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Abstract

Quantile forecasting has become an important research topic in econometrics as policy makers
and investors are increasingly interested to focus more on downside (upside) risks rather than learn-
ing about the average or most likely outcome. Simultaneously, practitioners have largely used textual
data to construct new predictors of financial and economic variables. This paper develops a novel
methodology for out-of-sample quantile forecasting with textual data. It relies on elastic net quantile
regression to incorporate "attention" into the quantile forecasting model, allowing for the dictionary to
vary across time and over the quantiles of the conditional distribution. We next extract common factors
from the refined specific dictionary, explore them for quantile forecasting, and establish new asymp-
totic theory for forecasting. We apply this approach to study U.S. dollar appreciation (depreciation)
events against the Canadian dollar. The proposed approach yields density, interval and probability
forecasts that outperform the ones from the random-walk and other conditional quantile models by
economically meaningful margins.

Keywords: Textual data ; quantile regression; factor model; density forecast; portfolio analysis.

JEL Classification codes: C53, C55, E37, E47.

*Corresponding author (Jie Wei): jiewei.econ@gmail.com

1

mailto:jiewei.econ@gmail.com.


1 Introduction

As mentioned by Adrian et al. (2019), point forecasts ignore risks around the central forecast and, as such,

are not useful to predict tail risks related to the occurrence of rare events. Quantile forecasting has arisen

as a potential solution to this problem as documented by a large and increasing literature that includes

empirical applications in areas as diverse as profitability forecasting (Tian et al., 2021), economic growth

Adrian et al. (2019), fiscal policy and debt ceiling (Lima et al., 2008); risk management (Gaglianone

et al., 2012a); density forecasting (Gaglianone and Lima, 2012, 2014); international trade agreements

Figueiredo and Lima (2020), among many other applications in economics and finance. More recently,

practitioners have started using textual data to construct new predictors of financial and economic vari-

ables. For instance, Ellingsen et al. (2022) show that news data are useful to predict the U.S. GDP,

consumption and investment growth as they contain information not captured by hard economic indica-

tors. These predictors are computed by using textual information which includes unstructured data from

news published in newspapers, reports, etc. Most of the analyses using textual data rely on fixed (ad-hoc)

dictionaries. However, as demonstrated by Lima and Godeiro (2023), the assumption of a fixed dictionary

may not be appropriate as new words are introduced over time and vocabulary usage in published texts

may differ across media. Indeed, even if the vocabulary were the same across media texts, the predictive

power of some words might differ, say, in times of recession and economic expansion. This problem

is exacerbated as one uses textual data to do quantile forecasting since the optimal dictionary is now

assumed to be constant not only over time but also across quantiles of the conditional distribution.

This paper proposes addressing this problem by using a quantile factor model. In the literature of

Latent Semantic Analysis (LSA), a factor model for textual data is interpreted as belonging to a Singular

Value Decomposition (SVD) - see Hendry (2012). However, traditional factor estimation requires the

model to be dense, but textual data are mostly sparse since not all words have predictive content at a certain

quantile. Although it is conventional to standardize data prior to estimation, the lack of dense textual

data has refrained practitioners from using factor models for text analysis. There have been increasing

concerns looking into the inconsistency of forecasting based on factors from the sparse environment, also
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known as weak factor models (Onatski, 2012; Chao et al., 2022; Giglio et al., 2023). In the machine

learning literature, "attention" is a technique that enhances some parts of the input data while diminishing

other parts. As "attention" targets the most predictive words before computing the common factors, it

avoids sparsity and makes textual data suitable to principal component estimation.1

In this paper, we apply the above approach to the problem of quantile forecasting. As in Bai and

Ng (2008) - but focusing now on quantile forecasting with textual data - we can be better off throwing

away those words without predictive content. In order to do so, the most predictive words have to be

selected not only at different forecast origins but also across different quantiles of the conditional distri-

bution. We perform such a selection by minimizing the elastic-net penalized Huber loss regression in high

dimensional settings. Such a minimization process is conducted through the semismooth Newton coordi-

nate descent (SNCD) algorithm, recently proposed by Yi and Huang (2017). Unlike existing coordinate

descent type algorithms, the SNCD updates a regression coefficient and its corresponding subgradient

simultaneously in each iteration. It combines the strengths of the coordinate descent and the semismooth

Newton algorithm, and effectively solves the computational challenges posed by high dimensionality and

nonsmoothness.2

The methodology developed in this paper has three steps:3 Firstly, we transform words into numerical

values (time series) without imposing any restriction on which terms can be included. This implies we are

not using a fixed (ad-hoc) dictionary and, consequently, the obtained numerical representation is sparse

and high dimensional; the SNCD algorithm is used in the second step to select the most predictive time

series (words) at each forecast origin and across different quantiles of the conditional distribution - words

are selected in terms of their predictive content at different quantiles and time periods; in the the third

step, one estimates common factors for the dense set of selected terms and use them to predict conditional

quantiles. Factor estimation is done through principal component analysis (PCA) and the quantile factor
1Latent Dirichlet Allocation (LDA) models are largely used in the forecasting literature, but they are computationally

intensive and updating the training sample recursively is costly. LDA models are sensitive to the choice of the number of
topics and also subject to the look-ahead bias. Empirical applications of LDA have also overlooked the role played by n-grams
(or collocations). See additional comments on LDA models in Lima and Godeiro (2023)

2Yi and Huang (2017) also establishes the convergence properties of the algorithm and present an adaptive version of the
“strong rule”for screening predictors to gain extra efficiency.

3Details on the proposed methodology and the out-of-sample forecasting exercise are presented in Section 2.
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analysis (QFA) estimator recently introduced by Chen et al. (2021). This step is an extension of difussion

index (DI) model of Stock and Watson (1989) towards quantile forecasting, but we additionally establish

a new theoretical foundation and show under what regularity conditions and convergence rates the DI

model approach can be successfully extended to the problem of quantile forecasting.

We apply the proposed method to the problem of exchange rate predictability. Models of exchange

rate determination assume asset prices are set in efficient markets, but limits to arbitrage and rationally

limited attention challenge this assumption as information in news texts are not absorbed fully by market

prices instantaneously. Even if news does not have predictive content for forecasting the mean, it may

still have predictive content at the quantiles of the exchange rate distribution. If this occurs, then news

can be useful to predict left and right tail outcomes of exchange rates, that is, they are useful to predict

depreciation (appreciation) risks. As exemplified in Rossi (2013), multinational corporations consider

depreciation or appreciation risks when deciding whether or not to hedge future payables and receiv-

ables which are in foreign currencies. Moreover, cash flows of all international transactions are affected

by expectations about depreciation (appreciation) of the foreign currency. Decisions on short-term in-

vestment and capital budgeting are also affected by depreciation risks since banks are looking for the

ideal currency for borrowing money as well allocating the one which maximizes return on investment.

Furthermore, Central Banks balance sheets respond to expectations on depreciation or appreciation of

foreign currencies. These examples suggest downside and upside risks affect many decisions undertaken

by firms, governments and individuals.

Our primary evaluation will be based on forecasts of the US-CAN exchange rate at different quantiles

of the conditional distribution. The extant literature on exchange-rate forecasting (e.g., Filippou et al.

2021 and references therein) has mainly focused on point (conditional mean) forecasting (rather than

quantile forecasting) and either did not study the US-CAN exchange rate or were not able to predict it

better than what is obtained with a random walk model.4 Thus, testing the methodologies on the US-

CAN exchange rate puts the proposed method to a non-trivial challenge. Textual data have been used

4Amat et al. (2018) found a very small forecasting gain over the random walk model.
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to construct new predictors for out-of-sample forecasting of financial variables (see Lima and Godeiro

(2023) and references therein), but not much has been done in terms of using textual data to predict

exchange-rate returns. A noticeable exception is Narayan et al. (2021) that utilizes a fixed dictionary

proposed by Loughran and McDonald (2011) to construct indexes of positive and negative news that are

then used as predictors of exchange rate returns. The usage of fixed (ad-hoc) dictionaries is hard do justify

since words predictability may change across quantiles and over time. 5 The forecasting ability of fixed

dictionaries is investigated in the empirical section of this paper.

Our empirical results confirm that it is hard to improve point forecasting of the US-CAN beyond

the one established by the random walk model. However, we find that predictability of the US-CAN

exchange rate is stronger at the low and high-end quantiles of the conditional distribution. The proposed

text-based quantile model generates one-month-ahead quantile, interval, density and directional forecasts

(i.e., predicted probability of depreciation or appreciation) of the US-CAN exchange rate that consistently

outperform the corresponding forecasts from the benchmark random walk (unconditional quantile) model

and from several other conditional quantile models by economically meaningful margins. In particular,

the predicted probability of dollar depreciation (appreciation) is related to the downside (upside) entropy

of the US-CAN exchange rate, meaning it carries information about downside (upside) risks. We identify

words associated to such downside and upside risks. We show that terms related to economic recessions

increase the downside (depreciation) risk of the U.S. dollar whereas terms related to geopolitical events

and market volatility increase the upside (appreciation) risk, suggesting that the U.S. dollar is seen by

investors as a "safe heaven" in times of geopolitical conflicts and high market volatility.

The organization of this paper is as follows. Section 2 introduces the quantile forecasting problem.

Section 3 describes the proposed methodology with a new asymptotic theory for the diffusion index model

established in Section 4. Section 5 explains our out-of-sample forecasting exercise with the main results

presented in section 6. Section 7 concludes.

5Loughran and McDonald (2011) acknowledge the limitation of the fixed-dictionary approach by saying that word usage
is not identical across media, especially in samples that are highly dimensional with respect to terms.
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2 The Forecasting Problem

We want to predict the one-month ahead return to the US-CAN exchange rate, ∆st+1, based on the textual

information set available up to month t, Ωt. Our monthly textual data are collected from FACTIVA

database for New York Times (NY T ) and Wall Street Journal (WSJ) from January 1980 to July 2022.

An advantage of our textual database is that news published at the NYT and WSJ impact a large audience

not only in the United States but also in Canada. Data on US-CAN exchange rate were collected from

the FRED-Saint Louis database for the 1980.1-2022.7 time period. This time period corresponds to the

interval in that textual data are fully available. It also covers a long-span of economic episodes, such

as: "dot.com bubble", "mortgage bubble", "European-bond crisis", "COVID-19-induced recession" and

"Ukraine-war crisis". We let st denote the logarithm of the US-CAN exchange rate measured as the

number of units of Canadian dollar per one U.S. dollar. In such a background, ∆st+1 = st+1 − st < 0

refers to a depreciation of the U.S. dollar. We divide the total sample of T = R + P observations into

in-sample and out-of-sample portions. We will obtain in total of P one-month-ahead predictions based

on recursive in-sample estimation.

