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Abstract

This paper models and analyzes the role of cognition in the refinement
of preferences and choices. As cognition increases, choices become more
selective, resulting in narrower sets of preferred options and finer rankings. To
characterize this behavior, the classical rational-choice framework is extended
through the introduction of a modified version of the Weak Axiom, called
the Weak Axiom of Revealed Preference Difficulty (WARPD). The paper
shows that WARPD is equivalent to an interval-valued utility representation,
where the size of the interval decreases monotonically with cognition. It
also demonstrates that WARPD is equivalent to a fuzzy rationalizability
concept, implying that cognition-dependent choices satisfying WARPD can
be represented by a complete and transitive fuzzy binary relation. Finally,
the paper describes two applications which highlight how consumers’ choice
coarseness influences firms’ strategic pricing decisions in different competitive
settings.

1 Introduction

A decision-maker’s preferences over items in a finite set X are usually a complete
ordering of the elements of X, possibly with ties, ranked from most to least
preferred. However, it is improbable that the decision-maker can immediately,
effortlessly and precisely articulate this complete ordering upon request. The
opposite – that the decision-maker would possess neither intuition nor a vague
idea about this ordering – is also unlikely. In practice, one would anticipate
that she would be able to articulate a general if “coarse” understanding of how
each item in X compares to the others. For instance, she may recognize that
an all-expenses-paid trip to Paris is superior to working overtime without any
additional compensation, even if she remained uncertain about whether a vacation
to Paris is preferable to one to Rome.
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A detailed ranking that accurately reflects the decision-maker’s tastes, likes,
and dislikes often requires a significant amount of thoughtful consideration – a
mental resource referred broadly to as “cognition” throughout the paper.

To illustrate this point and introduce the approach in this paper, consider the
following example.

Example 1.1. Xavier and Yvonne are friends who share the same taste in movies.
Yvonne asks Xavier to recommend a movie from a set of five options labeled
a, b, c, d and e – all of which Xavier has recently watched and remembers well.
Since Xavier does not know which movies Yvonne has access to or how many she
wants to see, he must do his best to provide a ranking of the movies.

In a first scenario, suppose Xavier is busy and only has a few seconds to rank
the movies. He remembers disliking e but enjoyed the others, so he splits them
into a “bad” category containing only e and a “good” category with the rest.

In a second scenario, Xavier is taking a break from work and thus has a few
more minutes of undistracted thought to consider this ranking. Upon further
consideration, he realizes he enjoyed a more than both c and d, so he creates a new
“okay” category containing the similarly-enjoyed movies b, c, and d. The “good”
category now contains both a and b, whereas e remains “bad”. Note that b is both
“good” and “okay”. This shows that the ranking as it stands is not quite complete
(nor is it transitive), but it still provides a better characterization of what Xavier’s
preferences are than the first scenario.

In a third and final scenario, suppose Xavier has a couple of days to come up
with a definitive ranking. After much thought, he concludes that a is the best
movie, followed by b, c, d, and, lastly, e.

In this example, Xavier starts out with a coarse idea of what the ranking looks
like. This notion can then be refined as he applies more thought, or cognition, to
the problem. Depending on the context, Xavier’s cognition levels vary, which in
turn makes his recommendation either more or less precise. ◊

The focus of this paper is on preference and choice refinement through cognition.
The underlying premise is that increased cognition is linked with discerning
behavior, leading to a narrower selection of options and finer rankings. Conversely,
lower levels of cognition suggest that a wider range of options are deemed similarly
desirable, resulting in larger and less selective choice sets and therefore coarser
rankings.

An implication of this approach is that a cognitively constrained consumer
may for example overlook minor qualitative differences, presenting both difficulties
and opportunities for advertisers, service providers, and product manufacturers.
Furthermore, strategically presenting certain choices in situations or contexts
where consumers are more prone to reduced cognition can have advantages, such
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as enabling products that would otherwise be eliminated from consideration to
be selected, or disadvantages, such as when a strong preference for a particular
product goes unnoticed.

With that in mind, this paper formalizes the process by which preferences
and choice are refined through cognition, while retaining some of the coherence
associated with rational choice. The key theoretical result is the equivalence
between two axioms and an interval-valued utility functional representation.

The first axiom, denoted the Weak Ordering of Cognition Indices (WOCI),
states criteria for choice behavior under which an increase in cognition implies
greater selectiveness. Specifically, if, within a given context, the decision-maker’s
choice results in a smaller and more restrictive set of chosen options compared to
another context, it is asserted that her level of cognition in the former case must
be higher than in the latter. For instance, suppose the decision-maker selects a
particular brand of gluten-free, vitamin enriched bread at 9 A.M. However, by 10
P.M., she becomes less discerning and is willing to pick a broader range of different
bread brands. In this scenario, we can assert that her decision-making at 9 A.M.
involves higher cognition compared to her 10 P.M. decision-making.

While obtaining direct evidence of WOCI is challenging due to the inherent
difficulty in eliciting choice correspondences (Bouacida, 2021, Balakrishnan et al.,
2022), illustrative examples from experimental data can be found in Section 2.2.
In an experiment conducted in Bouacida (2021), participants were tasked with
selecting subsets of tasks under various information treatments, corresponding to
different levels of cognitive engagement. The observed choice correspondences at
the lower information treatment (indicative of low cognition) were consistently
larger, on average, than those at higher information treatments (indicative of high
cognition). According to Ross et al. (2020), decision-makers undergoing a budget
contraction, even if temporary, engage in more trade-off thinking – i.e. apply
more cognition, in the language of the current paper. The experimental results
from Ross et al. (2020) support this notion, revealing that bundles chosen after a
budget contraction and subsequent restoration contain, on average, fewer items
than bundles chosen before any budget contraction.

The second axiom is a generalization of the Weak Axiom of Revealed Preference,
denoted Weak Axiom of Revealed Preference Difficulty, or WARPD. Unlike the
classical Weak Axiom (WARP), WARPD allows for the emergence of intransitive
indifference in specific circumnstances. This occurrence is a result of WARPD
characterizing the behavior of decision makers who optimize only up to an ap-
proximate degree. To understand this, consider that if x is approximately optimal
given the set {x, y}, and if y is similarly approximately optimal in {y, z}, then it
may not be true that x is approximately optimal in {x, z}. This is because the
approximation “errors” can compound to the point where x is no longer considered
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good enough when compared to z – even if x was to y, and y was to z.
On the other hand, WARPD maintains the independence of irrelevant al-

ternatives (IIA) assumption inherited from classical WARP: if an alternative is
approximately optimal in a large set, it should continue to be approximately
optimal in a smaller set, provided it remains available. This encapsulates the
notion that decision-makers’ perception of an alternative as at least approximately
as good as another should remain consistent, without being influenced by the
introduction of a third option, for any given level of cognition.

Theorem 2.1 demonstrates that the combination of WOCI and WARPD is
equivalent to a cognition-dependent interval utility representation. Recall that,
given two choices, a rational decision-maker prefers one of them if and only if
it gives her strictly more utility. A cognition-dependent decision-maker will not
have a clear preference between them unless the utility difference between the two
choices is larger than a certain threshold. Moreover, the higher the cognition, the
smaller the threshold.

Specifically, given a finite set of alternatives S a rational decision-maker will
choose from S a subset C(S) where

C(S) = {x ∈ S ∶ for all y ∈ S, u(y) ≤ u(x)}, (1)

according to some real-valued function u. The cognition-dependent representa-
tion modifies the above as follows: for each level of cognition λ, the decision-maker’s
coarse, or approximate choices from S will instead be given by:

Cλ(S) = {x ∈ S ∶ for all y ∈ S, u(y) ≤ u(x) + ε(λ, x)}, (2)

where ε(λ, x) is a nonnegative threshold function satisfying certain properties (see
Definition 2.1). In particular, ε decreases in the cognition index λ, reaching 0 for
all x at some λ where this cognition is maximal and classical rationality (i.e. 1) is
restored.

Section 3 explores applications of the proposed representation, highlighting
instances where consumers’ limited cognition results in distinct forms of price
insensitivity. The first application considers two firms engaged in Bertrand compe-
tition. It is then shown that consumers’ inability to perceive minor proportional
price differences between identical goods can result in an equilibrium outcome re-
sembling those sustained through collusion. This outcome stands in stark contrast
to the traditional equilibrium ourcome whereby firms earn zero profits and price
at marginal cost. Indeed, evidence that dates all the way back to Asch and Seneca
(1975, 1976) seem to show that low-profitability, homogeneous-goods industries
seem to be more prone to collusive-like outcomes.
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In the second application, price-insensitive consumers must decide whether
or not to purchase a monopolist’s product, depending on their degree of “brand
loyalty." If the majority of consumers lack brand loyalty, then the lower the
level of cognition, the more substantial the discounts that the monopolist must
offer to attract customers. Conversely, when most consumers exhibit brand
loyalty, customers’ limited cognition benefits the monopolist. This is because, in
such scenarios, the monopolist can raise prices without experiencing a significant
reduction in demand.

