respec-

tively. The parameter λ determines the exponential decay rate, i.e., small λ values results in slow

decay and can better fit the curve for longer maturities; on the other hand, large λ values produce

rapid decay and can better fit the curve for shorter maturities.

In the Diebold & Li (2006) model, λ is kept fixed while parameters β1,t, β2,t, β3,t are estimated

by ordinary least squares for each period. Cross-section estimates can be obtained whenever there

are sufficient interest rates for different maturities in time. In Diebold et al. (2006), on the other

hand, λ is estimated.

The DNS is the benchmark model, since it is referential for the other extensions in terms of

results. In the following Section, I presented the models through the state-space representation.

2.1. The Dynamics of the Latent Factors

Diebold et al. (2006) advanced by proposing that the NS model framework can be represented

as a state-space model by treating vector βt = (β1,t, β2,t, β3,t)
′ as a latent vector. The model

equation can be written as follows
yt(τ1)

...

yt(τN)

 =


1 x1,2 x1,3

...
...

...

1 xN,2 xN,3


 β1,t

β2,t

β3,t

+


εt(τ1)

...

εt(τN)

 , (2)

1The equation (1) corresponds to equation (2) in the paper of Nelson & Siegel (1987). According to Diebold
et al. (2006), the following notations are adopted: τ for maturity instead of m, and the loading parameter λ equal
to 1

τ .

3



where

xi,2 =
1− zi
λτi

, xi,3 =
1− zi
λτi

− zi,

zi = exp(−λτi).

The observation equation in (2) relates the observed interest rates of the i = 1, . . . , N maturities

with the latent factors βt.

The vector autoregressive of order 1 of the factors that govern the dynamics of the state

equation, is defined as follows β1,t+1

β2,t+1

β3,t+1

 =

 µ1

µ2

µ3

+

 ϕ1,1 ϕ1,2 ϕ1,3

ϕ2,1 ϕ2,2 ϕ2,3

ϕ3,1 ϕ3,2 ϕ3,3


 β1,t − µ1

β2,t − µ2

β3,t − µ3

+

 η1,t

η2,t

η3,t

 , (3)

in matrix notation, the equations (2) and (3) can be rewritten as follows

yt = Λ(λ)βt + εt, (4)

βt+1 = µ+Φ(βt − µ) + ηt, (5)

where yt is a vector N × 1, Λ(λ) is a loading matrix N × 3, Φ is a VAR(1) parameters matrix

3× 1, βt and µ are vectors 3× 1. We assumed that ηt and εt are orthogonal to each other.

The variance matrix of the observation errors Σε is diagonal. This assumption implies that in-

terest rate deviations for different maturities are not correlated, which facilitates model estimation

by reducing the number of parameters. On the other hand, the assumption that the state errors

variance matrix Ση is unrestricted allows the shocks in the three factors to be correlated.

We have the representation of the DNS model in the state-space form. In this study, we used

the Kalman filter, this algorithm is a recursive procedure to calculate the optimal estimator of

the state vector at time t, based on the available information at time t, and make forecasts for

the state vector at t + 1 based on t. In the following sections, we introduced factor-augmented

Nelson-Siegel model.

2.2. Time-Varying Volatility

In the DNS model, I assume that volatility is constant, which may be a flexible assumption

since yield curves are related to trading in the financial markets, so volatility changes in these

markets may occur over time; in general, heteroscedasticity is a constant problem in economics,

especially in finance. The Kalman filter, on the other hand, can not solve this problem, that is, the
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filter works under the hypothesis that the variance and covariance matrix is constant, or at least

known. Assuming the GARCH structure, the array is unknown; in other words, it is time-varying.