Let Ωt = (Ω1t, ...,ΩNt)
′ be an N × 1 vector, where Ωit measures the number of times (frequency) a

given word “i” appears on documents published at time t.6 The equation that utilizes information Ωt is

given by:

∆st+1 = α (τ) + Γ (τ)′Ωt + εt+1 (τ) (1)

where εt+1(τ) satisfies the quantile restriction Qτ (εt+1 (τ) |Ωt) = 0. This implies that the quantile fore-

casting equation is

Qτ (∆st+1|Ωt) = α (τ) + Γ (τ)′Ωt (2)

6Texts are preprocessed before any word counting. In the next section we explain how text data enter our database.
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where α(τ) is an intercept and Γ(τ) is an N × 1 vector of slope coefficients at some τ ∈ (0, 1). We

generate quantile forecasts recursively by estimating quantile regressions (Koenker and Basset, 1978) of

∆sυ+1 on the N × 1 observed predictors (words) Ωυ for υ = 1, ..., t and t ∈ {R, ..., T − 1}. Under

this recursive scheme, parameters are estimated at each new forecast origin by using the largest possible

observation window. Specifically, at each forecast origin the parameter estimates depend explicitly on all

information from 1 to t where t ∈ {R, ..., T −1}. Thus, a quantile forecast that makes use of all available

predictors is ∆̂st+1 = α̂t(τ) + Γ̂t(τ)Ωt, where α̂t(τ) and Γ̂t(τ) are recursive quantile regression (QR)

estimates of α(τ) and Γ(τ).7

Estimation of αt(τ) and Γt(τ) in model (2) is forbidden when N ≫ T . In order to solve the high-

dimensionality problem that affects the performance of the quantile forecasting model (2), one could

extend the DI approach by Stock and Watson (2002) towards quantile regression. However, consideration

of text data naturally leads to the issue of what predictors should be used to form the diffusion indices.

Indeed, it may be the case that not all terms in Ωt are important to predict the τ th conditional quantile of

∆st+1, i.e., some elements of Γt(τ) are indeed equal to zero, leading to the notorious weak factor model

and the consequent issues in consistent estimation. In this paper, we find that the DI approach combined

with text data can improve out-of-sample quantile forecasts only if one can select the most predictive

textual information at forecast origin t and quantile τ before computing the common factors. In what

follows, we describe each step of the proposed methodology in detail.

3 Methodology

In this section, we describe the 3-step approach used to make quantile forecasting with textual data. Step 1

is common to the literature of natural language processing, whereas step 2 is used to identify the most pre-

dictive dictionary across time and over different quantiles of the conditional distribution. Step 3 extends

the DI model of Stock and Watson (2002) towards quantile forecasting. We derive asymptotic results that

are new to the literature of factor models and also important to validate our forecasting approach.

7Notice that α̂t(τ) and Γ̂t(τ) change as we change the forecast origin t ∈ {R, ..., T − 1}.
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3.1 Textual Data

In this section, we explain how textual data enter the database. In order to transform news into numerical

data we first save all downloaded articles into what the literature calls “a corpus”, which is a collection of

texts, i.e., a set of articles published in the NY T and WSJ .

Prior to performing any word counting, we preprocess the raw texts in several steps with the purpose

to reduce the vocabulary to a set of words that are mostly meaningful. For instance, we remove stopwords

(e.g. the, but, for), hyphens, apostrophes, numbers, and words that only contain two characters. We also

reduce words to their stem such that, for example, words as “Economy” and “Economics” are identified as

“Econom”. Additionally, we identify collocations or sequence of words that have a specific meaning. For

example, “economic growth”, “military spending”, “trade deficit” correspond to a single economic con-

cept but it is composed of two separate words. We create a single term for two-word sequences (bigrams)

by using the algorithm developed by Straka and Straková (2017). As documented by Lima and Godeiro

(2023), the utilization of collocations (bigrams) can improve out-of-sample forecasting substantially.8

Finally, as in Hansen et al. (2017), we rank the remaining terms (words and bigrams) by using their

term frequency-inverse document frequency (tf-idf), which is a measure that punishes terms that are both

rare and too frequent, and drop all terms ranking 100 or lower. Indeed, too frequent words are always

used in documents regardless of the occurrence of important economic events and, for this reason, do

not contain relevant predictive information. Rare words are mostly associated to “typos” which are not

correlated with important economic events either. In order to preprocess the raw texts, we consider all

articles published up to the first forecast origin. This guarantees that we are using a long period of

time to reduce the original bag of words to a meaningful set of words and bigrams (i.e., a preprocessed

dictionary).9

Given the above preprocessed dictionary, we then compute the frequency of its terms (words and bi-

grams) on articles published at month t. We save this information in a N × 1 vector Ωt = (Ω1t, ...ΩNt)
′,

8Hereafter, we use “term” to denote both words or combination of words (collocations).
9This is essentially the preprocessing approach of Lima and Godeiro (2023). Results are robust to using an alternative

(but computationally costly) scheme in which the preprocessing of raw texts includes more recent articles - beyond the ones
available up to the first forecast origin.
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where each element shows the frequency that a given term i = 1, ..., N (listed in the preprocessed dictio-

nary) appears on texts published at time t. Notice that N can be very large here since we have not used

any specific dictionary to pre-process the data. In order to make these time series data suitable to princi-

pal components estimation, we standardize the data (demean and divide by the simple standard deviation)

before estimating the model. In order to avoid the look-ahead bias,10 these transformations are carried out

by using time-series observations of Ωt available up to each forecast origin t ∈ {R, ..., T − 1}.

Thus, the above procedure transforms news from NY T and WSJ into an observed N × T panel of

"meaningful" data, where the cross-sectional dimension, N , is larger than the number of time periods.

How to use this information is not immediately obvious because estimates of linear quantile regressions

is unfeasible when N ≫ T , that is, estimation quickly runs into the degrees of freedom problem because

of the high dimension of Ωt.11 Moreover, the data set Ωt is sparse and, therefore, not suitable for common

factor estimation. Hence, dimension reduction techniques that retain the most predictive words have to

be employed.

3.2 Incorporating attention into the model

In Boivin and Ng (2006), it is found that expanding the sample size simply by adding data with little

information about the factor components does not necessarily improve forecasts when the data are too

noisy. Furthermore, Giglio et al. (2023) find that prediction based on data with extremely sparse structure

even produces biased predictions. We will remedy this issue by incorporating attention into the model,

which is similar in spirit to the first step of screening employed by Giglio et al. (2024). In neural networks,

attention is a technique that mimics cognitive attention. The idea is to enhance some parts of the input data

while diminishing other parts. Learning which part of the data is more important than another depends on

the context or the target variable being predicted. We incorporate attention into the forecasting model by

targeting terms (time series) in Ωt that are important to predict the quantiles of the exchange-rate return

10A looking-ahead bias occurs when the entire sample is used to compute a model parameter that is subsequently used to
make out-of-sample predictions on a future that the parameter estimates has extracted information from.

11In the first forecast origin of the empirical section, i.e. 1989.12, there are N = 4, 250 parameters to estimate and only 120
time series observations.

9



(∆st+1) distribution. In doing so, we allow the dictionaries to vary not only over time, but also across

the quantiles of the conditional distribution. Our approach relies on recursive estimation of elastic-net

quantile regressions. In general, given a linear regression model ∆st+1 = α+Γ′Ωt+ εt+1, the coefficient

vector Γ = (Γ1, ...,ΓN)
′ is estimated by minimizing the following elastic net (EN) objective function:

min
Γ

∑
t

L(∆st+1 − α− Γ′Ωt) + λ1τ ∥Γ∥1 + λ2τ ∥Γ∥22 (3)

where L is a generic loss function whereas ∥Γ∥1 =
∑N

i=1 |Γi| and ∥Γ∥22 =
∑N

i=1 Γ
2
i . Thus, the "Elastic

Net” penalty is a combination of the LASSO and Ridge penalty. If the two tuning parameters λ1τ and λ2τ

satisfy the relation λ1τ

λ1τ+λ2τ
> 0, then the EN penalty is strictly convex, which enforces highly-correlated

predictors to have similar coefficients. As a result, EN can capture all significant predictors even if they

are highly correlated.

Lima and Godeiro (2023)’s choice for L was the squared loss L(t) = t2/2, corresponding to the least

squares regression in classical regression literature. Although the squared loss is analytically simple, it

is not suitable for selecting words at different quantiles. Indeed, some words may have predictive power

at the low-end quantiles, but not at the high-end ones and vice versa. In order to select words for each

specific quantile τ ∈ (0, 1), we replace the loss L(t) = t2/2 by the quantile loss (Koenker and Basset,

1978), that is:

L(t) = ρτ (t) = t(τ − I(t < 0)), t ∈ R (4)

where 0 < τ < 1. This is a generalization of the absolute loss for median with τ = 0.5. Indeed,

by choosing different τ ’s, one can identify the most predictive words across different quantiles by just

solving problem given by (3) with loss given by (4) at different values of τ ’s. Thus, elastic-net quantile

regression provides a powerful technique for exploring textual data heterogeneity in addition to be robust

to outliers. An important output of this step is a possibly dense data set„ i.e., an n × 1 vector (n < N )

Ωτ
t = (Ωτ

1t, ...,Ω
τ
nt)

′, being a subset of Ωt, of targeted words at quantile τ and forecast origin t.

An important aspect of our methodology is that the identification of the most predictive dictionary Ωτ
t
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is adapted to the problem of quantile forecasting since the word Ωτ
it, i = 1, ..., n is selected only if it helps

predict the τ ’th quantile of ∆st+1 at forecast origin t.12 For example, if we change the dependent variable

from exchange rate return to inflation rate, then the optimal dictionary would also change because we

would be now selecting the most predictive words for the inflation rate.

This paper utilizes the novel semismooth Newton coordinate descent (SNCD) algorithm recently pro-

posed by Yi and Huang (2017) for computing solution paths of the elastic-net quantile regression. This

algorithm combines the coordinate descent method with the semismooth Newton algorithm (SNA) for

solving nonsmooth equations. Yi and Huang (2017) show that such an algorithm is highly efficient and

scalable in high dimensional settings and its implementation can be easily done by using the R-package

"hqreg" publicly available on CRAN.13 In the empirical section, we employ cross-validations for depen-

dent data as in Elliott and Timmermann (2013) to tune the parameters λ1τ and λ2τ , which is essential to

avoid overfitting. Specically, we combine the cv.hqreg function, which allows for cross-validation in

Elastic-Net penalized Huber loss regression, with the cross validation method for dependent (contiguous)

data developed by the Elliot and Timmermann (2013). This is applied to all quantile forecasting models

that rely on regularized methods.14

The above process is repeated recursively, that is, one could estimate the elastic net quantile regres-

sion for τ ∈ (0, 1) by regressing ∆sυ+1 on the predictors Ωυ for υ = 1, ...., t and t ∈ {R, ..., T − 1}.15

The notation t ∈ {(R, ..., T − 1)} indicates that elastic net quantile regression is estimated using obser-

vations up to a specific updating period. However, in order to minimize computational costs and avoid

the look-ahead bias when updating the dictionary, we initially select the most predictive dictionary at the

first forecast origin R and then updated it at later periods by using an updating rule based on the Sahm

recession indicator.16 Such an indicator signals the start of a recession when the three-month moving av-

12Subsection 3.2 will provide details as to how such a word selection is performed. Also note that n is allowed to go to
infinity with N .