Finally, this paper also contributes to the literature on fuzzy preferences and
choice. It shows that both WOCI and WARPD can be reformulated by drawing
on mathematical tools from Fuzzy Set Theory and Fuzzy Relational Theory.

A fuzzy relation is a mathematical object that assigns values ranging from 0
to 1 to ordered pairs of elements. Unlike traditional, crisp binary relations that
provide only binary (0 or 1) indications of whether elements are related or not,
a fuzzy relation allows for partial “degrees of relationship”. Specifically in this
paper, these values are taken to signify the level of difficulty the decision maker
experiences in establishing a clear preference for the second element in an ordered
pair over the first, on scale from 0 (no challenge) to 1 (infinitely challenging or
impossible).

An alternative characterization of WOCI and WARPD, and hence of cognition-
dependent representations, is provided in terms of fuzzy concepts: the individual’s
choices satisfy WARPD if and only if they can be represented by a complete
and transitive fuzzy relation between alternatives. The core idea underlying
this interpretation revolves around the notion that the decision maker’s inherent
preferences are crisp and rational, but her ability to perceive these preferences is
limited. Consequently, the introduction of the fuzzy relation R is used to quantify
her ability to discern relative rankings among alternatives.

To summarize, this paper provides two alternative, but equivalent represen-
tations of choice correspondences that are affected by cognition, as formalized
by WARPD; first, per Theorem 2.1, via the cognition-dependent representation
in Equation 2; second, in terms of a complete and transitive fuzzy relation, per
Theorem 4.1.

The paper is organized as follows. Section 2 discusses the characterization of
choice data augmented by cognitive covariates, focusing on the WOCI/WARPD
axioms and their equivalence to the cognition-dependent representation. Section 3
explores the applications. Section 4 introduces key concepts of fuzziness, including
fuzzy relations, fuzzy choice, and fuzzy rationalizability. It concludes with the
equivalence result between WOCI/WARPD and fuzzy rationalizability. Section 5
contains extensions, including a stronger form of WARPD that imposes WARP
that precludes intransitive indifferences. Section 6 reviews and discusses the
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relevant literature. Finally, Section 7 concludes.
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2 Setup and characterization

2.1 Choices and cognition

Fix a finite set X of alternatives, and let S denote the set of nonempty subsets of
X.

Choice data consists of a family of choice correspondences Cλ ∶ S Ð→ S, indexed
by λ ∈ Λ. Each λ represents a cognition index, interpreted as the amount of mental
energy exerted by the decision maker in the process of choosing. Clearly, the
analyst cannot observe cognition directly. Nevertheless, we deem it possible to
at least identify certain covariates indicative of the decision-maker’s mental state
and ability to exclude suboptimal options from her chosen set. These covariates or
descriptors could be obtained, for example, through a survey (inquiring directly or
indirectly about the decision-maker’s general mental state), performance measures
(e.g. reaction times) or through environmental characteristics (e.g. level of noise,
abundance of concurrent visual stimuli, pollution, time of day, etc).

Axiom 1 (stated below) imposes the necessary constraints that these indices
must adhere to. Intuitively, we want to be able to rank cognition indices so that
higher cognition means smaller, more selective choice correspondences and lower
cognition implies larger, less selective ones.

To make this notion precise, given S ∈ S and λ ∈ Λ, let Cλ(S) denote the
decision-maker’s choice correspondence from S at λ, i.e. the set all alternatives
regarded as undominated out of S, when judged at λ.

Axiom 1 (Weak Ordering of Cognition Indices (WOCI)). For all S, T ∈ S and all
λ, λ′ ∈ Λ,

(i) Nestedness. Cλ(S) ⊆ Cλ′(S) or Cλ′(S) ⊆ Cλ(S).

(ii) Consistency. Cλ(S) ⊊ Cλ′(S) only if Cλ(T ) ⊆ Cλ′(T ).

Define the relation ≥ on Λ as follows: λ′ ≥ λ if, and only if, Cλ′(S) ⊆ Cλ(S) for
all S ∈ S. Note that Nestedness and Consistency guarantee that ≥ is a weak order
(See Appendix A.1). Moreover, these two properties imply that “higher” indices
generate smaller choice sets, i.e. the decision maker is increasingly discriminating
or selective. It is in this sense that a higher cognition index means that more
mental effort was put into the choice.

To illustrate this concept, consider the decision maker’s task of shopping for
a pack of dry spaghetti pasta at the supermarket. Under a level of cognition λ,
perhaps due to her being “in a hurry on a Monday morning”, the decision maker
perceives most options on the shelves as acceptable, with perhaps a few exceptions
(such as gluten-free and plant-based options). Due to her busy schedule and
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external preoccupations, she is likely to quickly pick one arbitrarily out of a large
set of seemingly undominated options, and move on. On the other hand, at a level
of cognition λ′, where she is “well-rested with no other commitments”, the decision
maker has time and examines the shelves more carefully, considering factors such
as recipe choices, organic options, and artisanal brands. Her set of desirable
options is now narrower than in λ. Since Cλ′(S) ⊊ Cλ(S) (S for spaghetti), we can
conclude that λ′ > λ, as the state of being well-rested and having no commitments
is associated with higher cognition than being in a hurry on a Monday morning.

Note that, since each S ⊆X is finite, Λ can be partitioned into a finite number
of strictly ordered equivalence classes. In particular, this implies that there
exists a ≥-maximal state and a ≥-minimal state, denoted by λ and λ, respectively.
Importantly, for all S ∈ S, Cλ(S) ⊆ Cλ(S) ⊆ Cλ(S). That is, λ (and any equally
ranked state) corresponds to the maximum amount of selectivity the decision
maker can express through her choices, whereas λ represents the minimum.

Consequently, in what follows, the set Λ will be condensed into an ordered,
finite set of indices – each representing an equivalence class. Denote the lowest
index as λ and the highest as λ. Additionally, to simplify notation, assign real
numbers in the interval [0, 1] as labels to the indices in Λ, preserving the usual
order of real numbers to reflect the order of indices implied by WOCI. In other
words, let Λ = {λ0, λ1, . . . , λn} with each λi ∈ [0, 1] and λ = λ0 < λ1 < ⋅ ⋅ ⋅ < λn = λ.
Finally, also let λ = 0 and λ = 1 without loss of generality.

2.2 WARP and WARPD

The theory of rational choice assumes decision-makers behave according to well-
defined, consistent preferences, expressed in the form of pairwise comparisons
between options. Mathematically, these comparisons are encoded by a binary
relation ≿ defined on the set of alternatives X, with statements of the sort x ≿ y

and read as “x weakly preferred to y”, or “x is not worse than y”. The concept of
rationality then is taken to mean that the relation ≿ is complete (either x ≿ y or
y ≿ x) and transitive (if x ≿ y and y ≿ z, then x ≿ z).

One of the fundamental results in economic theory establishes that a unique
rational ≿ can be revealed from observed choices if, and only if these choices
satisfy the Weak Axiom of Revealed Preference (WARP), restated below for a
(cognition-independent) choice correspondence C ∶ S Ð→ S.

Axiom 2 (Weak Axiom of Revealed Preference (WARP)). For all x, y ∈X and
all S, T ∈ S with {x, y} ⊆ S ∩ T ,

If x ∈ C(S) and y ∈ C(T ), then x ∈ C(T ). (3)
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In this standard rationality framework, agents are always maximally selective,
in that there is nothing to be refined or discovered regarding the decision-makers’
own preferences and choices. Thus, cognition does not matter, and C ≡ Cλ for all
λ. This is clearly no longer true if WOCI has any bite, that is, if Cλ(S) ≠ Cλ′(S)
for some λ, λ′ ∈ Λ and S ∈ S.

To capture the partial resolution of preferences discussed in the Introduction,
WARP is retained only at λ; each Cλ will then increasingly depart from Cλ as
λ decreases. Thus, at λ, the decision maker acts according to standard rational
preferences – interpreted as her “true”, unobscured tastes. At λ < λ, however, she
is only approximately rational, in the sense described by the following alternate
axiom, imposed on the family of choice correspondences C ∶= {Cλ ∶ λ ∈ Λ}.

Axiom 3 (Weak Axiom of Revealed Preference Difficulty (WARPD)). For all
λ ∈ Λ, x, y ∈X and S, T ⊆ S with {x, y} ⊆ S ∩ T ,

x ∈ Cλ(S), y ∈ Cλ(T ) Ô⇒ x ∈ Cλ(T ) and y ∈ Cλ(S). (4)

The discussion on revealed preference shall be postponed to section 4. Instead,
below the analysis will focus on the interpretation and direct consequences of
WARPD, and particularly how it differs from WARP.