The contribution in this Section and the following Sections is, therefore, to modify the Kalman

filter and Extended Kalman filter to incorporate the GARCH approach, so that parameter esti-

mation and volatility estimation are performed in a single step. The DNS model class, therefore,

has a common volatility component that is modeled by a univariate GARCH process according

to Harvey et al. (1992) and Koopman et al. (2010). The error vector, in the equation (4), is

decomposed as follows

εt = Γ εε
⋆
t + ε+t , (6)

where Γ ε and ε+t are defined as a vector of weights and an error vector of dimensions N×1,

respectively, and ε⋆t a scalar error factor. The error components are independent of each other as

follows

ε⋆t ∼ N (0, ht), ε+t ∼ N (0,Σ+
ε ), t = 1, ...T, (7)

where Σ+
ε is a diagonal matrix and ht is the variance specified as a GARCH process, according to

Bollerslev (1986). In this case, I have the following

ht+1 = γ0 + γ1ε
⋆2
t + γ2ht, t = 1, ..., T, (8)

and the estimated parameters have the constraints γ0 > 0, 0 < γ1 < 0, 0 < γ2 < 0, h1 =

γ0(1 − γ1 − γ2)
−1 and (γ1 + γ2) < 1. The vector of weights Γε can be normalized to avoid

identification problems, such that Γ ′
εΓε = 1, however, this restriction can be replaced by γ0 fixed

at 1 ×10−4. This last restriction, therefore, I used in estimation. The variance matrix of εt in (8)

is time-varying as follows

Σε(ht) = htΓεΓ
′
ε +Σ+

ε , (9)

where it depends on a single factor described by the GARCH process in (8). The unknown

parameters in the GARCH specification, γ = (γ1, γ2, Γ
′
ε)

′, are grouped in the parameter vector θ.

The state equation in (5) has one more unobservable component, i.e., ε⋆t is now calculated as a

latent state. The state-space representation of the observation equation (4) and the state equation
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(5) have some modifications as follows

yt =
[
Λ(λ) Γ ε

]︸ ︷︷ ︸
Λ⋆(λ)

[
βt

ε⋆t

]
︸ ︷︷ ︸

β⋆
t

+ε+t , ε+t ∼ N (0,Σ+
ε ), (10)

[
βt+1

ε⋆t+1

]
︸ ︷︷ ︸

β⋆
t+1

=

[
(Ij − Φj)µ

0

]
︸ ︷︷ ︸

µ⋆

[
Φj 0j×1

01×j 0

]
︸ ︷︷ ︸

Φ⋆

[
βt

ε⋆t

]
︸ ︷︷ ︸

β⋆
t

+

[
ηt

ε⋆t+1

]
︸ ︷︷ ︸

η⋆
t

, (11)

[
ηt

ε⋆t+1

]
︸ ︷︷ ︸

η⋆
t

∼ N
([

0

0

]
,

[
Ση 0j×1

01×j ht+1

]
︸ ︷︷ ︸

Σ⋆
η

)
, (12)

to t = 1, ..., T e j = 1, 2, 3 refer to the DNS-GARCH model. Since ht+1 in (8) is a function to

its past values and unobserved values of ε⋆t , it is not possible to calculate the values required for

ht+1 in time t. Harvey et al. (1992) propose to replace the square of the error term in (8) by their

expected value. Therefore, ht+1 can be replaced by its estimate based on observations y1, ..., yt as

follows

ĥt+1|t = γ0 + γ1E[ε⋆2t |Yt] + γ2ĥt|t−1, t = 1, ..., T, (13)

in which the expected value can be calculated by the recursions of the Kalman filter using the

increased state vector with ε⋆t filtered in the last element of vector bt|t, in the equation (17). The

expected value follows

E[ε⋆2t |Yt] = ε̂⋆2t|t +Bε
t|t, (14)

where ε̂t|t is the filtered estimate of εt, and Bε
t|t is the variance of εt, which are computed for all

states during recursions of the Kalman filter, given the observations until period t. Because of

the substitution of ĥt|t−1 in ht+1 in the equation (12), which in the filter is inserted into the (j, j)

element of the Σ⋆
η matrix in the equation (18), the filter and likelihood estimates are sub-optimal

(see Harvey et al. (1992) for more details).