13(http://cloud.rproject.org/package=hqreg). Convergence of the SNCD iterations to a global minimizer is also established
by Yi and Huang (2017).

14In an attempt to disseminate the methodology and render the results reproducible, we provide R codes that replicate all
results presented in this paper.

15We end at T − 1 because we need to use observation T to evaluate forecasts made at T − 1.
16Sahm index is available here: https://fred.stlouisfed.org/series/SAHMREALTIME
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erage of the national unemployment rate rises by 0.50 percentage points or more relative to its low during

the previous 12 months. Thus, we update the dictionary at time t and quantile τ if the Sahm indicator has

gone above (below) 0.5 at time t − 1. For example, if the indicator went above 0.5 in 2001.06, then we

optimize (3) with loss (4) in the forecast origin 2001.7 to obtain the most predictive dictionary available

at quantile τ ∈ (0, 1) and forecast origin 2001.7. This dictionary stays the same until 2002.11 when the

indicator goes below 0.5. By following this rule, the empirical section of this paper updates the dictionary

in these months: 1990.2, 1991.1, 1992.12, 2001.7, 2002.12, 2008.6, 2010.7, 2020.5 and 2021.5. This

updating rule attempts to mimic a real-time forecasting exercise faced by professional forecasters in that

she (he) decides to update the dictionary when the Sahm indicator signals either the start or the end of a

recession.17

3.3 The factor-based forecasting

We have used elastic-net quantile regression to select the most predictive terms at specific quantiles.

These terms are separate but correlated observables, which means that one can exploit their intrinsic

factor structure to further extract concentrated information. Specifically, it is expected that

Ωτ
it = λ′

i,τFt,τ + eit, (5)

where λi,τ is the exposure (loading) of word i to the topic (factor) Ft,τ , both being ℓ × 1, and eit is the

idiosyncratic frequency of word i at time t. Since factors are loaded with quantile-dependent information,

Ωτ
t , the notation used here for loadings and factors (i.e., λi,τ and Ft,τ ) stress such a quantile dependence.

The factor-based approach to one-month-ahead quantile forecasting quantile is defined as

Qτ [∆st+1 | Ωτ
t ] = α(τ) + β(τ)′Ft,τ , (6)

where Ωτ
t = (Ωτ ′

1 ,Ω
τ ′
2 , . . . ,Ω

τ ′
t )

′ . Equations (5) and (6) thus constitute the “diffusion index” framework

17In the empirical section of this paper, we will set τ ∈ {0.05, 0.25, 0.50, 0.75, 0.95}.
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of Stock and Watson (2002) without lags in Ft,τ and adapted to the problem of quantile forecasting with

targeted text data.

Given that Ft,τ is latent, we estimate it from the least squares (LS) problem:

min
{λi,τ ,Fs,τ}

1

nt

n∑
i=1

t∑
s=1

(
Ωτ

is − λ′
i,τFs,τ

)2
, (7)

subject to the identification restrictions imposed by Bai (2003). Intuitively, the estimated factors are linear

combinations of each element of the n × 1 vector Ωτ
t = (Ωτ

1t, ...,Ω
τ
nt)

′ where the linear combination is

chosen optimally to minimize the sum of squared residuals as shown in equation (7). This makes clear that

the ℓ estimated factors are only loaded with the most predictive textual information available at quantile τ

and forecast origin t (Ωτ
t ). This is an important aspect of the methodology proposed in this paper as it will

be essential to improve out-of-sample quantile forecasts. Finally, for each forecast origin t and quantile

τ , we apply the method developed by Ahn and Horenstein (2013) to determine the value of ℓ.

The resulting factor estimator, denoted as F̃t,τ , is an estimator for HFt,τ , with the rotation matrix H

defined in Bai (2003). Due to the presence of the matrix H , let us rewrite (6) as

Qτ [∆st+1 | Ωτ
t ] = α(τ) +

(
H−1β(τ)

)′
HFt,τ ≡ δ(τ)′Z̄t,τ , (8)

where δ(τ) =
(
α(τ), (H−1β(τ))

′)′, and

Z̄t,τ =
(
1, F ′

t,τ

)′
.

To estimate Qτ [∆st+1 | Ωτ
t ], we will first replace Z̄t,τ by the feasible estimator

Ẑt,τ ≡
(
1, F̃ ′

t,τ

)′
,
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and then estimate the parameter δ(τ) by quantile regression to obtain δ̂(τ) =
(
α̂(τ), β̂(τ)′

)′
. That is,

δ̂(τ) = argmin
δ

t∑
s=1

ρτ

(
∆ss+1 − δ′Ẑs,τ

)
,

with the check loss function defined previously in (4). Then our estimator of target is

Q̂τ (∆st+1 | Ωτ
t ) = δ̂(τ)′Ẑt,τ . (9)

The out-of-sample forecasting is also implemented in the same recursive scheme as introduced previously.

4 Asymptotic Theory

We will show the asymptotic distributions of estimated coefficient δ̂(τ) as well as the quantile forecast

Q̂τ (∆st+1 | Ωτ
t ). To this end, some regularity conditions are needed for each τ. Hereafter, M denotes a

bounded positive constant.

Assumption 1 {Fs,τ , e
τ
is}s≥1 is stationary.

Assumption 2 The conditional distribution F (x | Ωτ
s) = P (∆ss+1 ≤ x | Ωτ

s) admits a density function

f (x | Ωτ
s) being bounded and continuous in x.

Assumption 3 (a) E ∥Fs∥4 ≤ M and 1
t

∑t
s=1 FsF

′
s

p−→ ΣF for a ℓ × ℓ positive definite (non-random)

matrix ΣF .

(b) The loading λi is either deterministic such that ∥λi∥ ≤ M , or it is stochastic such that E ∥λi∥4 ≤ M .

In either case, 1
n

∑n
i=1 λiλ

′
i

p−→ ΣΛ as n → ∞ for some ℓ× ℓ positive definite non-random matrix ΣΛ.

Assumption 4 (a) E (eis) = 0, E |eis|8 ≤ M ;

(b) E (eisejs′) = σij,rs, |σij,ts| ≤ σ̄ij for all (s, s′) and |σij,ss′| ≤ τss′ for all (i, j) such that

1

n

n∑
i,j=1

σ̄ij ≤ M,
1

T

t∑
s,s′=1

τss′ ≤ M, and
1

nt

n,t∑
i,j,s,s′=1

|σij,ss′| ≤ M
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(c) For every (s, s′), E
∣∣n−1/2

∑n
i=1 [eiseis′ − E (eiseis′)]

∣∣4 ≤ M .

(d) For each t, 1√
n

∑n
i=1 λieit

d−→ N (0,Γt), where Γt = limn→∞
1
n

∑n
i=1

∑n
j=1 E (λiλj

′eitejt).

Assumption 5 Qτ [∆st+1 | Ωτ
t ] = α(τ) + β(τ)′Ft,τ , where Ωτ

t = (Ωτ ′
1 ,Ω

τ ′
2 , . . . ,Ω

τ ′
t )

′ .

Theorem 1 Suppose Assumptions 1-5 hold. If
√
t

n
→ 0, then

(a) for the estimated coefficient δ̂(τ),

√
t(δ̂(τ)− δ(τ))

d→ N
(
0, τ(1− τ)A(τ)−1E

(
Z̄s,τ Z̄

′
s,τ

)
A(τ)−1

)
,

where A(τ) = E
[
f (Qτ (∆ss+1 | Ωτ

s) | Ωτ
s) Z̄s,τ Z̄

′
s,τ

]
;

(b) for the estimated forecast

Q̂τ (∆st+1 | Ωτ
t )−Qτ (∆st+1 | Ωτ

t )
d→ N(0,Ξt,τ ).

where Ξt,τ = 1
t
Ẑ ′

t,τAvar
(
δ̂(τ)

)
Ẑt,τ +

1
n
β̂(τ)′Avar

(
F̃t,τ

)
β̂(τ).

Remark 1 Theorem 1 reveals several interesting linkage of our asymptotic theory to that established by

Bai and Ng (2006) for the classical DI forecasts. First, the asymptotic distribution of δ̂(τ) is the same

as if the latent factors were observed, implying that the estimation error from PCA is negligible. Second,

the quantile forecast Q̂τ (∆st+1 | Ωτ
t ) convergences to the truth at the rate of Op(n

−1/2 + t−1/2), whose

distribution relies on those of δ̂(τ) and F̃t,τ . Both of these findings coincide with results from Bai and Ng

(2006).

Remark 2 In practice, we can estimate Avar
(
δ̂(τ)

)
by

̂
Avar

(
δ̂(τ)

)
= Â(τ)−1D̂(τ)Â(τ)−1,

where D̂(τ) = τ(1−τ)
t

∑t
s=1 Ẑs,τ Ẑ

′
s,τ , and Â(τ) = (th)−1

∑t
s=1K

(
∆ss+1−Ẑ′

s,τ δ̂(τ)

h

)
Ẑs,τ Ẑ

′
s,τ with K (·)

being a kernel function and h being the bandwidth. The consistency of Avar
(
δ̂(τ)

)
follows Ma et al.
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(2021) together with the specifications of K (·) and h. Moreover, we can estimate Avar
(
F̃t,τ

)
consis-

tently by
̂

Avar
(
F̃t,τ

)
= Ṽ −1Γ̃t,τ Ṽ

−1.

Here Ṽ is the r× r diagonal matrix consisting of the r largest singular values of Ωτ
t , and Γ̃t,τ is proposed

by (5c) by Bai and Ng (2006) to allow for cross sectional dependence of eit.

5 Forecast Evaluation

This section investigates if selected textual data can add predictability at different quantiles of the US-

CAN return distribution. It is known that factors obtained by PCA using LS criteria are sensitive to

outliers and heavy-tailed errors. For robustness, we consider the Quantile Factor Analysis (QFA) estima-

tor recently developed by Chen et al. (2021). Indeed, the QFA for τ = 0.5 can be interpreted as a least

absolute deviation (LAD) estimator of common factors which is more robust than PCA in the presence

of outliers and heavy-tails distribution. Hence, at τ = 0.5, the QFA can be defined as

min
{λi,τ ,Fs,τ}

1

nt

n∑
i=1

t∑
s=1

∣∣Ωτ
i,s − λ′

i,τFs,τ

∣∣ (10)

In order to estimate common factors via QFA, Chen et al. (2021) proposed a computational algorithm

called “iterative quantile regression” (IQR), which can effectively locate the stationary points of the

object function (10). Chen et al. (2021) developed a method, called rank minimization through which

one can select the correct number of factors under the QFA approach. They also establish that the QFA

factor estimator is consistent with a similar asymptotically first order expansion to that from the PCA

estimator, implying that it is possible to derive the corresponding asymptotic theory for the QFA factor

based quantile forecast, following the analysis conducted in Section 4, which we leave for the future

research.