Although WARP and WARPD share similarities, they only coincide when the
cognition index is maximal (i.e. at λ). WARP states that, if x is chosen from
a set S that also contains y, and y is chosen from a set T that also contains x,
then x must be chosen from T and y must be chosen from S. On the other hand,
under WARPD, the conclusion only holds if x is chosen from S also at λ. In other
words, if x is the rational benchmark, or true preference-optimizing alternative
in S, and y ∈ S is perceived as undominated in a set T at a cognition index of λ,
with x ∈ T , then two things must be true. First, y cannot be that much worse
than x (otherwise it would not be undominated in T , since T contains x) and
thus y is not that far off from the true optimum of S. That means y should also
be undominated in S at λ. Second, because x is the true optimum of a set that
contains y, then x is not worse than y in the rational benchmark. And, if at λ, y

is “good enough” in T , then x must be at least that – i.e., at that cognition index
of λ, x must also be undominated in T .

The interpretation of WARP is usually facilitated by its decomposition into
two properties, commonly known in the literature as Sen’s α and β. The following
proposition is the classical equivalence between WARP and Sen’s α and β properties,
reproduced below for clarity of the exposition.

Proposition 2.1. WARP holds if and only if C ∶ S Ð→ S satisfies

(i) α (independence of irrelevant alternatives): For all S, T ∈ S with
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S ⊆ T , and x ∈ S,
x ∈ C(T ) Ô⇒ x ∈ C(S).

(ii) β: For all S, T ∈ S with S ⊆ T , x, y ∈ C(S),

y ∈ C(T ) Ô⇒ x ∈ C(T )

Sen paraphrases α as: if the world champion of a given competition is Pakistani,
then she must also be the national champion of Pakistan.

The paraphrasing of β goes as follows: if the world champion happens to be
Pakistani, then all national champions of Pakistan are also world champions.

A similar decomposition exercise can be performed with WARPD, as given in
the following proposition.

Proposition 2.2. WARPD holds if and only if C satisfies

(i) α (independence of irrelevant alternatives): For all λ ∈ Λ S, T ∈ S
with S ⊆ T , and x ∈ S,

x ∈ Cλ(T ) Ô⇒ x ∈ Cλ(S).

(ii) λβ: For all λ ∈ Λ, S, T ∈ S with S ⊆ T , x, y ∈ Cλ(S),

y ∈ Cλ(T ) and [x ∈ Cλ(S) or y ∈ Cλ(T )] Ô⇒ x ∈ Cλ(T ).

Note that α holds unchanged at every index λ, implying cognition-dependent
choices preserve IIA and comprise of a particular generalization of β.

To use Sen’s analogy, our α property can be expressed as follows: if a Pakistani
achieves podium placement in the international edition of a competition, then she
must also secure podium placement in the Pakistani edition.

Regarding λβ, this property can be understood as follows: if a Pakistani
attains the title of world champion, then everyone who secured podium positions in
Pakistan must also be among the podium finishers in the world games. Conversely,
if a Pakistani achieves podium placement in the world games (without necessarily
being the world champion), then the champion of Pakistan must be among those
podium finishers.

To further fix ideas, the next two examples showcase situations where (i) WARPD
(but not WARP) holds for λ < λ, (ii) neither WARP nor WARPD holds.

Example 2.1 (WARPD holds, but not WARP). Consider again the situation
described in Example 1.1. Note the violation of Sen’s β at cognition index λ1:
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b, c ∈ Cλ1({a, b, c}) but c /∈ Cλ1({a, b, c}): c is dominated by a in {a, b, c}, while b

is not.
WARPD still holds, however. Because b /∈ Cλ({a, b, c}) and c /∈ Cλ({b, c}), the

λβ property (unlike β) does not impose that c must be in Cλ1({a, b, c}). ◊

Example 2.2 (WARPD does not hold). Suppose that you are deciding between
three vacation packages: Rome (r), Rome (but $100 cheaper) (c, for cheap) and
Paris (p).

At the maximal level of cognition λ, you would choose:

Cλ({p, r}) = {p}
Cλ({r, c}) = {c}
Cλ({p, c}) = {p}

Cλ({p, r, c}) = {p},

i.e. you prefer the Paris vacation, followed by the cheap Roman vacation, and the
expensive Roman vacation comes in last.

Now, suppose that you spend less cognition on this decision. It might be clear
to you that c is better than r, but comparing either Roman vacation with the
Parisian vacation is more complicated. Thus, your choices might follow:

Cλ({p, r}) = {p, r},
Cλ({r, c}) = {c},
Cλ({p, c}) = {p, c},

Cλ({p, r, c}) = {p, c}.

In this case, WARPD – and in particular, λβ – is violated: p, r ∈ Cλ({p, r}),
p ∈ Cλ({p, r, c}), but r /∈ Cλ({p, r, c}).

WARPD fails in this case because it does not capture the fact that certain
comparisons are easier due to how they are presented. In the case above, the
two Rome vacations are identical, except that one costs $100 less. That makes a
dominance relationship between these two very easy to perceive. This would not
necessarily be true anymore if, for example, both Rome vacations came instead
bundled with complicated, difficult to parse assets that nevertheless corresponded
to the same r and c.

WARPD does not account for such presentation effects. Instead, is designed to
capture situations where eliminating the rational-benchmark lowest-ranked options
from the choice correspondence takes less cognition than eliminating alternatives
that are ranked higher and thus closer in ranking to the true optimum. ◊
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2.3 Cognition-dependent representation

We know that WARP holds if and only if there exists a unique and rational ≿ such
that, for all S ∈ S, C(S) = {x ∈ S ∶ x ≿ y for all y ∈ S}. Furthermore, if X is finite,
WARP is also equivalent to the existence of a function u ∶X Ð→ R such that, for
all S ∈ S,

C(S) = {x ∈ S ∶ for all y ∈ S, u(y) − u(x) ≤ 0}. (5)

The representation that will be equivalent to WARPD (in Theorem 2.1), on
the other hand, must capture the “approximate rationality” of the cognitively-
constrained decision-maker. This is indeed going to be a clear feature of the
representation in Definition 2.1 below.

Definition 2.1 (Cognition-dependent representation). Given a set of cognition
indices Λ ⊆ [0, 1] with λ = 1 ∈ Λ, the family C ∶= {Cλ ∶ λ ∈ Λ} admits a cognition-
dependent representation if and only if, there exist functions u ∶ X Ð→ R and
ε ∶ Λ ×X Ð→ R+ such that, for all S ∈ S,

Cλ(S) = {x ∈ S ∶ for all y ∈ S, u(y) − u(x) ≤ ε(λ, x)}, (6)

with (i) for all x ∈ X, ε(λ, x) = 0, (ii) for all x ∈ X, ε(⋅, x) is non-increasing, and
(iii) for all x, y ∈X, λ ∈ Λ, u(x) ≥ u(y) Ô⇒ u(x) + ε(λ, x) ≥ u(y) + ε(λ, y). ◊

The representation in 2.1 allows an item x to be chosen from a set S as
long as its rational benchmark utility u(x) is within a threshold ε(λ; x) of the
true optimum in S. Furthermore, as the threshold decreases with increasing λ,
and hence cognition, the decision-maker’s choices become closer to the rational
benchmark.

Example 2.3 revisits the scenario presented in the Introduction (Example 1.1)
to illustrate the mechanics of the representation in Definition 2.1.

Example 2.3. Recall that Xavier’s conclusions at the maximal cognition index
are that a ≻ b ≻ c ≻ d ≻ e, which can be represented by any utility function u

satisfying u(a) > u(b) > u(c) > u(d) > u(e).
At λ0 (the first scenario), where Xavier only has a few seconds to consider each

movie, he determines that e is the least preferred option. Using the representation
in 2.1, this means that u(◻)−u(e) > ε(λ0, e) for all ◻ ∈ a, b, c, d, and for any ○ also
in a, b, c, d, u(◻) − u(○) ≤ ε(λ0, ○).

At the higher cognition index λ1 > λ0, the thresholds shrink in size. While
Xavier cannot have “unnoticed” or “forgotten” that e is his least preferred movie,
he can now distinguish that a is superior to both c and d, resulting in u(a)−u(c) >
ε(λ1, c) and u(a)− u(d) > ε(λ1, d). However, movie b is still perceived as similarly
enjoyable to movie a at index λ1: u(a) − u(b) ≤ ε(λ1, b). Furthermore, movie b is
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u(e) u(d) u(c) u(b) u(a)

ε(λ0, e) ε(λ0, d)

ε(λ0, c)

ε(λ0, b)

ε(λ0, a)

Figure 1: Each alternative’s rational benchmark utility is represented in the bottom
axis, where we see that u(a) > u(b) > u(c) > u(d) > u(e). The thresholds ε for each
of the five alternatives appear above the axis, represented as segments with length
corresponding to the threshold magnitude at λ0. Note that u(◻) − u(e) > ε(λ0, e)
for all ◻ ∈ a, b, c, d, and for any ○ also in a, b, c, d, u(◻) − u(○) ≤ ε(λ0, ○).

also perceived as similarly enjoyable to both c and d: u(y) − u(c) ≤ ε(λ1, c) and
u(b)− u(d) ≤ ε(λ1, d). Therefore, perceived enjoyment is not necessarily transitive
at acognition index λ < λ, as full rationality is not guaranteed to hold.