Therefore the (unconditional) time-varying variance matrix of yt is Λ
⋆(λ)Σβ

⋆Λ⋆(λ)′+Σ⋆
ε (ht),

whereΣ⋆
β is the solution ofΣ⋆

β−Φ⋆Σ⋆
βΦ

⋆′ = Σ⋆
η. To estimate the DNS-GARCH-Macro model, the

equation (10), (11), and (12) are increased as appropriate. In the following Section, we presented

the procedure for the estimation.
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3. Estimation Based on the Kalman Filter

The equations model of the (4) and (5) is linear and Gaussian. The estimation is therefore

based on the Kalman filter. This algorithm is a recursive procedure that uses the data information

at time t to construct state estimates at time t + 1. The proposed estimation method combines

the filter with the Maximum Likelihood (ML) estimation.

The procedure for calculating latent values and unknown parameters is recursive; that is, I

started the process by making an initial assumption about the unknown parameters θ1 to execute

the algorithm. The prediction error vector is calculated, vt, and the prediction error matrix, Ft, in

the equations (15) and (16), respectively, to analyze the log-likelihood in equation (21). Updating

the state vector bt|t and the variance matrix Bt|t, in the equations (17) and (18), is done in the

filtering step in t given the set of information up to t. Therefore, consider the model defined in (4)

and (5), and define bt|s as minimum mean squared error linear estimators of βt given yt, ..., ys to

s = t− 1, t in the following recursion

vt = yt −Λ(λ)bt|t−1, (15)

Ft = Λ(λ)Bt|t−1Λ(λ)′ +Σε, (16)

bt|t = bt|t−1 + Bt|t−1Λ(λ)′F−1
t vt, (17)

Bt|t = Bt|t−1 − Bt|t−1Λ(λ)′F−1
t Λ(λ)Bt|t−1, (18)

bt+1|t = µ+Φ(bt|t − µ), (19)

Bt+1|t = ΦBt|tΦ
′ +Ση, (20)

where the parameters in the coefficient matrix of the VAR, Φ, the matrices of variances Σε and

Ση, the mean vector µ and the parameter λ are are treated as unknown coefficients and grouped

into the parameter vector θ, as previously mentioned. The forecast of bt+1|t and Bt+1|t, that is, a

step forward is calculated in the filter prediction step in equations (19) and (20). The results of

the prediction error vector, vt, and the prediction error matrix, Ft, re again used as inputs into

the log-likelihood function so that the estimate can be conducted to obtain new estimates of the

unknown parameters θ2. These steps are then iterated until the parameters values of the θMV are

found for which the log-likelihood function is maximized.

The estimation of θ is based on the numerical maximization of the log-likelihood function via

the prediction error decomposition, see Harvey (1989). Therefore, log-likelihood follows by form

logL(Yn) = −NT

2
log 2π − 1

2

T∑
t=1

(log |Ft|+ v′tF
−1
t vt), (21)

where vt and Ft are calculated recursively by the Kalman filter (15) to (20) for a given set of θ, such
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that log L(Yn) is computed using the filter result. The calculations required for implementation

were made through the R language maintained by the R Core Team (2018), and the minimization

of the log-likelihood function was obtained by the nlminb optimization function.

The initial parameters were calculated in the estimation in two steps according to Diebold &

Li (2006), namely, µ, Σε diagonal matrices, Ση upper triangular matrix, and Φ VAR parameters

matrix. According to Koopman et al. (2010) and Christensen et al. (2010), b1|0 and Σβ of the

model can be calculated as follows, according to the distribution of βj,1, given by

β1 ∼ N (µ,Σβ), (22)

in which the unconditional covariance matrix of the state vector, Σβ, can be started as follows

Σβ −ΦΣβΦ
′ = Ση,

vec(Σβ)− vec(ΦΣβΦ
′) = vec(Ση),

Ij2 · vec(Σβ)− (Φ⊗Φ) · vec(Σβ) = vec(Ση),

[Ij2 − (Φ⊗Φ)] · vec(Σβ) = vec(Ση),

vec(Σβ) = [Ij2 − (Φ⊗Φ)]−1 · vec(Ση), (23)

then, under the assumption of a stationary process, the initial value of the state vector is equal to

the unconditional mean, β1 = µ, and the initial value of the unconditional covariance matrix Σβ

is equal to (23).