We evaluate different conditional quantile models in terms of their out-of-sample forecasting perfor-
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mance. Such an evaluation relies on measures of accuracy relative to the benchmark unconditional quan-

tile model. It is important to keep in mind that each model evaluated in this section adopts the same recur-

sive estimation scheme towards the end of the sample; makes direct one-step forecasts of exchange-rate

returns; uses same number of observations to estimate quantile models for τ ∈ (0.05, 0.25, 0.50, 0.75, 0.95)

and same number of out-of-sample observations to evaluate their respective quantile forecasts.18 They dif-

fer in terms of predictors included in the model (economic versus textual-based predictors), the method

used to estimate the common factors, and the method used to construct the density forecast (Epanechnikov

Kernel versus skewed-t distribution). In what follows, we describe each quantile model.19

(1) Quantile forecasting using words selected by PCA. This is our preferred model. It uses elastic-

net quantile regression to target the most predictive words at quantile τ and forecast origin t. Then, com-

mon factors of targeted textual information are estimated by PCA. Finally, the linear quantile regression

(9) is used to obtain (out-of-sample) quantile forecasts. This is done for τ = 0.05, 0.25, 0.50, 0.75, 0.95.

This is a dense quantile forecasting model since all selected terms (times series) have a role to play. We

label this model as ∆̂st+1|Ωτ
t
;

(2) Quantile forecasting using words selected by QFA. Same as model (1), but common factors of

selected words are computed by using QFA at the median. We label this model as ∆̂sQFA
t+1|Ωτ

t
;

(3) Quantile forecasting using full (sparse) textual information set. We do not use elastic-net

quantile regression to select the most predictive words. Instead, we follow Chen et al. (2021) in that

τ -dependent common factors are computed using QFA. Then, a linear quantile regression as in (9) is

used to obtain (out-of-sample) quantile forecasts by using the factors from QFA. Factor models may not

work well with sparse data, so we do not expect a good out-of-sample forecasting performance from this

model. We label this model as ∆̂st+1|Ωt;

(4) Quantile forecasting using economic indicators. Same as (3), but instead of textual data, we use
18Our out-of-sample period starts at 1990.1 and ends in 2022.7.
19For the first three factor-based quantile models below, we further reduce the used factors by only keeping those significant

at 5% level in empirical study, although the resulting difference is negligible.
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a database of 105 time series of economic indicators (FRED-MD) listed in McCracken and Ng (2016)

web-page.20 We label this model as ∆̂st+1|Mt;

(5) Quantile forecasting using targeted economic indicators. Same as (1) and (2), respectively.

However, instead of textual data, we use elastic net quantile regression to target the economic indicators

in the FRED-MD database. We label this model as ∆̂st+1|Mτ
t

and ∆̂QFAst+1|Mτ
t

, respectively .

(6) Quantile forecasting using a fixed (ad-hoc) dictionary. Same as (1), but we replace the full "bag

of words" Ωt by the set of 4,150 words from the (fixed) dictionary of Loughran and McDonald (2011).

Everything else is the same as in (1). We label this quantile forecast as ∆̂st+1|LMτ
t

.

Following Li et al. (2015), Engel et al. (2019), and others, we use the random walk (RW) model as

the benchmark to which all other models are compared to when assessing forecasting performance. This

is standard practice within the exchange-rate forecasting literature. The quantile equivalent of RW model

is the τ ’th unconditional quantile computed using all the observations available up to the forecast origin

t. The τ ’th unconditional quantile is equivalent to a linear quantile regression with an intercept only.

Taking the unconditional quantile model as a benchmark also facilitates the comparison of the proposed

text-data based quantile forecasts to other conditional quantile forecasts. We label forecasts based on the

unconditional quantile model as ∆st+1.

Remark 3 A more rigorous forecasting evaluation of various quantile models with the benchmark would

be based on a statistical tests of equal accuracy for nested models. Tests of this type under mean fore-

casting have been proposed by McCracken (2007) and Gonçalves et al. (2017) with or without estimated

factors, among others. However, the extension to quantile forecasting is challenging mainly due to two

issues. First, the object function is not differentiable so that the standard analysis such as in McCracken

(2007) is not applicable. Second, the score function associated quantile regression comes with an ad-

ditional (conditional) density component which is an unknown nonparametric function to be estimated,

and this implies that the normalization employed in McCracken (2007, for the test statistic OOS-F ) or

20See appendix for a complete description of this database.
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Gonçalves (2017, for the test statistic MSE-Ff̃ ) may not be simply a constant any more. A possible solu-

tion to the tackle this problem is to study the loss differential by directional derivative of the quantile loss

used in Chen et al. (2024), or to consider bootstrapping the test following Tchatoka and Haque (2023).

To gauge the goodness-of-fit of linear quantile regressions, Koenker and Machado (1999) proposed

a Pseudo R-squared statistic. In this paper, we follow Narayan et al. (2021) and compute the out-of-

sample Pseudo R-squared, which compares the out-of-sample performance of the unconditional quantile

benchmark (∆st+1,τ ) to conditional quantile forecasts ∆̂sit+1,τ , where

∆̂sit+1,τ ∈ (∆̂st+1|Ωτ
t
; ∆̂QFAst+1|Ωτ

t
; ∆̂st+1|Ωt ; ∆̂st+1|Mt , ∆̂st+1|Mτ

t
; ∆̂QFAst+1|Mτ

t
, ∆̂st+1|LMτ

t
) (11)

Thus, we define the Pseudo R2
OOS(τ) as:

R2
OOS(τ) = 1−

T−1∑
t=R

ρτ (∆st+1 − ∆̂sit+1,τ )

T−1∑
t=R

ρτ (∆st+1 −∆st+1,τ )

(12)

where ρτ (·) is the τ ’th quantile loss function, ∆̂sit+1,τ is the τ ’th quantile forecast obtained using condi-

tional quantile model i = 1, ..., 7, respectively, whereas ∆st+1,τ in the denominator is the corresponding

unconditional quantile forecast.21 A positive R2
OOS(τ) means the alternative model has lower loss ρτ (·) i

and, therefore, it outperforms the unconditional quantile benchmark at quantile τ . Additionally, we will

plot the cumulative sum of loss differentials to pin down the relative performance of each conditional

quantile model.22

Point forecasts is a measure of central tendency of the exchange rate return, but policy makers and

investors are concerned about depreciation and appreciation risks of exchange rates, especially dur-

ing episodes of unexpected shocks. In this paper, we follow the literature, i.e., Adrian et al. (2019),

21Recall that the forecast ∆̂sit+1 in the numerator and the unconditional quantile forecast ∆st+1 in the denominator are
predicting the same τ ’th quantile of the exchange-rate return.

22Loss differentials are defined as Dτ = [ρτ (∆st+1 − ∆st+1,τ ) − ρτ (∆st+1 − ∆̂sit+1,τ )]. Notice this plot varies across
quantiles as well.
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Gaglianone and Lima (2012), Gaglianone and Lima (2014), among others, in that the available infor-

mation is used to construct density forecasts. Such density forecasts will then be used to forecast the

probability of depreciation (appreciation) of the US-CAN exchange rate, which is important to formulate

directional trading strategies involving such currencies. Our density forecasts will be obtained by us-

ing the skewed-t distribution approach by Adrian et al. (2019) and the Epanechnikov kernel approach by

Gaglianone and Lima (2012). We will compare the performance of these methods by using the log predic-

tive density score (LPDS). Our choice of recursive forecasts is based on the fact that quantile regressions

require large samples, especially when estimation occurs at extreme values of τ , such as τ = 0.05, 0.95.

For this reason, we are left with few density evaluation tests that works with recursive forecasting. Fol-

lowing the literature on density forecast evaluation, we apply the density test of Berkowitz Berkowitz

(2001) for one-step ahead forecasts. We quantify upside and downside entropy of future exchange rate

return as the "extra" probability mass that the conditional density assigns to extreme right and left tail out-

comes, relative to the probability of these outcomes under the unconditional density (Adrian et al., 2019,

page 1276). We will use such entropy to demonstrate how our predicted probabilities of depreciation

(appreciation) of the U.S. dollar are associated with downside (upside) risks.

We also evaluate the performance of our density forecasts in terms of the cumulative wealth of a port-

folio that utilizes the predicted probability of depreciation (appreciation) of the U.S. dollar. We consider

a Canadian firm that import most of its inputs from the U.S. and, for this reason, its cash flow is highly

affected by fluctuations of the U.S. dollar. Accordingly, changes in the US-CAN exchange rate, and in

particular a strengthening of the U.S. dollar, will negatively affect the Company’s profit and gross margins.

There is a risk that the company will have to adjust local currency product pricing due to competitive pres-

sures if the U.S. dollar appreciates significantly. We assume this company hedges against exchange rate

risk by using a simple managed portfolio, which consist of a single risky asset (US-CAN exchange rate)

and a risk free asset (Canadian t-bond). We use our density forecasts to predict the probability of U.S. dol-

lar depreciation at t + 1 based on information available up to time t, i.e., pt+1,t = prob[(∆st+1 < 0)|ℑt],
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where ℑt is a measurable information set at time t.23 Let It+1,t be an indicator function that equals 1

if pt+1,t > 0.5 and zero otherwise. We assume the optimal portfolio allocation is fully invested on the

risk-free asset (Canadian t-bonds) at the end of time t whenever an investor predicts a probability of de-

preciation of the U.S. dollar above 50%, that is It+1,t = 1 or equivalently pt+1,t > 0.5, and fully invest on

the U.S. dollar at the end of time t whenever the probability of appreciation of the US dollar is above or

equal to 50%, that is, when It+1,t = 0 or equivalently pt+1,t ≤ 0.5. As shown by de de Castro and Galvao

(2022), this trading strategy is expected in quantile preference settings where the presence of a risk-free

asset produces an all-or-nothing optimal allocation in that investors avoid downside risks by investing

their wealth on the risk-free asset when they expect a depreciation of the U.S. dollar (negative return rate)

and invest their wealth on the U.S. dollar when they expect an appreciation of the U.S. dollar.

We evaluate the above portfolio in terms of its cumulative performance, that is, we will compute the

cumulative wealth of an investor who makes the above investment decisions and faces a transaction cost

of c dollars. Such a transaction cost aims to penalize investors who re-balance their portfolio too often.

We want to learn whether different information sets used to calculate the directional forecasts It+1,t will

ultimately affect the investor’s cumulative wealth, and by how much. In particular, we are interested to

learn whether an investor who uses text-based directional forecasts will be wealthier than those who do

not use it.

6 Empirical Results

Table A in the online appendix describes the US-CAN exchange rate return for the the out-of-sample pe-

riod. It has an annualized mean of about 0.30%, autocorrelation close to zero, and its distribution is fairly

symmetric with excess kurtosis, which is consistent with a high annualized volatility of 7.07%. Thus, an

important question is whether such excess kurtosis could be explained by economic or textual predictors

and if one could use such a predictability to improve investment decisions. We recall that ∆st+1 < 0

indicates a U.S. dollar depreciation and that a Canadian firm whose cash flow is sensitive to changes in

23The probability of appreciation is 1− pt+1,t
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the U.S dollar would be interested to predict ∆st+1 in order to hedge itself against exchange rate risks.