Finally, at λ, rationality is restored and the full ranking is revealed as all
thresholds collapse to zero. ◊

2.4 Equivalence

The main theorem that relates cognition-dependent choice behavior and utility
can now be stated:

Theorem 2.1. The family C satisfies WARPD and WOCI if and only if it admits
a cognition-dependent representation.

The full proof of the Theorem above can be found in appendix A.1.

2.5 Discussion: WOCI, WARPD and evidence

Direct evidence for WOCI and WARPD is difficult in large part due to the well-
known challenges in observing non-singleton choice correspondences (Bouacida,
2021, Balakrishnan et al., 2022). Nevertheless, there is an indication that the
contraction of choice correspondences via cognition occurs in certain circumstances,
as evidenced by the experimental results reviewed in this section.
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u(e) u(d) u(c) u(b) u(a)

ε(λ1, e) ε(λ1, d)

ε(λ1, c)

ε(λ1, b)

ε(λ1, a)

Figure 2: As we move to λ1, all thresholds shrink in size Note that, now, u(a) −
u(c) > ε(λ1, c) and u(a)− u(d) > ε(λ1, d) – indicating that Xavier now perceives a
strict preference of a over both c and d, in addition to e.

u(e) u(d) u(c) u(b) u(a)

ε(λ, e) = 0 ε(λ, d) = 0

ε(λ, c) = 0

ε(λ, b) = 0

ε(λ, a) = 0

Figure 3: At λ, rationality is restored, as the thresholds collapse to zero.
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2.5.1 Information treatments

Bouacida (2021) is concerned with the experimental elicitation of choice correspon-
dences. In his experiment1, participants were presented with four different paid
tasks and had to choose between them. These were an addition task (labeled “1”),
a spell-check task (“2”), a memory task (“3”) and a copy task (“4”). Subjects made
choices for all subsets of tasks. At the end of the session, participants had then
three minutes to earn as much as possible by performing one randomly chosen task
from their selected set in one of the choice tasks they had performed previously.

The experiment included three treatments to investigate the influence of
the information provided on the size of chosen sets. In the sentence treatment,
participants were given a vague description of each one the tasks. In the video
treatment, participants first received the sentence treatment, followed by a video
that explained each task in more detail, demonstrating the interface and specific
instructions. Finally, in the training treatment, participants went through the
video treatment, followed by a 1-minute training session on each task before making
their choices.

Note that the quantity of information increased across treatments: the sentence
treatment provided the least information, followed by the video treatment, and
the training treatment offered the most detailed information. The ranking of these
information treatments mirrors this paper’s notion of ranked cognition levels from
WOCI. Our “identifying assumption” is to interpret “higher cognition” as being
“better informed” about one’s true preferences. This interpretation is valid in
situations where the information provided includes only details useful for breaking
ties between similarly desirable options.2

Notably, the experiment does not feature the same individual making deci-
sions under distinct information treatments. Because of this we cannot verify
WOCI3 directly at the level of the individual. In the aggregate, though, we may
observe whether a higher information treatment mean, on average, smaller choice
correspondences. There is indeed evidence in support of this; in particular, across
all choice tasks, the proportion of singleton choice correspondences was 33.47%
for the sentence treatment, 45.34% for the video treatment and 46.56% for the
training treatment. Similarly, the proportion of completely unselective choice
correspondences (i.e. such that all available tasks were selected) was 46.83% for
the sentence treatment, 34.99% in the video treatment and 31.57% in the training
treatment.

1The experiment mentioned in this section was produced in the Laboratoire d’Economie
Experimentale de Paris, with the support of two ANR projects: CHOp (ANR-17-CE26-0003)
and DynaMITE (ANR-13-BSH1-0010) and Labex OSE (10-LABX-0093). Subjects were recruited
using Orsee (Greiner, 2004, 2015); zTree was used for the experimental part (Fischbacher, 2007).

2See Appendix A.3 for further discussion on a cognition versus informational approach.
3Or WARPD, introduced later, for that matter.
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A similar result holds if we consider the number of revealed indifference relations
in the data. The data indicates an average of 2.26 indifferences for the sentence
treatment, 1.38 for the video treatment and 1.49 for the training treatment.

Bouacida (2021) performs a similar analysis and compares the number of
indifferences per treatment type (See Figure 6 in Bouacida (2021)). He also notes
that more information overall leads to less indifference, though he observes that
the prevalence of indifferences seems to be quite heterogeneous between subjects.

Supplementary tables containing data on the proportion of participants choos-
ing, for each S ⊆ {1, 2, 3, 4}, all possible T ⊊ S and its proper subsets are available
in appendix A.2.

2.5.2 Transient budget contraction

Ross et al. (2020) reason that, in the face of a financial setback, consumers undergo
a prioritization process, in which they think more deeply and carefully about what
is it that they value most and least. Consequently, individuals who have dealt with
a budget contraction should exhibit refined preferences compared to those who have
not experienced such a setback. From an empirical standpoint, one would expect
that consumers who have encountered a budget contraction and subsequently had
their budget restored to display fewer unique items in their post-contraction choice
sets, compared to what they initially had in their pre-contraction choice sets.

In line with this explanation and using the language of current paper, this
would mean that a budget contraction, even if transitory, causes consumers to
employ higher levels of cognition to their choices by bringing the trade-offs they
face to the forefront.

To support this claim, Ross et al. (2020) conducted a series of experiments
in which participants were tasked with allocating a finite resource (e.g., time,
space, or money) across various options before, during, and after an exogenously
imposed temporary contraction in the available amount of the finite resource.
For instance, in the initial experiment, participants were prompted to envision
planning a vacation to Europe and then distribute 21 travel days among 12 cities.
Subsequently, the travel time contracted to 7 days before returning to the original
21. The findings indicate that, overall, participants significantly allocated the
21 travel days to fewer cities when performing the distribution post-contraction
(8.97 cities on average) compared to the pre-contraction allocation (9.39 cities).
Additionally, for most participants, the cities that were cut during the contraction
were the ones that most experienced a reduced share in the final allocation. This
is suggestive of WOCI: if an alternative gets cut during the budget contraction,
then that means the decision-maker realized that it was less valuable than other
available options. This realization means that, once the budget is restored, the
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decision-maker should not choose as much of it as before.
Similar experiments were conducted where participants had to allocate veg-

etable varieties to planting rows, money to shore excursions while on a cruise
and tokens to a variety of Easter candies (See Table 1 in Ross et al. (2020) for a
summary of their experimental results). In all cases, post-contraction allocation
sets were in general narrower, as WOCI would predict.

3 Examples and applications

This section analyzes two applications of the cognition-dependent representation,
highlighting in particular instances where consumers’ limited cognition results in
distinct forms of price insensitivity.

3.1 Collusive outcomes in Bertrand duopolies

Asch and Seneca (1975, 1976) have noted that low-profitability firms producing
undifferentiated goods seem to be more prone to collusive outcomes. The explana-
tion offered by the authors is that unsatisfactory levels of profit may push firms
into collusive agreements.

Here we explore a different mechanism through which producers of undif-
ferentiated goods competing solely on prices in a low-profitability sector might
induce collusive outcomes. Importantly, what drives the result is consumers’ low
cognition applied to choice tasks between similarly priced items. Thus, in this
case, collusive outcomes may emerge without producers having to engage in a
collusion agreement.

Consider two firms i = 1, 2, each producing identical units of a good x, which
are then sold to a unit mass of consumers. The marginal cost of production is
constant and equal to c > 0.

Each consumer has a maximum budget of w > c to spend on the good, and will
purchase a single unit from only one of the two firms. Let xi denote the product
of firm i. Since the product offerings are undifferentiated, a consumer employing
maximal cognition will succeed in identifying and choosing the lowest-priced
option:4

Cλ({x1, x2}) = {xi, i ∈ {1, 2} ∶ pi − pj ≤ 0 for all j ∈ {1, 2}}.

The setting described above yields a unique equilibrium where both firms set
p1 = p2 = c. Any price set above marginal costs invites each participating firm to
marginally undercut the other in hopes of capturing the entire market.

4If p1 = p2, assume the tie is broken using a coin flip.
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However, this assumes consumers react to any ε > 0 price differential, no matter
how small. This type of behavior is known to be generally false – a rule-of-thumb
described in marketing, for example, states that consumers only seem to react to
price differentials of around 20% or more (e.g. Henderson Britt (1975), Kamen
and Toman (1970)).