4. Direction-of-Change Models

Let Rt be a series of returns and Ωt be the information set available at time t. Pr [Rt > 0] is

the probability of a positive return at time t. The conditional mean and variance are denoted,

respectively, as µt+1|t = E [Rt+1 | Ωt] and σ2
t+1|t = Var [Rt+1 | Ωt]. The return series is said to

display conditional mean predictability if µt+1|t varies with Ωt; conditional variance predictability

is defined similarly. If Pr [Rt > 0] exhibits conditional dependence, i.e., Pr [Rt+1 > 0 | Ωt] varies

with Ωt, then we say the return series is sign predictable (or the price series is direction-of-change

predictable).

Suppose µt+1|t = µ for all t and σ2
t+1|t varies with t in a predictable manner. Denoting D(µ, σ2)

as a generic distribution dependent only on its mean µ and variance σ2, assume

Rt+1 | Ωt ∼ D
(
µ, σ2

t+1|t
)
.

Then the conditional probability of positive return is
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Pr (Rt+1 > 0 | Ωt) = 1− Pr (Rt+1 ≤ 0 | Ωt) ,

= 1− Pr

(
Rt+1 − µ

σt+1|t
≤ −µ

σt+1|t

)
,

= 1− F

(
−µ

σt+1|t

)
, (24)

where F is the distribution function of the “standardized” return (Rt+1|t − µ)/σt+1|t). If the con-

ditional volatility is predictable, then the sign of the return is predictable even if the conditional

mean is unpredictable, provided µ ̸= 0. Note also that if the distribution is asymmetric, then

the sign can be predictable even if the mean is zero: time-varying skewness can be driving sign

prediction in this case.

Interaction between volatility and higher-ordered conditional moments can similarly affect the

potency of conditional volatility as a predictor of return signs. We follow Christoffersen & Diebold

(2006) and use

Pr (Rt+1 > 0 | Ωt) = 1− F

(
−µt+1|t

σt+1|t

)
(25)

to explore the sign predictability of one-, -two, three-, and six-month returns in yield curves2. We

also use an extended version of Equation (25) that explicitly considers the interaction between

volatility and higher-ordered conditional moments.

4.1. Baseline model

As Christoffersen et al. (2006), we evaluate the forecasting performance of two sets of forecasts

and compare their performance against forecasts from a baseline model. Our baseline forecasts

are generated using the empirical cumulative distribution function (cdf) of the Rt using data from

the beginning of our sample period right up to the time the forecast is made, i.e., at period k, we

compute

P̂r
(
Rk+1|k > 0

)
=

1

k

k∑
t=1

I (Rt > 0) , (26)

where I(·) is the indicator function.

2where µ̂
(τi)
t+h = τiy

τi
t − (τi − h) ŷτi−h

t+h is a return forecast for the bond with maturity τi in time t and Σµ̂t+h
=

τ ′τ ⊗Σyt+h
is their conditional covariance matrix.
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4.2. Non-parametric model

Our first forecasting model makes direct use of Equation (26). Using all available data at time

k, we first regress Rt on a constant, log (σ̂t), and [log (σ̂t)]
2, and compute

µ̂t = β̂0 + β̂1 log (σ̂t) + β̂2 [log (σ̂t)]
2 , t = 1, . . . , k (27)

where σ̂t is the square root of (actual, not forecasted) realized volatility. The period k+1 forecast

is then generated by

P̂r
(
Rk+1|k > 0

)
= 1− F̂

(
−
µ̂k+1|k

σ̂k+1|k

)
,

= 1− 1

k

k∑
t=1

I

(
Rt − µ̂t

σ̂t

≤
µ̂k+1|k

σ̂k+1|k

)
,

(28)

i.e., F̂ is the empirical cdf of (Rt − µ̂t) /σ̂t. The forecasts of conditional mean µ̂k+1|k and conditional

variance σ̂k+1|k are from all DNS models and extensions.