However, as recently shown by Filippou et al. (2021), even a large set of economic variables does not

improve predictability of the US-CAN exchange rate at the conditional mean (i.e., point forecasting).

This paper wonders if (targeted) textual data increases predictability of the US-CAN exchange rate and if

such a predictability is more concentrated in the tails of the conditional distribution.

Table 1 displays the results for the pseudo-R2 as developed by Koenker and Machado (1999). One

can see that the method proposed in this paper (∆̂st+1|Ωτ
t

and ∆̂QFAst+1|Ωτ
t
) indicates the existence of

predictability of the US-CAN exchange-rate return in the tails of the distribution, specially at the left

tail. This is particularly useful for investors concerned about avoiding downside risks.24 Although using

LASSO to select the most predictive words improves forecasting accuracy relative to the benchmark, it

does not improve over the corresponding model that uses elastic net. This happens because LASSO is

bounded by the sample size, T , meaning that important conditioning information may be thrown away

even if it is contains a predictive content. Moreover, LASSO is not robust to group effects, which is

particularly important to our analysis because the occurrence of many words, such as inflation and un-

employment, may be highly correlated.25 This explains the relative good performance of elastic net as

it not only selects the most predictive words, but also guarantees that equally predictive words will not

be thrown away. In the forecasting literature, a short list of papers that successfully employed elastic net

includes Bai and Ng (2008), Li et al. (2015), Li (2015), Lima et al. (2020) and Lima and Godeiro (2023).

We also notice that models based on selected economic variables (∆̂st+1|Mτ
t

and ∆̂QFAst+1|Mτ
t

) as well

as the model based on a fixed dictionary (∆̂st+1|LMτ
t

) perform no better than the benchmark unconditional

quantile model.

24Even an apparently small degree of return predictability (low out-of-sample pseudo R2
OOS(τ) can translate into substantial

financial gains to investors - see Campbell and Thompson (2008).
25When predictors are highly correlated, LASSO tends to select only one variable from the group and does not care which

one - Bai and Ng (2008, page 307).
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Table 1: Out-of-sample Pseudo R2
OOS(τ)

Model/Quantile 05 25 50 75 95
∆̂st+1|Ωτ

t
3.78 3.01 1.77 2.40 1.84

∆̂st+1|Ωτ
t (LASSO) 1.79 1.42 0.74 1.17 0.99

∆̂s
(QFA)

t+1|Ωτ
t

3.61 2.45 1.97 2.29 1.57

∆̂s
(QFA)

t+1|Ωτ
t (LASSO) 1.73 1.24 0.90 1.15 0.60

∆̂st+1|Ωt 3.20 0.87 0.07 0.22 0.97
∆̂st+1|LMτ

t
-0.05 2.04 0.09 0.12 -0.92

∆̂st+1|LMτ
t (LASSO) -0.92 0.75 -0.24 -0.70 -1.37

∆̂st+1|Mτ
t

0.34 -0.85 -0.59 -1.98 -1.25
∆̂st+1|Mτ

t (LASSO) -0.45 -1.12 -0.99 -2.32 -1.65
∆̂s

(QFA)

t+1|Mτ
t

-0.76 -0.76 -0.41 -0.43 -1.77

∆̂s
(QFA)

t+1|Mτ
t (LASSO) -0.96 -1.22 -0.71 -0.62 -2.28

The table reports Koenker and Machado (1999) Pseudo−R2 statistics in percentage value for out-of-sample forecasts of monthly log exchange rate changes
(∆̂st+1|ℑt), where ℑt is one of the information sets listed on the the table. The out-of-sample pseudo-R2 statistic measures the proportional reduction in
quantile loss ρ(τ) of the conditional model vis-á-vis the unconditional model.

Figures 1 presents time series plots of the cumulative difference between the prediction loss of the

historical (unconditional) quantile forecast and the prediction loss of the quantile forecasts based on

(selected) textual data. We show results for quantiles τ = 0.25, 0.50, 0.75 in the out-of-sample period.

This graphical analysis informs the cumulative performance of a given forecasting model compared to

the benchmark model over time and across selected quantiles. When the curve in each panel increases,

the conditional model outperforms the benchmark, while the opposite holds when the curve decreases.

Moreover, if the curve is higher at the end of the period, the conditional model has a lower loss ρτ (·)

than the benchmark over the whole out-of-sample period. Figure 1 shows that before the blast of the

"dot.com" bubble, our text-based quantile forecasting model outperforms the historical (unconditional)

one at the median (τ = 0.50) but not so much at the tails of the distribution (τ = 0.25, 0.75), implying that

(selected) textual information was useful to compute point forecasts, but not very relevant to predict events

in the tails of the US-CAN return distribution. This situation changes substantially after 2002, as the text-

based quantile model starts finding more (less) predictability at the tails (median) of the US-CAN return

distribution. Indeed, as shown in Figure 1, tail predictability with (selected) textual data is particularly

strong during periods of market turmoil, such as the mortgage crisis, European-bond crisis, COVID-19-
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induced recession, and the Russia-Ukraine war. This result suggests that selected textual information

could be useful to predict probabilities of depreciation (appreciation) of the US dollar, helping investors

to formulate directional trading strategies.

Figures A in the online appendix shows what happens when we do not select the most predictive

terms over time and across quantiles. Indeed, one can see that the quantile forecasting model based

on sparse (non-targeted) textual data hardly outperforms the benchmark (unconditional) quantile model

for τ = 0.25, 0.50, 0.75. This result confirms that incorporating attention into the quantile forecasting

model is essential to improve the out-of-sample forecasting performance of the text-based quantile model.

Figures B and C in the online appendix show what happens when we replace targeted textual data with

targeted economic data. Remember that the database Mt contains information about 105 time series of

economic indicators listed in McCracken and Ng (2016) - see appendix for a complete description of this

dataset - and the quantile forecasts ∆̂st+1|Mτ
t

rely on factors loaded with selected economic indicators

over time and across quantiles. These figures confirm the findings by Filippou et al. (2021) in that it is

hard to predict the US-CAN return by using economic indicators. Additionally, our results suggest that

economic indicators also fail to predict the quantiles of the US-CAN return distribution. The median

forecast (τ = 0.5) provides a point (central) forecast for exchange rate return, but policy makers as well

as investors are also concerned about downside and upside risks associated to future values of exchange-

rate returns during episodes of unexpected shocks. Our preliminary results point out to the existence of

predictive content of targeted textual data, especially in the tails of the distribution and during periods

of economic turmoil. These results provide the first empirical evidence in favor of the predictive content

of targeted textual data. In what follows, we provide more statistical and economic evidence to further

support the methodology developed in this paper.
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Figure 1: Cumulative Sum of Loss Differentials: ∆̂st+1|Ωτ
t

versus ∆st+1,τ

This figure shows the cumulative of loss differentials Dτ = [ρτ (∆st+1 −∆st+1,τ )]− [ρτ (∆st+1 − ∆̂st+1|Ωτ
t
)]. Notice this plot varies across quantiles

as well. The blue, red, and black curves show plots when τ = 0.25, 0.50, 0.75, respectively. An increasing curve means the conditional model (∆̂st+1|Ωτ
t

)

outperforms the unconditional one (∆st+1,τ ).

6.1 Density, interval, and probability forecasts

We next use the quantile forecasting models to construct density forecasts. This is done by interpolating

conditional quantiles through the skewed-t student distribution approach suggested by Adrian et al. (2019)

as well as the Epanechnikov Kernel approach suggested by Gaglianone et al. (2012b) and Gaglianone

and Lima (2014). For the former, we follow Adrian et al. (2019) and use quantile forecasts at τ =

(0.05, 0.25, 0.75, 0.95). For the Epanechnikov Kernel, we additionally include the conditional median

(τ = 0.5). We keep the number of quantiles small to be fair with the skewed-t distribution method that

relies on a few quantiles. Of course more quantiles could be used in both methods at the expense of higher

computational costs.26 Table 2 reports the results of the log-predictive score and their respective p-values.

Two main results stand out. First, the density forecast constructed by using the proposed text-based

quantile model ∆̂st+1|Ωτ
t

has the highest LPDS (the higher, the better) among all densities constructed

by using other quantile forecasting models (i.e., models that rely on targeted and non-targeted economic

26As shown by Adrian et al. (2019), one could use more quantiles and allow the parameters of the skewed t-distribution to
be over-identified.
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indicators, non-targeted textual data, fixed dictionary and the unconditional quantile model). Second, for

the proposed quantile model ∆̂st+1|Ωτ
t
, the densities computed by using either the skewed-t distribution

or the Epanechnikov Kernel seem to have similar LPDS, but the latter slightly outperforms the former.

If we rank the models in terms of the p-value of Berkowitz (2001) and the LPDS scores, then one can

see that both rankings agree with each other. Indeed, densities forecasts constructed from the text-based

quantile models outperforms those based on economic data, and the unconditional quantile model yields

the worst density forecast. Among the models that uses text data, the ones that rely on targeted textual

information are the best, and PCA works very well with targeted textual data.

Table 2 also shows that the method used to select the most predictive words does affect the out-of-

sample forecasting performance of the proposed method. Our results show that using LASSO to select

the words does increase forecasting performance of the DI model, but greater improvement is obtained

when elastic net is used. Indeed, although LASSO is successful at variable selection, in the particular

case where the number of words is larger than the sample size, LASSO selects at most T words before it

saturates, therefore excluding large portions of the conditioning information set and potentially reducing

the accuracy of the forecasts. Table 2 suggests that incorporating attention into the text-based quantile

forecasting model ends up improving density forecasts. As expected, the model based on sparse (non-

targeted) textual data is outperformed by the ones based on dense (targeted) textual data. This occurs

because factor models require data to be dense, and this is met after transforming sparse textual data set

into a dense one by incorporating "attention" into the model. Our conclusion from Table 2 is that (out-

of-sample) density forecasts of the US-CAN exchange rate return are mainly driven by targeted textual

data with model ∆̂st+1|Ωτ
t

yielding the best results regardless whether skewed-t student distribution or

Epanechnikov Kernel is used to estimate the conditional density.