Incorporating this observation into the example, consider then that xi is chosen
if and only if (pi − pj) ≤ (1 − λ)pj , where (1 − λ) denotes the proportional price
differential necessary to trigger a decisive reaction (e.g. 0.2):

Cλ({x1, x2}) = {xi, i ∈ {1, 2} ∶ pi − pj ≤ (1 − λ)pj for all j ∈ {1, 2}}. (7)

Note that Cλ({x1, x2}) = {x1, x2} whenever p2/(2 − λ) ≤ p1 ≤ (2 + λ)p2. For these
values, both options are acceptable choices. In this case, assume consumers pick
one by flipping a (fair) coin.5

If λ < 1, p1 = p2 = c is no longer an equilibrium: if pi = c, then firm j would
prefer to increase their prices slightly, as this would go unnoticed by the consumers.

In fact, if potential margins are sufficiently low, i.e. w > c ≥ wλ/(2 − λ), the
unique equilibrium is now at p1 = p2 = w, as the proposition below shows.6

Proposition 3.1. Assume consumers select an alternative by uniformly picking
an element of Cλ({x1, x2}). If (w− c) ≤ (2/λ)(1−λ)c, then the unique equilibrium
is at p1 = p2 = w.

The proof can be found in appendix A.4. Intuitively, if margins are sufficiently
low, it is not worth it for the competing firms to undercut each other, since
marginal price cuts are ineffective in acquiring market share, and larger price cuts
would be too costly.

Note that the lower the λ, the higher the potential margins (w−c) are allowed to
be while still sustaining the collusive outcome. This too is intuitive. If consumers
are less perceptive of price differentials, then undercutting becomes costlier –
because an even higher cut is necessary.

3.2 Monopolist pricing and brand loyalty

The example in this section involves adding an inertia behavioral assumption à
la Bewley (Bewley, 2002). Suppose a monopolist introduces a new product to a

5An implicit assumption here is that, if consumers are behaviorally indifferent between x1 and
x2, then they are also behaviorally indifferent between x1, x2 and any lottery that randomizes
between x1 and x2.

6Note that the tie-breaking rule has bite, because whatever profit-sharing occurs when the
consumer is indifferent now matters for a measurable range of values. Specifically, if α < (1 − α)
is the proportion of customers that purchase xi whenever there is a tie, then p1 = p2 = w is still
the unique equilibrium if w ≥ c ≥ w[(1 − α)/α − (1 − λ)]/(2 − λ), provided λ ≤ 1 − (1 − 2α)/(2α).
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unit mass of consumers. If these consumers have no previous experience with the
product, then they are likely to be hesitant to make a purchase, unless the benefits
from doing so clearly outweigh the costs. On the other hand, customers who are
accustomed to purchasing a particular product might continue to do so, unless
there is a noticeable decrease in quality or an increase in price that makes this
status quo too disadvantageous.

Note that inertia plays a role precisely because cognitively-constrained con-
sumers may be behaviorally indifferent.7 What follows show that this simple
behavioral postulate interacts with cognition-dependent choice, and leads to non-
monotonicity in the prices.

Formally, consider a monopolist that produces a certain good at zero marginal
cost. There is a unit mass of potential customers, indexed by a parameter v ∈ [0, 1].
Each consumer has two options available to choose from: they can either buy
or not buy. At a maximal level of cognition, buying the monopolist’s product
yields utility u(v, buy) = v − p, where p is the price selected by the monopolist. By
contrast, not buying yields u(v, not buy) = 0.

Fix Λ ⊆ [0, 1], with 1 ∈ Λ, and let the usual ordering of real numbers also
represent the order of cognition indices. Following the cognition-dependent rep-
resentation of 2.1, let ε(λ, buy) = ε(λ, not buy) = 0 and, for lower cognition, let
ε(λ; buy) = (1 − λ)2 and ε(λ; not buy) = (1 − λ). Note that the inertia associated
with not buying is stronger than the one for buying, since ε(λ; not buy) > ε(λ; buy)
for all λ ∈ (0, 1). We then have that a consumer with value v facing a price of p

will have the following choice correspondence:8

Cλ(v, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{buy, not buy} if − (1 − λ)2 ≤ (v − p) ≤ (1 − λ)

{buy} if (v − p) > (1 − λ)

{not buy} if (v − p) < −(1 − λ)2.

Whenever p − (1 − λ)2 ≤ v ≤ p + (1 − λ), a consumer’s choice correspondence
contains both alternatives. To break this tie, consider a threshold-type rule: given
an exogenous threshold type v ∈ [0, 1], a consumer with −(1−λ)2 ≤ (v−p) ≤ (1−λ)
will pick “buy” if v ≥ v and “not buy” if v < v. The idea is to interpret v as the
lowest type that purchased the product in a past decision. If the product is newly
introduced (so that no one has any experience with it), we can think of v as 1.

7This contrasts with Dean et al. (2017), for example: in their paper, the underlying preferences
change to favor the status quo.

8In order to maintain property (iii) of the cognition-dependent representation, the thresholds
defined would have to depend on whether v − p ≥ 0 or v − p < 0. To fully comply with the
representation, it suffices to tweak the threshold definitions as follows: ε(λ; buy) = 1{v−p≥0}(1−λ)2
and ε(λ; not buy) = 1{v−p≤0}(1 − λ). This change does not affect the choice correspondences,
which is why it was omitted from the main text.
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Monopolist’s problem. The monopolist chooses a price to maximize profits.
Let p∗(λ, v̄) denote the optimal price; it then must solve:

p∗(λ, v̄) = argmaxp π(λ, v̄; p),

where π(λ, v̄; p) is the profit function given by

π(λ, v̄; p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(λ − p)p if v ≥ p + (1 − λ)

(1 − v)p if p + (1 − λ)2 ≤ v ≤ p − (1 − λ)

(1 − p + (1 − λ)2)p if v ≤ p − (1 − λ)2.

(8)

It is easy to see that p∗(1, v) = 1/2 and π(1, v; 1/2) = (1/2)2 = 1/4 regardless of
v̄. That is, if cognition is maximal, consumers act as pure utility maximizers; as a
result, the product is sold to the one-half of consumers that value the good above
its price of 1/2. These conclusions however change once we allow λ to take values
in (0, 1).

Proposition 3.2. For each λ ∈ (0, 1), there exist thresholds vλ and vλ ∈ (0, 1)
with vλ < vλ, such that the monopolist’s optimal prices p∗(λ, v) satisfy:

p∗(λ, v̄) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1+(1−λ)2
2 if v ∈ [0, vλ],

v + (1 − λ)2 if v ∈ (vλ, vλ),
λ
2 if v ∈ [vλ, 1].

(9)

Moreover, the optimal profit π∗(λ, v̄) ∶= π(λ, v̄; p∗(λ, v̄)) is continuous in v̄ and
satisfies:

π∗(λ, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1+(1−λ)2
2 )

2
if v ∈ [0, vλ],

(v + (1 − λ)2)(1 − v) if v ∈ (vλ, vλ),

(λ
2 )

2 if v ∈ [vλ, 1].

(10)

As direct consequences of the proposition above, we have:

Corollary 3.2.1. The following properties hold:

• For v ≤ vλ, p∗(λ, v) is constant and above p∗(1, v) = 1/2; π∗(λ, v) is constant
and above π∗(1, v) = 1/4.

• For v ≥ vλ, p∗(λ, v) is constant and below p∗(1, v) = 1/2; π∗(λ, v) is constant
and below π∗(1, v) = 1/4.

• For vλ < v < vλ, p∗(λ, v) is strictly increasing and linear in v, whereas
π∗(λ, v) is strictly decreasing in v.
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Figure 4: Profits for a monopolist given v, for different levels of consumers’ choice
effort λ.

The graphs shown in Figures 4 and 5 display optimal prices and profits as
functions of v, for different levels of consumer cognition λ. If v is low, most
consumers will be inclined to buy the monopolist’s product, even when indifferent.
In this case, the monopolist benefits from consumers’ low cognition, as price
hikes above 1/2 have but a limited negative impact on overall demand. Thus
p⋆(λ, v) > p⋆(1, v) = 1/2 and π⋆(λ, v) > π⋆(1, v) = 1/4. Conversely, when v is high,
consumers are less prone to buy the product. This means that the lower the
cognition, the larger the necessary price cuts must be to convince consumers to
buy: in this case, p⋆(λ, v) < p⋆(1, v) = 1/2 and π⋆(λ, v) < π⋆(1, v) = 1/4.

This simple framework provides an explanation as to why a monopolist might
choose to offer coupons, discounts, free shipping or other similar marketing tech-
niques, especially when just introducing a product that customers might be
unfamiliar with. The model also suggests that, in those cases, the monopolist
would prefer consumers’ cognition to be high, which could also suggest the employ-
ment of informative advertising targeting potential consumers in contexts where
they are likely to be more alert.