4.3. Extended model

The second model is an extension of Equation (25) and explicitly considers the interaction

between volatility, skewness and kurtosis. This is done by using the Gramâ=C“Charlier expansion:

1− F

(
−µt+1|t

σt+1|t

)
≈ 1− Φ

(
−µt+1|t

σt+1|t

)
+ Φ

(
−µt+1|t

σt+1|t

)[
γ3,t+1|t

3!

(
µ2
t+1|t

σ2
t+1|t

− 1

)
+
γ4,t+1|t

4!

(
µ3
t+1|t

σ3
t+1|t

+
3µt+1|t

σt+1|t

)]
,

where Φ(.) is the distribution function of a standard normal, and γ3 and γ4 are, respectively, the

skewness and excess kurtosis, with the usual notation for conditioning on Ωt. This equation can

be rewritten as

1− F (−µt+1|txt+1) ≈ 1− Φ(−µt+1|t)(β0t + β1txt+1 + β2tx
2
t+1 + β3tx

3
t+1),

with β0t=1+γ3,t−1|t/6, β1t=-γ4,t+1|tµt+1|t/8, β2t=-γ3,t+1|tµ
2
t+1|t/6 e β3t=γ4,t+1|tµ

3
t+1|t/24, where for

notational convenience, we denote xt+1=1/σt+1|t.

Whether µt+1|t is small, as in the case of short investment horizons, then β2t and β3t cac be
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safely be ignored, resulting in

1− F (−µt+1|txt+1) ≈ 1− Φ(−µt+1|t)(β0t + β1txt+1).

Thus, conditional skewness affects sign predictability through β0t, and conditional kurtosis

affects sign predictability through β1t. When there is no conditional dynamics in skewness and

kurtosis, the above equation is reduced to

1− F (−µt+1|txt+1) ≈ 1− Φ(−µt+1|txt+1)(β + βxt+1), (29)

for some time-invariant quantities β0 and β1.

We use Equation (29) as our second model for sign prediction, i.e., we generate forecasts of the

probability of positive returns as

P̂ r(Rt+1|t > 0 = xt+1) ≈ 1− Φ(−µ̂t+1|tx̂t+1)(β̂0 + β̂1x̂t+1), (30)

where x̂t+1|t = 1/σ̂t+1|t, and where µ̂t+1|t and σ̂t=t+1|t are as defined earlier. We refer to these

as forecasts from the “extended” model. The parameters β0 and β1 are estimated by regressing

1 − I (Rt > 0) on Φ (−µ̂tx̂t) and Φ (−µ̂tx̂t) x̂t for t = 1, . . . , k. Although we have not explicitly

placed any constraints on this model to require Φ (−µ̂tx̂t)
(
β̂0 + β̂1x̂t

)
to lie between 0 and 1, we

ensure it by applying the logistic function in extended model results to forecasts lie between 0 and

1.

5. Forecast Evaluation

We perform out-of-sample comparison of the forecast performance of equations (28), (30), and

the logistic function3 for the sign of return. Both are compared against baseline forecasts [Equation

(25)]. This is done for one-, two-, -three and six-month returns. We assess the performance of the

forecasting models using Brier scores:

3We also add the logistic function as Christoffersen & Diebold (2006) did: F (x) = exp(x)
1+exp(x) where x =

ˆµt+1|t
σ̂t+1|t

.
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Brier(Sq) =
1

T − k

T∑
t=k

2
(
P̂r

(
Rt+1|t > 0

)
− zt+1

)2

,

Brier(Abs) =
1

T − k

T∑
t=k

∣∣∣P̂r (Rt+1|t > 0
)
− zt+1

∣∣∣ ,
where zt+1 = I(Rt+1 > 0). The latter is the traditional Brier score for evaluating the performance

of probability forecasts and is analogous to the usual RMSFE. A score of 0 for Brier(Sq) occurs

when perfect forecasts are made: where at each period, correct probability forecasts of 0 or 1 are

made. The worst score is 2 and occurs if at each period probability forecasts of 0 or 1 are made

but turn out to be wrong each time.