The quantile forecasts can be used to make interval forecasts. We use quantile forecasts for τ =

0.025; 0.975 to obtain a 95%-coverage interval. The width of the interval, which is basically the difference

between the quantile forecast at τ = 0.975 and the one at τ = 0.025, can be used as measure of volatility

forecast. We expected a wider interval in times of market turmoil as opposed to a narrow interval in times
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Table 2: Log predictive density score (LPDS) and Berkowitz (2001) density test

Panel A: Panel B:
Epanechnikov Skewed t-student

Model LPDS P-value LPDS P-value

∆̂st+1|Ωτ
t

2.832 0.27 2.801 0.22
∆̂st+1|Ωτ

t (LASSO) 2.672 0.12 2.664 0.11
∆̂s

(QFA)

t+1|Ωτ
t

2.689 0.16 2.675 0.14

∆̂s
(QFA)

t+1|Ωτ
t (LASSO) 2.669 0.10 2.665 0.09

∆̂st+1|Ωt 2.661 0.13 2.652 0.12
∆̂st+1|LMτ

t
2.632 0.07 2.626 0.05

∆̂st+1|LMτ
t (LASSO) 2.600 0.06 2.596 0.05

∆̂s
(QFA)

t+1|Mτ
t

2.832 0.02 2.676 0.02

∆̂s
(QFA)

t+1|Mτ
t (LASSO) 2.782 0.03 2.976 0.04

∆̂st+1|Mτ
t

2.457 0.01 2.430 0.00
∆̂st+1|Mτ

t (LASSO) 2.427 0.01 2.401 0.00
∆st+1 2.417 0.00 2.382 0.00

Table entries show log predictive density scores (a higher score implies a better model) and the p-values for the Berkowitz (2001) density test, respectively.
Panel A shows results for densities estimated by the Epanechnikov Kernel whereas Panel B shows results for densities estimated by the skewed t-distribution
method.

of market normality. Figure 2 shows an out-of-sample interval forecast obtained by using the random

walk (unconditional quantile) model. The blue line corresponds to actual observations of ∆st+1 whereas

the green and red lines correspond to out-of-sample quantile forecasts for τ = 0.975 and τ = 0.025,

respectively. It is well known that the random-walk model performs well in terms of out-of-sample point

(conditional mean) forecasting. However, as shown in Figure 1, most of the predictability of ∆st+1 is

away from the center and more concentrated in the tails of the conditional distribution. For this reason,

we investigate the performance of the random walk model in terms of out-of-sample interval forecasts.

Figure 2 shows that the random model fails to anticipate increases in market volatility during periods of

market turmoils. Indeed, the interval forecast from such a model does not vary much over time, leading

to about 11% of violations (hits) during the out-of-sample period, which is twice as much as the nominal

level of 5%.
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Figure 2: 95%-coverage interval forecast from the unconditional (RW) model (∆st+1)

This figure shows a 95%-coverage interval forecast from the RW model (∆st+1). The green line corresponds to quantiles forecasts with τ = 0.975 whereas
the red line corresponds to quantile forecasts with τ = 0.025. The blue line shows actual observations of exchange-rate return (∆St) during the 1990.1-
2022.7 out of sample period. The percentage of hits (11.03%) is well above 5% nominal level.

Figure 3 shows that selected textual information across time and quantiles (Ωτ
t ) can improve interval

forecasts. It strikes the fact that, unlike the RW model, the interval forecast obtained with target textual

information are quite responsive to changes in the market. The width of the interval (which is a proxy for

volatility) widens in periods of market turmoil through through increases in both upside and downside

risks. This is why the interval forecasts from the text-based model ∆̂st+1|Ωτ
t

yields a number of violations

(hits) of about 6%, which is very close to the nominal level of 5%. In other words, by outperforming

the RW model in the tails of the conditional distribution, the text-based model ∆̂st+1|Ωτ
t

can deliver more

accurate interval forecasts.
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Figure 3: 95%-coverage interval forecast from the conditional model ∆̂st+1|Ωτ
t
.

This figure shows a 95%-coverage interval forecast from the text-based model (∆̂st+1|Ωτ
t

). The green line corresponds to quantiles forecasts with τ = 0.975
whereas the red line corresponds to quantile forecasts with τ = 0.025. The blue line shows actual observations of exchange-rate return (∆St) during the
1990.1-2022.7 out of sample period. The percentage of hits (6.3%) is close to the nominal level of 5%.

Figures 4 and 5 show interval forecasts from models that rely on a fixed dictionary (∆̂st+1|LMτ
t

) and

economic indicators (∆̂st+1|Mτ
t

), respectively. It can be noted that the upper and lower bounds of such

interval forecasts do not respond satisfactory to changes in the market volatility. This implies in a violation

rate (hits) above the 5% level. In conclusion, the model based on target textual information makes interval

forecasts with almost the right coverage, outperforming not only the random walk (unconditional) model

but other conditional models that rely on economic indicators or a fixed dictionary.27

27The text-based model ∆̂st+1|Ωτ
t

also outperforms the model based on untargeted textual data ∆̂st+1|Ωt
.
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Figure 4: 95%-coverage interval forecast from the conditional model ∆̂st+1|LMτ
t

This figure shows a 95%-coverage interval forecast from the from the text-based model ∆̂st+1|LMτ
t

. The green line corresponds to quantiles forecasts with
τ = 0.975 whereas the red line corresponds to quantile forecasts with τ = 0.025. The blue line shows actual observations of exchange-rate return (∆St)
during the 1990.1-2022.7 out of sample period. The percentage of hits (9%) is above the 5% nominal level.

Figure 5: 95%-coverage interval forecast from the conditional model ∆̂st+1|Mτ
t

This figure shows a 95%-coverage interval forecast from the text-based model ∆̂st+1|Mτ
t

. The green line corresponds to quantiles forecasts with τ = 0.975
whereas the red line corresponds to quantile forecasts with τ = 0.025. The blue line shows actual observations of exchange-rate return (∆St) during the
1990.1-2022.7 out of sample period. The percentage of hits (11.00%) is well above 5% nominal level.
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The above graphs can be used to obtain time series of violations or hits, that is, a binary variable Ht

which equals 1 when the actual out-of-sample observations of dollar return ∆st+1 is outside the interval

forecast (i.e, above the 97.5% quantile forecast or below the 2.5% quantile forecast), and zero otherwise.

Then, we can use Ht and the vast literature on backtesting of value-at-risk models to test the null hypoth-

esis of correct specification of the interval forecasting model. This paper considers the Kupiec (1995),

Christoffesen (1998), and Engle and Maganelli (2004) backtests, which are all based on (out-of-sample)

hit observations Ht. Results are shown on Table 3 where one can see that interval forecasts based on

selected textual information, that is ∆̂st+1|Ωτ
t
, ∆̂st+1|Ωτ

t (LASSO), and ∆̂s
(QFA)

t+1|Ωτ
t

pass all the backtests at the

5% level (p-value larger than 0.05). On the other hand, interval forecasts from the random-walk model

(∆st+1), or from conditional quantile models that rely either on selected economic information (∆̂st+1|Mτ
t

,

∆̂st+1|Mτ
t (LASSO) ) or on selected words from the fixed (LM ) dictionary ( ∆̂st+1|LMτ

t
, ∆̂st+1|LMτ

t (LASSO))

fail all the backtests at the 5% level (p-value smaller than 0.05). These results add to the ones shown in

Figure 1 in that the predictability of the random-walk model lies at the central tendency whereas targeted

textual data display strong predictive content in the tails of the conditional distribution of dollar return.

Table 3: 5%-level Backests

Model Kupiec Kupiec Christoffesen Christoffesen Engle and Manganelli Engle and Manganelli
test p-value test p-value test p-value

∆̂st+1|Ωτ
t

0,51 0,47 2,29 0,31 10,24 0,17
∆̂st+1|Ωτ

t (LASSO) 0,69 0,32 2,58 0,25 11,55 0,12

∆̂s
(QFA)

t+1|Ωτ
t

0,58 0,38 2,42 0,27 10,85 0,14

∆̂s
(QFA)

t+1|Ωτ
t (LASSO) 0,79 0,09 2,93 0,08 13,15 0,06

∆̂st+1|Ωt
28,11 0,01 24,97 0,01 59,32 0,00

∆̂st+1|Mτ
t

27,81 0,02 21,97 0,03 53,32 0,00
∆̂st+1|Mτ

t (LASSO) 28,99 0,01 22,37 0,02 56,41 0,01
∆̂st+1|Mτ

t
27,81 0,02 21,97 0,03 53,32 0,00

∆̂st+1|Mτ
t

27,81 0,02 21,97 0,03 53,32 0,00
∆̂st+1|LMτ

t
92,71 0,00 99,69 0,00 54,74 0,00

∆̂st+1|LMτ
t (LASSO) 93,51 0,01 100,88 0,02 55,84 0,00

∆st+1 62,37 0,01 39,33 0,01 61,78 0,00

The tables shows several backtests: (i) The statistical tests of Kupiec (1995), Christoffesen (1998) and Engle and Manganelli (2004). A p-value lower than
0.05 indicates rejection of the null hypothesis of correct specification of the interval forecasting model
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6.2 Probability Forecasts

The existence of predictability in the tails can be used to predict depreciation risks, i.e., pt+1,t, which

can then be used by investors to formulate directional trading strategies such as selling US dollar and

buy the risk-free t-bond whenever such probability is above a certain threshold. We now use the density

forecast to compute the probability of the U.S. dollar depreciation, i.e., pt+1,t = prob[(∆st+1 < 0)|ℑt].

Recall we have in mind a Canadian firm that utilizes inputs imported from the U.S. and, for this reason,

its cash flow is highly affected by fluctuations of the U.S. dollar. Thus, the goal is to employ the approach

developed in this paper to predict pt+1,t and use it to make trading decisions for the Canadian firm at the

end of time t. In order to motivate our exercise, Figure 6 (part A) shows the value of the US-CAN spot

exchange rate (St) during the out-of-sample period (1990.1-2022.7) as well as its trend estimated by the

Hodrick-Prescott filter. A good directional forecast is the one that maximizes the portfolio value in the

long run, correctly predicting the directional changes implied by the trend. We list five economic events

that triggers depreciation of the US dollar with respect to the Canadian Dollar: the introduction of the

inflation target policy in Canada; the "dot.com" bubble in the U.S.; the U.S. mortgage crisis; the European

bond crisis and; the COVID-19-induced recession. We also list an economic event (Russia-Ukraine war)

that triggers appreciation of the US Dollar. Figure 6 shows that St falls shortly (∆st+1 < 0) during the

implementations of the inflation-target policy in Canada but soon starts a long period of appreciation

(∆st+1 > 0) until the blast of the "dot.com" bubble in 2002. At that point, the US dollar starts a long

period of depreciation that ultimately reverses to a very short period of appreciation in 2007. Such an

appreciation momentum is interrupted by the blast of the subprime bubble (mortgage crisis) at the end of

2008. By the end of 2011,the US dollar gain a new momentum with a steady appreciation that is shortly

interrupted by the COVID-19-induced recession. Finally, the beginning of the Russia-Ukraine war leads

the U.S. dollar to period of appreciation. Given this sequence of economic events, a Canadian company

concerned about downside risks might be interested to predict the directional changes implied by the

trend as shown in Figure 6 (part A) and use it to make informed financial decisions.
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Figure 6: US-CAN Exchange Rate: spot value and Hodrick-Prescott trend and Probability of depreciation
from conditional density with information set Ωτ

t

The figure A shows the US-CAN spot exchange rate and its trend estimated by using a Hodrick Prescott (HP) filter with tuning parameter λ = 14, 400.The fig-
ure B shows the Probability of depreciation from conditional density. The black line represents the probability of depreciation, i.e. pt+1,t = prob[(∆st+1 <
0)|ℑt], calculated from the conditional density with information set ℑt = Ωτ

t and estimated by using the Epanechnikov Kernel. The red line represents the
50% probability boundary.