3.2.1 Multiple periods

The model introduced above can the applied to a dynamic setting where prices
set today may affect the inertial option for consumers in subsequent periods. To
simplify the discussion, consider the following simplification of the consumers’
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Figure 5: Prices for a monopolist given v, for different levels of consumers’ choice
effort λ.

payoff structure from the static setting. As before, let u(v, buy) = v − p and
ε(λ, not buy) = (1 − λ)); however, let ε(λ, buy) = 0. That is, assume there is
no positive buying inertia: consumers stop buying as soon as the surplus turns
negative.9

Time is discrete and indexed by t = 1, 2, . . . , T . Suppose there are a total of T

periods. Consumers will purchase at most one unit of the good per period. The
subscript of t added to the variables and parameters indicates the period they
are perrtinent to. Specifically, the threshold types should be period-specific and
endogenously determined as follows. Let v̄1 = 1 and v̄t be defined recursively by

v̄t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pt−1 + (1 − λ) if vt−1 > pt−1 + (1 − λ)

vt−1 if pt−1 ≤ vt−1 ≤ pt−1 + (1 − λ)

pt−1 if vt−1 < pt−1.

(11)

i.e. v̄t is the lowest type that purchased the product at t − 1.
Similar to before, period t’s profits are given by:

πt(λ, v̄t, pt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(λ − pt)pt if vt ≥ pt + (1 − λ)

(1 − v)pt if pt ≤ vt ≤ pt + (1 − λ)

(1 − pt)pt if vt ≤ pt.

(12)

9To comply with (iii), in reality let ε(λ, not buy) = 1{v−p≤0}(1 − λ)).
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We use p∗t (λ), v̄∗t to denote, respectively, the optimal prices and thresholds for
the monopolist. We also define the cumulative profits

Π∗(λ) ∶=
T

∑
t=1

πt(λ, v̄∗t , p∗t (λ)).

Proposition 3.3. When T = 1, the optimal price is given by p∗1(λ) = λ/2, and
profits are Π∗(λ) = λ2/4.

When T ≥ 2, p∗1(λ) = λ−1/2 and p∗t (λ) = 1/2 for all t ∈ {2, . . . , T}. Total profits
are given by Π∗(λ) = λ(λ − 1/2) + (T − 1)1/4.

If T = 1, then the solution is identical to the solution of the static setting.10

When there are subsequent periods, however, p∗1(λ) = λ − 1/2 < λ/2. In both
instances, prices fall below the rational benchmark as the monopolist tries to
overcome consumer inertia with substantial discounts. When brand loyalty develops
over time, however, initial prices decrease even further, as doing so not only attracts
current-period customers but also enhances consumers’ propensity towards future
product purchases.

Note that p∗1(λ) = λ − 1/2 can be negative if λ is sufficiently low, as the
monopolist is willing to trade-off short-term profitability to encourage brand
adoption.

Because the thresholds for buy are always zero, a price of 1/2 and a per period
profit of 1/4 is the best that the monopolist can achieve. By setting p∗1(λ) so low,
it manages to maximize per-period profits from period 2 onward.

4 Revealed fuzzy preferences

In this paper, the choice correspondence depends on the cognition of the decision
maker at the moment of choice. Consequently, our objective is not only to uncover
the decision maker’s fundamental preference hierarchy, but also to quantify the
ordinal level of cognitive challenge they experience when distinguishing between
any two options. These dual aspects of preferences can be effectively represented
and analyzed by means of fuzzy sets and fuzzy relations theory.

The theory of fuzzy sets is a field of mathematics pioneered by Zadeh (1965),
and with more recent applications to control systems (Nguyen et al., 2019), image
processing and pattern recognition (Chi et al., 1996), expert systems (Yager, 1992,
Sikchi et al., 2013), among others.

10The modification in the thresholds here does not affect the optimal price for v̄ high, because
only the top part of the indifference region matters for those values.
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As this section illustrates, the model introduced in this paper lies within a
broader framework where the concept of rational decision making is extended to
fuzzy environments.

4.1 Fuzzy set theory and fuzzy relations

Unlike classical set theory, where an element either fully belongs to a set or does
not belong at all, fuzzy set theory introduces the notion of partial degrees of
membership. This approach in practice allows for the representation of certain
types of imprecise or vague information in a structured manner.

The degrees of membership are typically represented by elements in the interval
[0, 1]. Then, 0 represents complete non-membership, 1 signifies full membership,
and values in between express varying degrees of partial membership. As an
illustration, consider the set "Tall" for individuals’ heights. In classical set theory,
one might establish a threshold height, say 5’10”, to separate those who are “tall”
from those who are not. In contrast, fuzzy set theory suggests that the concept
of “tallness” is not inherently binary. It allows for the assignment of partial
membership degrees to individuals’ heights, indicating their vague level of tallness.
For instance, an individual with a height of 6’0” might have a membership degree
of 0.7 in the set "Tall," implying a somewhat tall stature, while a person standing
at 5’6” might receive a membership degree of 0.3, signifying a less pronounced but
nonzero degree of “tallness”.

The example above suggests how the membership grades of fuzzy sets can be
seen as assessments of the extent to which an element encapsulates the attributes
delineated by a set characterized by vagueness or imprecision. In the illustration
above, this vagueness arises as a consequence of our linguistic imprecision: the
descriptor “tall”, in particular, lacks a well-defined mathematical formulation.

The degrees of membership characteristic of fuzzy sets can also have other
interpretations. For instance, the degree of membership of an element in a fuzzy
set can signify the extent of similarity between the element and the prototype or
ideal representation of the set. Other alternative interpretations involve degrees of
plausibility, belief and/or truth assessments (Zadeh, 1971, Liu and Kerre, 1998,
Shimoda, 2002).

The interpretation most useful to us is however that of granularity. It relates
to how finely or coarsely the set categorizes elements based on their attributes
or characteristics. To illustrate this concept, Figure 6 depicts an identical image
of a circle at four distinct resolutions, ranging from the lowest quality (panel 6a)
to the highest (panel 6d). It becomes readily apparent that point A lies outside
the boundaries of the circle, and point B falls within them. These distinctions
remain even when examining the circle’s lowest-resolution representation, in panel
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6a. In contrast, to establish conclusively that both points C and D exist outside
the circle, we must scrutinize the higher-resolution depictions provided in panels
6d and 6c, respectively. Since the discernment of C’s position outside the circle
requires a more refined level of detail, it follows that C enjoys a higher degree of
membership within the circle in comparison to D, although not quite reaching the
same extent of membership as that of B.

4.1.1 Fuzzy binary relations

The concept of fuzziness naturally extends to binary relations.
A fuzzy relation is a mathematical construct within the framework of fuzzy set

theory that serves as a means to represent and quantify the relationships between
elements. Unlike classical binary relations (usually called “crisp”), fuzzy relations
accommodate the notion of partial or graded relationships by assigning degrees
of membership to pairs of elements, signifying the extent of their association.
Typically, fuzzy relations are expressed in the form of matrices or functions,
wherein each element or function value corresponds to the degree of association
between elements in a given ordered pair.

Definition 4.1 (Fuzzy binary relation). A fuzzy binary relation R is a mapping
from X ×X into V ∶= [0, 1]. ◊

As with fuzzy sets, membership values within the range of 0 to 1 can be
interpreted in several ways. For example, the degree of relation between two
elements can signify the intensity of the relationship. Alternatively, it may represent
the degree of similarity between the elements in the related pair or the level of
certainty associated with the pair’s relationship.

In this paper, the values outputted by the function R signify how challenging
it is for the decision maker to perceive a definitive preference for the second input
in relation to the first. That is, the value of R(x, y) is an ordinal expression of the
difficulty involved in the decision maker’s perception of x as worse than y.

The central concept behind this interpretation revolves around the idea that
the decision maker possesses underlying tastes, likes and dislikes that adhere to the
classical definition of a crisp rational preference relation, denoted by a reflexive,
complete and transitive ≿∈X ×X.

However, the decision maker’s ability to perceive these preferences may be
flawed due to limitations in cognitive processes. As a result, the fuzzy relation R

is introduced to quantify her capacity to accurately perceive the relative rankings
among the alternatives presented to her.

The subsequent discussion refers to the decision maker’s inherent rational
preferences ≿ as her rational benchmark preferences.
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Figure 6: In all panels, B is definitely inside the circle, while A is definitely not.
It becomes clear that D also does not belong in the circle in panel b. It is clear
that C does not belong in the circle only in panel d.
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A crucial assumption is that an erroneous strict rational-benchmark preference
is never perceived. In other words, if x is genuinely worse than y according to ≿,
then the decision maker will never perceive y as worse than x.

These observations motivate the properties that will be subsequently imposed
on R. Firstly, for all elements x ∈ X, R(x, x) = 1. This condition conveys that
it is impossible, or infinitely difficult, for the decision maker to assert that an
element is inferior to itself. Similarly, for any pair of elements x and y in X,
either R(x, y) = 1 or R(y, x) = 1 (or conceivably both in cases of “true” rational-
benchmark indifference). These conditions are natural fuzzy counterparts of the
reflexivity and completeness properties of crisp binary relations, at least under the
interpretation provided.