Note that if we follow the usual convention where a correct probability forecast of I(Rt+1 > 0)

is 1 that is greater than 0.5, then correct forecasts will have an individual Brier(Sq) score between

0 and 0.5, whereas incorrect forecasts have individual scores between 0.5 and 2. A few incorrect

forecasts can therefore dominate a majority of correct forecasts. For this reason, we only consider

a modified version of the Brier score, which we call Brier(Abs). Like Brier(Sq), the best possible

score for Brier(Abs) is 0. The worst score is 1. Here correct forecasts have individual scores

between 0 and 0.5, whereas incorrect forecasts carry scores between 0.5 and 1.

In the following sections, we introduced the data set and empirical findings

6. Data and Results

6.1. Data

The data set consists of monthly closing prices observed for yields of future DI contracts. Based

on the observed rates for the available maturities, the data were converted to fixed maturities of

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 48, and 60 months, through interpolations using cubic

splines. The database contains the maturities with the highest liquidity for January 2004 through

December 2021 (T = 216 observations) and represents the most liquid DI contracts negotiated

during the analyzed period. We assess the performance of the model by splitting the sample into

two parts: the first one includes 108 observations used to estimate the parameters. The second

part is used to analyze the performance out-of-sample of bond portfolios obtained from the model,

with 108 observations.

Table 1 displays the descriptive statistics for the Brazilian interest rate curve. For each of the

14 time series, we report average, standard deviation, minimum, maximum, and the last three

columns contain sample autocorrelations at displacements of 1, 6, and 12 months. Descriptive

statistics presented in Table 1 seem to confirm key stylized facts about yield curves: the sample

12



Table 1: Summary Statistics

NOTE: The table reports summary statistics for Brazil yield curves over the period 2004-2021. We
examine monthly data, constructed using the spline method. For each maturity we show mean, stan-
dard deviation, skewness, raw kurtosis, minimum, maximum, and three auto-correlations coefficients,
ρ̂1, ρ̂6, ρ̂12. Also the table reports proxy estimates for level, slope, and curvature of the yield curve.
The proxies are defined as follows: for level, the highest maturity bond (60 months); for slope, the
difference between the bond of 60 months and the bond of 3 months; and for curvature, two times the
bond of 18 months minus the sum of bond of 3 months and bond of 60 months.

average curve is upward sloping and concave, volatility is decreasing with maturity, autocorrelations

are very high and decreasing with maturity. Also, there is a high persistence in the yields: the

first-order autocorrelation for all maturities is above 0.889 for each maturity.

Figure 1 presents a three-dimensional plot of the data set and illustrates how yield levels and

spreads vary substantially throughout the sample. Although the yield series change heavily over

time for each of the maturities, a strong common pattern in the 14 series over time is apparent.

The sample contains 204 monthly observations with maturities of τ = 3, 6, 9, 12, 15, 18, 21 24,

27, 30, 36, 39, 48, and 60 months.

13



Figure 1: Brazil Yield Curves

NOTE: Monthly Brazil yield curves from January 2004 through December 2022.

6.2. Results

This subsection present absolute Brier score results and the cumulative of Brier score. Table

2 presents out-of-sample comparison of the forecast performance of equations (28), (30), and the

logistic function for the sign of return. Both are compared against baseline forecasts [Equation

(25)]. This is done for one-, two-, -three and six-month returns. We assess the performance

of the forecasting models using Brier scores. The worst score is 1. Here correct forecasts have

individual scores between 0 and 0.5, whereas incorrect forecasts carry scores between 0.5 and 1.