To save space, our predicted probability of depreciation will be computed from the unconditional

density forecasts as well as from conditional density ones with information sets ℑt = (Ωτ
t ,M

τ
t ). We only

considered the Epanechnikov kernel but the results from densities computed by using the skewed-t student

distribution are similar and available under request. Figure 6 (part B) shows the predicted probability of

depreciation obtained when ℑt = Ωτ
t and a red horizontal line representing a 50% probability boundary.

One can see that our model is able to predict the depreciation of the US dollar quite well. Indeed, we have
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pt+1,t > 50% during the implementation of the inflation-target policy in Canada. Then, the probability

of depreciation remains below 50% during several months until it goes above 50% again in the end of

2002 with the blast of the "dot.com" bubble. Then, the probability of deprecation starts going down

slowly towards 50% but increases again because of the European debt crisis in 2010, and remains most

of the time above 50% until the outbreak of the COVID pandemic in early 2020 when it goes above 70%.

Finally, the probability of depreciation falls below 50% with the beginning of the Russia-Ukraine war.

Thus, our model seems to predict well the depreciation (appreciation) of the U.S. dollar with respect

to the Canadian dollar. We now evaluate the performance of the unconditional quantile model, that is, the

model represented by a quantile regressions with an intercept only. We also use the Epanechnikov Kernel

and the red horizontal line still represents the 50% probability cutoff. If we continue using pt+1.t > 50%

to predict depreciation of U.S. dollar, then one can easily see in Figure D of the online appendix that

the unconditional quantile model fails to detect the depreciation of the U.S. dollar provoked by the blast

of the "dot.com" bubble. This failure remains for many months after the blast of the bubble, suggesting

that the unconditional model takes too long to predict directional changes in the US-CAN exchange

rate. It wrongly predicts a prolonged period of depreciation between 2010 and 2020 besides missing the

appreciation of the U.S. dollar caused by the Russia-Ukraine war. We also predicted the probability of

U.S. dollar depreciation based on selected economic indicators (i.e., model ∆̂st+1|Mτ
t

). The consequence

of using such a model to predict probabilities of depreciation is shown in Figure E of the online appendix,

where one can see pt+1.t changing values too often from time to time. In practice, this would lead an

investor to incur a high transaction cost since she would need to re-balance the portfolio many times.

Table 4 reports the p-value of the Mincer-Zarnowitz regression test for these 3 models. One can see

that we fail to reject the null hypothesis even at the 10% level (p-value=0.52) only when targeted textual

data is used to compute pt+1,t. This suggests that (target) textual data can be useful to compute the

expected directional change E[yt+1|ℑt]. The same does not happen when one uses either economic or

the unconditional quantile model to estimate pt+1,t (p-values less than 0.10). The directional forecast also

anticipates the trend of depreciation of the U.S. dollar with respect to the Canadian Dollar. Indeed, the
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second column of Table 4 indicates the directional forecast It+1,t = 1 can correctly predict about 78% of

the depreciation implied by the trend shown in Figure 6, whereas the economic-based and unconditional

directional forecast only correctly predict about 47% and 45%, respectively. For an investor concerned

about downside risks, predicting the trend of depreciation is essential for the formulation of directional

trading strategies, and our results suggest that forecasts based on targeted textual data is important to this

end.

Table 4: Mincer-Zarnowitz and changes correctly predicted

Model P-value Wald Test Proportion of change predicted(%)
∆̂st+1|Ωτ

t
0.52 77.71

∆̂st+1|Mτ
t

0.09 46.98
∆st+1 0.01 44.75

This table shows the p-value of the null hypothesis H0 : θ0 = 0 and θ1 = 1 in Equation yt+1 = θ0 + θ1It+1,t + ηt+1, where yt+1 equals 1 if the HP
trend implies a depreciation and zero otherwise. The last column shows the percentage of directional changes implied by the HP trend correctly predicted by
the directional forecast It+1,t.

An important question is whether the quantile model (∆̂st+1|Ωτ
t
) is indeed able to identify the depre-

ciation (appreciation) risk of the U.S. dollar. To shed light on this, we show the relationship between

the predicted probability of the U.S. dollar depreciation (pt+1,t) - computed by using model ∆̂st+1|Ωτ
t

-

and the downside and upside risks, here represented by the downside and upside entropy measures £D
t ,

£UP
t , respectively 28. The triple (pt+1,t,£

D
t ,£

UP
t ) is calculated for each out-of-sample observation and

relies on the Epanechnikov estimates of the density forecasts. Figure H in the online appendix shows a

scatter plot of the 391 out-of-sample observations of pt+1,t, £D
t , and £UP

t . The Y -axis shows the entropy

(downside and upside) whereas the X-axis shows the probability of depreciation. Red dots correspond to

the depreciation risk (downside entropy) whereas the blue dots correspond to the appreciation risk (upside

entropy). Conditional on the same pt+1,t, one sees the distribution of downside and upside entropy - i.e.,

months showing the same pt+1,t can display different entropy. A striking result coming from that figure

is that months for which the probability of depreciation pt+1,t is larger than 50% also experienced more

downside entropy than upside one, whereas the opposite occurs at months for which pt+1,t < 50%. This

result suggests the larger the predicted probability of depreciation from the text-based quantile model,
28See online appendix for an explanation on the computation of £D

t , £UP
t
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the larger the downside entropy, implying that such forecasts carry information about downside risks of

the of the US-CAN exchange rate. Hence, investment strategies designed to minimize downside risks

could potentially benefit of such forecasts. Figures J and K in the online appendix show the same pattern

does not occur when the triple (pt+1,t,£
D
t ,£

UP
t ) is computed with ((non-selected) textual data and a fixed

dictionary, meaning that "attention" and a varying dictionary are important to establish this link between

the predicted probability of depreciation and the downside (upside) entropy.

We now turn to our portfolio analysis. We assume that an investor starts with 100 dollars and face a

fixed transaction cost (c) of $0.30 and $0.50, respectively, to re-balance her portfolio. Figures F and G

of the online appendix indicate that if in January 1990 an investor had begun with $100 and started using

the above described investment strategy, then his/her portfolio would be worth about $240 ($220) in July

2022 if they had used the information set ℑt = Ωτ
t to predict the probabilities of depreciation and had

payed a 30 (50) cents transaction cost, respectively. If she had used the unconditional density forecast,

then her portfolio would be worth slightly more than $100 in July 2022. regardless the transaction cost.

This happens because the probability of depreciation computed from the unconditional density forecast

does not vary much over time and, for this reason, the portfolio is re-balanced a few times.29 Finally,

if the investor had used the information set ℑt = M τ
t to predict the probabilities of depreciation, then

her portfolio would be worth about$130 ($30) in July 2022 if she had payed a 30 (50) cents transaction

cost, respectively. This happens because the predicted probability of depreciation based on economic

indicators changes very often, incurring a high transaction cost for the investor. Indeed, the portfolio

performance worsens as we increase the transaction cost.

Table B in the online appendix indicates that the set of most predictive terms (dictionary) is quite

heterogeneous, changing not only across time but also across different quantiles of the distribution (i.e.,

left tail versus right tail). This is important since the depreciation and appreciation risks are related to

outcomes occurring at the left and right tail of the distribution respectively. For instance, the most im-

29Indeed, Figure 4 in the appendix shows a flat segment on the green line between 2010 and 2020 reflecting the fact that the
unconditional model predicts p > 0.5 exactly when the t-bond rate is close to zero percent, wrongly inducing the investor to
make a bad financial decision.
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portant terms affecting the appreciation risk during the Russia-Ukraine war (2022.2) are those related

to geopolitical or military events (i.e.,"soviet union" and "military spending") and market volatility, sug-

gesting that the U.S. dollar is seen by investors as a "safe heaven" in times of geopolitical conflicts and

high market volatility. Terms specific to trade, exchange rate and energy (i.e., "exchange market", "trade

deficit", "energy price", and "short position") are also commonly listed, perhaps because they reflect the

mechanisms through which geopolitical conflicts affect the economic system.

The terms "market collapse", "price drop", "market turmoil" are commonly cited during events related

to appreciation and depreciation of the U.S. dollar, suggesting that such terms reflect the existence of eco-

nomic crises in general. However, other terms such as "weakness dollar", "dollar decline", "fall dollar",

"dollar drop", "stabilize dollar", and "dollar rally" are exclusively found during periods of depreciation

of the U.S. dollar, implying that such terms are not commonly cited during periods of appreciation of

the U.S. dollar. Interestingly, the term "economic growth" is particularly important since it appears quite

frequently during months in that the U.S dollar depreciates. Additionally, other terms related to eco-

nomic recession such as "consumer spending", "investor confidence", "unemployment rate", "economic

recovery", "soft landing", "stock fall", "economic activity" also contribute to increase the depreciation

risk of the U.S. dollar. Importantly, these terms do not seem to affect the appreciation risk much. Other

terms that also contribute to increase the depreciation risk - but do not affect the appreciation risk -are

exactly those related to interest rates (i.e.,"bond price", "fed easing", "home loan", "budget deficit", "raise

tax", "lower rate"); stock market (i.e., "stock market", "corporate profit", "stock buyback", "stock price",

"equity market", "stock rise") and; oil market (i.e., petroleum exporter, "oil market", "oil price").

In sum, we found that depreciation risks of the U.S. dollar are mostly driven by terms related to finan-

cial markets and economic recessions, whereas terms related to geopolitical conflicts and market volatility

seem to drive more the appreciation risk, suggesting that the U.S. dollar may be seen by investors as a

"safe heaven" in times of war and high market volatility. We also found terms that affect both depre-

ciation and appreciation risks, perhaps because they signal the existence of economic crises in general.

This analysis illustrates the benefits of using recent advances in machine learning to identify the most
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predictive dictionary over time and across different quantiles of the exchange rate distribution.

7 Conclusion

Words matter, but attention is important! We introduce "attention" in the quantile factor model to study

the predictive content of textual data. The proposed methodology delivers not only the most predictive

dictionary available up to a forecast origin, but also the most predictive dictionary at different quantiles of

the distribution. Our results indicate that targeted textual data improve predictability of the US-CAN ex-

change rate over the random walk benchmark, whereas target economic data do not. We found that such

a predictability is concentrated in the tails of the distribution, especially after the burst of the "dot.com"

bubble. Text-based quantile models yields directional forecasts that are strongly related to the downside

entropy of the exchange rate, meaning they carry information about downside risks of currency invest-

ments. We consider a simple managed portfolio to illustrate the economic value of our directional fore-

casts and found that the model based on targeted textual data yields accurate predictions of depreciation

of the U.S. dollar with respect to the Canadian dollar, leading to a larger cumulative wealth.