Definition 4.2 (Fuzzy Reflexivity). A fuzzy relation R on X×X is fuzzy reflexive
only if, for all x ∈X, R(x, x) = 1. ◊

Definition 4.3 (Fuzzy Completeness). A fuzzy relation R on X ×X is fuzzy
complete only if, for all x, y ∈X, max{R(x, y), R(y, x)} = 1. ◊

The matter of transitivity is more nuanced. If the rational benchmark ≿ adheres
to transitivity, then it follows that for all elements x, y, and z in X, if R(x, y) = 1
and R(y, z) = 1, then it must be that R(x, z) = 1.

In addition to the above, assume the following extra assumption: preferences
between elements that are ranked further apart are perceived with greater ease
than preferences between elements that are more closely ranked. In other words,
if x ≿ y ≿ z, then R(z, x) ≤min{R(z, y), R(y, x)}.

Definition 4.4 (Fuzzy Transitivity). A fuzzy relation R on X × X is fuzzy
transitive only if, for all x, y, z ∈X,

max{R(x, y), R(y, z)} = 1 Ô⇒ R(x, z) ≥min{R(x, y), R(y, z)}.

◊

Note the definition above states the fuzzy transitivity property in a slightly
different form than the paragraph above explaining it does. The two definitions
are equivalent (See Proposition A.3 in appendix A.6 for the proof) when fuzzy
completeness holds; the one in Definition 4.4 is mathematically more convenient
for deriving results.11

11It is also a common form of transitivity, called the drastic transitivity, found on the literature
on fuzzy relations. The drastic transitivity happens to be the least restrictive form of transitivity
based on using t-norms as conjunction operators. See Ovchinnikov (1981) for a reference in these
concepts.

27



The considerations above serve as a clear motivation for the following definition
of fuzzy rationality. This concept closely parallels the classical (crisp) rationality
concept for non-fuzzy preferences.

Definition 4.5 (Fuzzy rationality). A fuzzy relation R on X ×X is fuzzy rational
only if it satisfies fuzzy reflexivity, fuzzy completeness and fuzzy transitivity. ◊

4.1.2 Fuzzy Choice

One of the fundamental results in economic theory establishes that a unique
rational ≿ can be revealed from observed choices if, and only if these choices satisfy
the Weak Axiom of Revealed Preference (WARP). That is, WARP holds if and
only if there exists a unique complete and transitive crisp relation ≿ such that,
for all S ∈ S, C(S) = {x ∈ S ∶ x ≿ y for all y ∈ S}. To put it differently, WARP
holds if and only if there exists a binary relation ≿ that can rationalize the choice
correspondence C.

The goal is to show that similar equivalence between the Weak Axiom of
Revealed Preference Difficulty (WARPD) and fuzzy binary relations can be es-
tablished. More precisely, WARPD holds if and only if there exists a unique
fuzzy complete and transitive relation R capable of rationalizing the family of
cognition-dependent choices.

Before we get into fuzzy rationalizability and the equivalence result, a few
definitions are in order. Given a fuzzy relation R, it is possible to establish a
corresponding fuzzy choice correspondence, denoted as CR, induced by R. This
fuzzy choice correspondence, for each subset S of X, outputs a fuzzy set CR(S).
Every element x within the set S is assigned a membership value ranging from
0 to 1 (inclusive) in CR(S). These membership values encapsulate the extent to
which each element in S satisfies certain criteria based on the fuzzy relation R, as
defined below.

Definition 4.6 (Fuzzy Choice Correspondence). Given a fuzzy relation R on
X, the fuzzy choice correspondence induced by R is a function CR ∶ S Ð→ [0, 1]S
where

CR(S, x) =min
y∈S
{R(x, y)}.

◊

The membership value of x in the fuzzy set CR(S) is represented by CR(S, x).
12 The interpretation of these membership values aligns with the granularity
interpretation detailed in the beginning of section 4.1. Specifically, if CR(S, x) >
CR(S, x′), then we understand this as meaning that a lower level of discernment

12instead of CR(S)(x), to simplify the notation.
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or detail is required to establish that x′ is dominated by another alternative in S.
Option x may either require a higher level of discernment or be fully undominated,
regardless of the discernment or detail applied.

Definition 4.7 (α-cut). Given a fuzzy relation R on X, its associated fuzzy choice
correspondence CR and a real number α ∈ [0, 1], the α-cut of CR is a (crisp) choice
correspondence CR;α ∶ S Ð→ S where

CR;α(S) = {x ∈ S ∶ CR(S, x) ≥ α}. (13)

◊

The definition above outlines a way to translate the fuzzy set CR(S) into a
family of crisp sets. This transformation involves the selection of a threshold value
α ∈ [0, 1]. In this process, only those elements within CR(S) whose membership
degrees surpass α are included in CR;α(S). Conversely, elements with membership
degrees below α are excluded from CR;α(S). If we interpret α as a metric of the
desired level of granularity, detail, perceptiveness or discernment, measured on a
scale ranging from 0 to 1, then the members of CR;α(S) are precisely the elements
x of S that remain undominated for that particular level.

4.1.3 Fuzzy rationalizability and equivalence

One might intuit that the measure of granularity represented by the values in [0, 1]
will eventually be translated into the cognition levels from previous sections. This
is indeed the case, as the following definition of fuzzy rationalizability establishes.
The idea is to construct a function that maps Λ into [0, 1], so that each cognition
index λ corresponds to a given level of granularity.

Definition 4.8 (Fuzzy rationalizability). The family C is fuzzy rationalizable by
the fuzzy rational relation R if there exists a function α ∶ Λ Ð→ [0, 1] such that,
for all λ ∈ Λ,

Cλ(S) = CR;α(λ)(S),

with α(λ) = 1 for some λ ∈ Λ.
The family C is fuzzy rationalizable if it is fuzzy rationalizable by some

fuzzy-rational binary relation R. ◊

Finally, just as WARP is equivalent to crisp rationalizability, we can now
establish the equivalence between WARPD and fuzzy rationalizability.

Theorem 4.1. The following are equivalent.

(i) The family C satisfies WARPD and WOCI.
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(ii) The family C admits a cognition-dependent representation.

(iii) The family C is fuzzy-rationalizable.

5 Additional characterization results, special cases and
extensions

In what follows, it will be useful to define the following family of crisp binary
relations R(R) ∶= {Rα ∶ α ∈ A} where, given a fuzzy binary relation R, A = Im(R)
and for all x, y ∈X, xRαy ⇐⇒ R(x, y) ≥ α.

With some abuse of notation, when the fuzzy binary relation R in question
rationalizes C, we shall use Rλ instead of Rα(λ). In that case, it can be shown that

Cλ(S) = {x ∈ S ∶ for all y ∈ S, xRλy}.

Appendix A.6 contains a thorough discussion of R(R) and its properties. It
also provides an equivalent characterization of fuzzy rationalizability using this
family of crisp binary relations.

For this section’s purposes, it suffices to note that if R is fuzzy rational, then
R(R) ∶= {Rα ∶ α ∈ A} satisfies:13

(i) xRα′y Ô⇒ xRαy for all α′ > α.

(ii) If xR1y and yR1z, then zRαx implies zRαy and yRαx.

(iii) R1 is a weak order.

5.1 Incomplete data

Suppose we observe {Cλ ∶ λ ∈ Λ̃}, where Λ̃ ⊂ Λ. Previous results still hold as long
as λ ∈ Λ̃. In some situations, however, we might contend with the fact that we
cannot observe decision-maker at her fully-rational level of cognition.

To understand the role of λ, consider the following equivalent decomposition
of WARPD into three sub-properties.14

Proposition 5.1 (WARPD decomposition). A family C satisfies WARPD if and
only if the three conditions below hold.

(i) Contraction. For all S, T ∈ S with S ⊆ T , Cλ(T ) ∩ S ⊆ Cλ(S).

(ii) Expansion. For all S ∈ S and x ∈ S, if x ∈ Cλ({x, y}) for all y ∈ S, then
x ∈ Cλ(S).

13Proof in A.6.
14This decomposition is similar to a decomposition of WARP found in Aleskerov et al. (2007).
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(iii) No Cognitive Cycles. For all x, y, z ∈ X, if either x ∈ Cλ({x, y}) and
y ∈ Cλ({y, z}) or x ∈ Cλ({x, y}) and y ∈ Cλ({y, z}), then x ∈ Cλ({x, z}).

The proof can be found in appendix A.7.
The contraction property is exactly Sen’s α, or IIA, as discussed in section

2.3. Expansion establishes that, if an alternative x is undominated in any pairwise
comparison between itself and another member of S, then x must be undominated
in S as a whole. Finally, No Cognitive Cycles establishes that some preference
cycles can occur, i.e. it is possible for x to not be chosen from {x, z} even if x is
chosen from {x, y} and y is chosen from {y, z}. The key is that, for this to happen,
neither x nor y could have been true optimal choices in their respective sets, but
merely acceptable given the level of cognition. This makes it possible for the error
to be small between x and y and between y and z, but noticeably larger between
x and z, triggering x’s exclusion.