The Logistic, Non-parametric and Extended are relative to Baseline, so values below 1 outperform

the benchmark model. The results suggest that models with information of skewness and kurtosis

of returns outperform the benchmark model, mainly in long maturities and shorts horizons of

forecasts.

Figures 2 to 4 present the cumulative absolute brier score relative to the benchmark model to

uncover the path of all models throughout the out-of-sample period. Hence, the competitor model

outperforms the benchmark for values above zero. The top left chart presents results of maturity

of 24 months, the top right present results of maturity of 36 months, the bottom left presents

results of maturity of 48 months, bottom right presents results of maturity of 60 months. Yellows

bar represent periods of rise of the Selic rate, green otherwise, and white is without move. In

all months horizons forecasts, the results suggest all models have stable performance against the

benchmark model when the Selic rate is rising, however it is not a rule.
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Table 2: Absolute Brier Score Results

NOTE: We perform out-of-sample comparison of the forecast performance of equations (28), (30), and

the logistic function for the sign of return. Both are compared against baseline forecasts [Equation

(25)]. This is done for one-, two-, -three and six-month returns. We assess the performance of the

forecasting models using Brier scores. The worst score is 1. Here correct forecasts have individual

scores between 0 and 0.5, whereas incorrect forecasts carry scores between 0.5 and 1. The Logistic,

Non-parametric and Extended are relative to Baseline, so values below 1 outperform the benchmark

model.
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Figure 2: Cumulative Absolute Brier Scores: 1-month ahead

NOTE: We use the cumulative absolute brier score relative to the benchmark model to uncover the

path of all models throughout the out-of-sample period. Hence, the competitor model outperforms

the benchmark for values above zero. The top left chart presents results of maturity of 24 months,

the top right present results of maturity of 36 months, the bottom left presents results of maturity of

48 months, bottom right presents results of maturity of 60 months. Yellows bar represent periods of

rise of the Selic rate, green otherwise, and white is without move.
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Figure 3: Cumulative Absolute Brier Scores: 2-months ahead

NOTE: We use the cumulative absolute brier score relative to the benchmark model to uncover the

path of all models throughout the out-of-sample period. Hence, the competitor model outperforms

the benchmark for values above zero. The top left chart presents results of maturity of 24 months,

the top right present results of maturity of 36 months, the bottom left presents results of maturity of

48 months, bottom right presents results of maturity of 60 months. Yellows bar represent periods of

rise of the Selic rate, green otherwise, and white is without move.
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Figure 4: Cumulative Absolute Brier Scores: 3-months ahead

NOTE: We use the cumulative absolute brier score relative to the benchmark model to uncover the

path of all models throughout the out-of-sample period. Hence, the competitor model outperforms

the benchmark for values above zero. The top left chart presents results of maturity of 24 months,

the top right present results of maturity of 36 months, the bottom left presents results of maturity of

48 months, bottom right presents results of maturity of 60 months. Yellows bar represent periods of

rise of the Selic rate, green otherwise, and white is without move.

7. Concluding remarks

The accuracy of yield curve forecasts, not only of magnitude but specifically of the direction

of change in financial assets, emerges as a research source in the prediction field. Our goal is to

explore the literature gap on forecasting the yield curves using conditional means and conditional

volatility forecasts as inputs to predict the direction of return in the fixed income. This paper

assesses the direction-of-change forecasts based on conditional variance from the Dynamic Nelson-
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Siegel model. Although the literature focuses on forecasting the level of yield curves, which is

a difficult task, we propose forecasts for the direction-of-change of the yield curve returns. The

results suggest that models with information of skewness and kurtosis of returns outperform the

benchmark model, mainly in long maturities and short horizons of forecasts. Also, In all months

horizons forecasts, the results suggest all models have stable performance against the benchmark

model when the Selic rate is rising, however it is not a rule.
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