Words that signal the existence of economic recessions are shown to increase the depreciation risk of

the U.S. dollar, whereas words related to geopolitical events and market volatility are shown to increase

the appreciation risk, suggesting that the U.S. dollar is seen by investors as a "safe heaven" in times of

geopolitical conflicts and high market volatility. The approach developed in this paper may be useful

to many other applications in finance and economics, where the ability to predict directional changes

(such as exchange rate depreciation) is essential for decision making. Future research could consider

more performant machine learning methods, such as neural network and also allow for the possibility that

words are exposure to topics (factors) dynamically. In this regard, a dynamic factor model would be a

natural choice.
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APPENDIX

Proof of Theorem 1.

Proof of (a). Let u =
√
t(d− δ(τ)) and û(τ) =

√
t(δ̂(τ)− δ(τ)). Then

û(τ) = argmin
u

t∑
s=1

ρτ

(
∆ss+1 − Ẑ ′

s,τ

(
δ(τ) +

u√
t

))
(13)

= argmin
u

t∑
s=1

[
ρτ

(
∆ss+1 − Ẑ ′

s,τ

(
δ(τ) +

u√
t

))
− ρτ

(
∆ss+1 − Ẑ ′

s,τδ(τ)
)]

. (14)

By the Knight’s (1998) identity, we have

ρτ (µ− π)− ρτ (µ) = −π(τ − 1{µ ⩽ 0}) +
∫ π

0

(1{µ ⩽ s} − 1{µ ⩽ 0})ds.

So, it follows that

t∑
s=1

[
ρτ

(
∆ss+1 − Ẑ ′

s,τ

(
δ(τ) +

u√
t

))
− ρτ

(
∆ss+1 − Ẑ ′

s,τδ(τ)
)]

=
t∑

s=1

[−
Ẑ ′

s,τu√
t

(
τ − 1

{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ)
})

+

∫ Ẑ′
s,τ u
√
t

0

1
{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ) + v
}
− 1

{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ)
}
dv]

= −Ŵt(τ)
′u+ Ât(u, τ),

where

Ŵt(τ) =
t∑

s=1

1√
t

[
Ẑ ′

s,τ

(
τ − 1

{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ)
})]

,

and

Ât(u, τ) =
t∑

s=1

∫ Ẑ′
s,τ u
√
t

0

1
{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ) + v
}
− 1

{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ)
}
dv.

Let gt(u, τ) = −Ŵt(τ)
′u + Ât(u, τ), and we note that gt(u, τ) is a convex function in u for each τ .
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Then we only need to prove (i) Ât(u, τ)
p−→ u′A(τ)u

2
for some positive definite A(τ), and (ii) Ŵt(τ)

p−→

W (τ), where W (τ) is normally distributed. Then we would be able to claim, by the Convexity Lemma

(Kato, 2009), that

û(τ) = A(τ)−1W (τ) +R(τ), where R(τ) = op(1),

and hence obtain the asymptotic distribution of û(τ) =
√
t(δ̂(τ)− δ(τ)).

Step 1. We prove (i). Taking expectation on Ât(u, τ), we get

E
(
Ât(u, τ)

)
= tE

∫ Ẑ′
s,τ u
√
t

0

{F [Qτ (∆ss+1 | Ωτ
s) +

(
Ẑs,τ − Z̄s,τ

)′
δ(τ) + v | Ωτ

s ]

− F [Qτ (∆ss+1 | Ωτ
s) +

(
Ẑs,τ − Z̄s,τ

)′
δ(τ)] | Ωτ

s}dv

= tE

f

[
Qτ (∆ss+1 | Ωτ

s) +
(
Ẑs,τ − Z̄s,τ

)′
δ(τ) + ṽ | Ωτ

s

] ∫ Ẑ′
s,τ u
√
t

0

sds


= tE

{
f

[
Qτ (∆ss+1 | Ωτ

s) +
(
Ẑs,τ − Z̄s,τ

)′
δ(τ) + ṽ | Ωτ

s

]
u′Ẑs,τ Ẑ

′
s,τu

2t

}
,

where ṽ is between 0 and Ẑ′
s,τu√
t
. Given that Ẑs,τ − Z̄s,τ =

(
0,
(
F̃s,τ −HFs,τ

)′
)′

, the well established

properties for F̃s,τ −HFs,τ by Bai (2003), and the fact that ṽ
p−→ 0, we have

E
(
Ât(u, τ)

)
=

1

2
u′E

[
f (Qτ (∆ss+1 | Ωτ

s) | Ωτ
s) Z̄s,τ Z̄

′
s,τ

]
u+ o(1).

Hence,

A(τ) = E
[
f (Qτ (∆ss+1 | Ωτ

s) | Ωτ
s) Z̄s,τ Z̄

′
s,τ

]
.

To complete Step 1, we also have to show that

Ât(u, τ)− E
(
Ât(u, τ)

)
p−→ 0.
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Given that

Ât(u, τ) =
t∑

s=1

∫ Ẑ′
s,τ u
√
t

0

1
{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ) + v
}
− 1

{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ)
}
dv

=
t∑

s=1

∫ 1

0

Ẑ ′
s,τu√
t

[
1

{
∆ss+1 ≤ Ẑ ′

s,τδ(τ) + v
Ẑ ′

s,τu√
t

}
− 1

{
∆ss+1 ≤ Ẑ ′

s,τδ(τ)
}]

dv

=
1

t

t∑
s=1

√
tẐ ′

s,τu

∫ 1

0

[
1

{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ) + v
Ẑ ′

s,τu√
t

}
− 1

{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ)
}]

dv,

let us introduce the so defined At(u, τ) as

At(u, τ) =
1

t

t∑
s=1

√
tZ ′

s,τu

∫ 1

0

[
1

{
∆ss+1 ⩽ Z ′

s,τδ(τ) + v
Z ′

s,τu√
t

}
− 1

{
∆ss+1 ⩽ Z ′

s,τδ(t)
)]

dv.

Further, notice that by the law of iterated expectation, we have

At(u, τ) =
1

t

t∑
s=1

√
tu′Zs,τ

∫ 1

0

[
F

(
Z ′

s,τδ(τ) + v
Z ′

s,τu√
t

| Ωτ
s

)
− F

(
Z ′

s,τδ(τ) | Ωτ
s

)]
dv + op (1)

=
1

t

t∑
s=1

√
tu′Zs,τ f

(
Z ′

s,τδ(τ) | Ωτ
s

) Z ′
s,τu√
t

∫ 1

0

vdv + op(1)

=
1

2t

t∑
s=1

u′Zs,τZ
′
s,τuf

(
Z ′

s,τδ(τ) | Ωτ
s

)
+ op(1).

Similarly,

Ât(u, τ) =
1

2t

t∑
s=1

u′Ẑs,τ Ẑ
′
s,τuf

(
Ẑ ′

s,τδ(τ) | Ωτ
s

)
+ op(1)

=
1

2t

t∑
s=1

u′Ẑs,τ Ẑ
′
s,τuf

(
Z ′

s,τδ(τ) | Ωτ
s

)
+ op(1).

Our main task is to show L = op(1), where

L =
1

t

t∑
s=1

u′Ẑs,τ Ẑ
′
s,τu− 1

t

t∑
s=1

u′Z̄s,τ Z̄
′
s,τu.
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Notice that

L =
2

t

t∑
s=1

u′
(
Ẑs,τ − Z̄s,τ

)
Z̄ ′

s,τu+
1

t

t∑
s=1

u′
(
Ẑs,τ − Z̄s,τ

)(
Ẑs,τ − Z̄s,τ

)′
u.

Given that 1
t

∑t
s=1

∥∥∥Ẑs,τ − Z̄s,τ

∥∥∥2

= op(1) by Lemma A1 (i) of Bai and Ng (2006), and that 1
T

∑t
s=1

∥∥Z̄s,τ Z̄
′
s,τ

∥∥2
=

Op(1) implied by Assumption 3(a), it follows that L = op(1) as desired. Meanwhile, as At(u, τ)
p−→

1
2
u′E

[
f (Qτ (∆ss+1 | Ωτ

s) | Ωτ
s) Z̄s,τ Z̄

′
s,τ

]
u = E

(
Ât(u, τ)

)
, implied by Assumptions 2 and 3(a), the

proof is complete.

Step 2. We let

W (τ) =
1√
t

t∑
s=1

Z̄s,τ

(
τ − 1

{
∆ss+1 ⩽ Z̄ ′

s,τδ(τ)
})

.

Then it follows that

Ŵ (τ)−W (τ) =
1√
t

t∑
s=1

(
Ẑs,τ − Z̄s,τ

) (
τ − 1

{
∆ss+1 ⩽ Z̄ ′

s,τδ(τ)
})

− 1√
t

t∑
s=1

Z̄s,τ

[
1
{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ)
}
− 1

{
∆ss+1 ⩽ Z̄ ′

s,τδ(τ)
}]

− 1√
t

t∑
s=1

(
Ẑs,τ − Z̄s,τ

) [
1
{
∆ss+1 ⩽ Ẑ ′

s,τδ(τ)
}
− 1

{
∆ss+1 ⩽ Z̄ ′

s,τδ(τ)
}]

= I − II − III.

We can show I = op(1) by Lemma A1 (iv) of Bai and Ng (2006).

For II , note that

II =
1√
t

t∑
s=1

Z̄s,τf [Qτ (∆ss+1 | Ωτ
s) | Ωτ

s ]
(
Ẑs,τ − Z̄s,τ

)′
δ(τ) + op(1).

By Lemma Lemma A1 (ii) of Bai and Ng (2006), 1
t

∑t
s=1

(
Ẑs,τ − Z̄s,τ

)
Z̄ ′

s,τ = Op

(
1
n
+ 1

t

)
. So II =

op(1) given
√
t

n
→ 0.
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For III ,

III =
1√
t

t∑
s=1

(
Ẑs,τ − Z̄s,τ

)(
Ẑs,τ − Z̄s,τ

)′
f
(
Z ′

s,τδ(τ) | Ωτ
s

)
δ(τ) + op(1)

= op(1) + op(1),

by Lemma A1 (i) of Bai and Ng (2006), given
√
t

n
→ 0.

So step 2 is also proved with W (τ)
d→ N

(
0, τ(1− τ)E

(
Z̄s,τ Z̄

′
s,τ

))
.

Putting everything together, we get

û(τ) =
√
t(δ̂(τ)− δ(τ))

p→ A(τ)−1W (τ)
d→ N

(
0, τ(1− τ)A(τ)−1E

(
Z̄s,τ Z̄

′
s,τ

)
A(τ)−1

)
.

Proof of (b). Given that

Q̂τ (∆st+1 | Ωτ
t )−Qτ (∆st+1 | Ωτ

t )

=
1√
t
Ẑ ′

t,τ

√
t(δ̂(τ)− δ(τ)) +

1√
n
β′(τ)H−1

√
n
(
F̃t,τ −HFt,τ

)
,

it then follows that

Q̂τ (∆st+1 | Ωτ
t )−Qτ (∆st+1 | Ωτ

t )
d→ N(0,Ξt,τ ).

where Ξt,τ = 1
t
Ẑ ′

t,τAvar
(
δ̂(τ)

)
Ẑt,τ +

1
n
β̂(τ)′Avar

(
F̃t,τ

)
β̂(τ).
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