It is clear that λ has an important role in the third property. Without observing
it, its validity cannot be determined. If WOCI holds, however, then it is possible
to bound what the choices at λ are allowed to be. To do so, the concept of the
transitive core from Nishimura (2018), reproduced below, becomes useful.

Definition 5.1 (Transitive Core at λ). Fix C, rationalizable by the fuzzy binary
relation R. The transitive core of Rλ is a binary relation ≿λ where, for all λ ∈ Λ,
x, y ∈X, x ≿λ y if and only if, for all z ∈X,

(i) zRλx Ô⇒ zRλy,

(ii) yRλz Ô⇒ xRλz.

◊

As usual, we use ∼λ and ≻λ to denote the symmetric and asymmetric parts of
≿λ.

The binary relation ≿λ thus defined is complete and transitive – whereas Rλ

itself might not be. However, if Rλ is also complete and transitive (that is, if
WARP holds at λ), then it can be shown that ≿λ and Rλ coincide (Nishimura,
2018). In particular, this implies that ≿λ is equivalent to Rλ. To simplify notation,
in what follows we write ≿ instead of ≿λ.

The next proposition shows that ≿ is “embedded” into each ≿λ, and thus can
be effectively approximated by intersecting all observed transitive cores.

Since binary relations are mathematically subsets of the Cartesian product
X ×X, we take containment, intersections and unions to have their usual meaning.
For example, we say that a binary relation ⋗ is contained in another binary relation
⊳ (⋗ ⊆ ⊳) if x ⋗ y Ô⇒ x ⊳ y.

Moreover, if ▸ is the intersection of a collection B of binary relations (write
▸ = ⋂⊳∈B ⊳) we have that x ▸ y ⇐⇒ [x ⊳ y for all ⊳∈ B].
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Proposition 5.2. For any Λ̃ ⊆ Λ,

≿ ⊆ ⋂
λ∈Λ̃
≿λ .

The proof can be found in appendix A.7. The following example illustrates how
the intersection of observed transitive cores provides information on the decision
maker’s rational benchmark preferences.

Example 5.1. Revisiting the movie ranking example of 1.1 and 2.3, suppose we
observe only λ0 and λ1.

Consider a and b. Note that a ∈ Cλ0({a, z}) and b ∈ Cλ0({a, z}) for all
z ∈ {a, b, c, d, e}. Similarly, whenever z ∈ Cλ0({a, z}), it is also the case that
z ∈ Cλ0({b, z}) and vice-versa. Thus, a ≿λ0 b and b ≿λ0 a, or a ∼λ0 b.

A similar analysis yields the following relationships at λ0:

a ∼λ0 b ∼λ0 c ∼λ0 d ≻λ0 e.

Repeating the exercise for λ1 yields:

a ≻λ1 b ≻λ1 c ∼λ1 d ≻λ1 e.

By performing the intersection of ≿λ0 and ≿λ1 , we obtain a new binary relation ≿∗
where

a ≻∗ b ≻∗ c ∼∗ d ≻∗ e.

We know that in the rational benchmark, a ≻ b ≻ c ≻ d ≻ e. Indeed, a ≿∗ b ≿∗
c ≿∗ d ≿∗ e. Moreover, b�≿∗a implies b�≿λa, c�≿∗b implies c�≿λb, and so on; thus ≿ ⊆ ≿∗.

Note that, in this case, ≿∗ is identical to ≿λ1 and ≿λ1⊆≿λ0 . At a glance this
might suggest that the transitive cores are nested. This is however not true in
general.

To illustrate this, suppose at a cognition index of, say, λ2 between λ1 and λ,
Xavier realizes that movie b is decisively better than movies c and d. Specifically,
he now perceives that both a and b are superior to c, d and e and also that that
c, d are better than e. Essentially, his perception is almost identical to the one at
λ1, except he now perceives that b is ranked above c and d.

In this scenario, the transitive core at λ2 would not strictly rank a and b

because no third alternative z interacts with a differently than it does with b:

a ∼λ2 b ≻λ2 c ∼λ2 d ≻λ2 e

In λ1, Xavier could distinguish that a was better than c, but not that a was
better than b or b was better than c. However, because Xavier treated a in
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the comparison between a and c differently than he treated b in the comparison
between b and c (strict preference in the first, indifference in the second), the
transitive core knows to "split" the a and b into separate indifference classes, with
a ranked above b.

At λ2, there is no third alternative z for which Xavier behaves distinctly when
comparing a to z compared to when comparing b to z. Thus, the transitive core
at λ2 maintains the indifference between a and b. ◊

5.2 X infinite

Suppose X has infinitely many elements, and endow it with a metric. Fix a fuzzy
binary relation R ∶X ×X Ð→ [0, 1].

Axiom 4 (Continuity). For all α ∈ Im(R) and all sequences {xn} in X with
lim xn = x, (i) if there exists N ∈ N such that R(y, xn) ≥ α for all n ≥ N , then
R(y, x) ≥ α, and (ii) if there exists N ′ ∈ N such that R(xn, y) for all n ≥ N , then
R(x, y) ≥ α.

Theorem 5.1. Suppose X is compact. The family C satisfies WARPD, WOCI
and continuity if and only if it admits a cognition-dependent representation where
u is continuous.

Corollary 5.2.1. The function u in a cognition-dependent representation is unique
up to a monotone transformation. Moreover, given u, each ε(λ, x) is bounded by
some ε(λ, x) > 0 and ε(λ, x) > 0 satisfying ε(λ, x) ≥ supλ′>λ ε(λ′, x):

ε(λ, x) > ε(λ, x) ≥ ε(λ, x).

Moreover, if X is connected, then the threshold function ε is unique given u.

The proofs can be found in Appendix A.7.

5.3 No intransitive indifferences

In Examples 1.1 and 2.3, at λ1 Xavier placed movie b in two categories: “good”
and “okay”. That means that he perceived b as similar to both a (the other “good”
movie) and c and/or d (the two other “okay” movies). His “similar perceived
enjoyment” relation at λ1 is thus not transitive. Indeed, we can expect there to be
some overlap between categories when the perception of each item’s desirability is
not “perfect”.

In other cases, however, overlaps of the type above do not make sense. To illus-
trate, consider the following example where a decision-maker’s rational benchmark
involves lexicographic preferences over attributes.
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Example 5.2 (Preferences that are lexicographic in attributes). The hiring
manager at a large company is assessing several candidates for a practical job,
where experience holds the greatest importance. In cases where candidates possess
similar experience levels, their educational qualifications are used to break ties. If
ties persist, the manager considers the candidates’ soft skills.

Table 1 summarizes the characteristics of the applicants.

Candidate Experience Education Soft Skills

a High Low Medium
b High High Low
c Medium High High
d High High High
e Low High Low

Table 1: Summary of candidate’s skills.

The ranking manager is required to provide a ranking of the candidates. At
a low level of cognition, say, λ0, the manager only considers experience levels.
Consequently, candidates a, b, and d are ranked together at the top. Candidate c

falls into an intermediate category, and candidate e is ranked the lowest. This way,
the manager classifies the candidates into three strictly ranked “bins” based on
their experience levels alone: high, medium, and low. Each bin contains equally
ranked candidates for that level of cognition.

Moving to the higher cognition index λ1, where educational qualifications are
also taken into account, the top bin is further divided into sub-bins. One sub-bin
includes candidates b and d, both possessing high experience and high education.
The other sub-bin contains candidate a, who has high experience but low education.
The remaining bins remain the same since each already contains a single candidate.

Finally, at a high enough level of cognition (λ), the manager evaluates all three
attributes, including soft skills. As a result, the top bin is further subdivided.
Candidate d emerges alone in the high-experience, high-education, high-soft skills
sub-bin. Candidate b follows as a high-experience, high-education candidate with
low-soft skills. Candidate a is ranked next, followed by candidate c and then
candidate e.

It is important to note that at each step, a complete, transitive ranking is
provided. Increasing the level of cognition refines the ranking by breaking down
indifference classes into smaller, more detailed components. The absence of overlap
between categories occurs due to preferences that are lexicographic in the attributes,
and due to the fact that cognition here enables the consideration of attributes in
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order of importance. ◊

Example 5.3 (Left-digit bias). A potential buyer of a used car has cognition level
λ, where they only notice the leftmost digit of the car’s mileage counter. The cars
being evaluated have mileages ranging from 20,000 to 39,999.

Assuming everything else is equal, lower mileage is considered preferable. At
the cognition index λ, the buyer then divides the cars into two categories or “bins”:
the 20,000s bin and the 30,000s bin. In this division, all cars in the first bin are
considered better than any car in the second bin. However, without extra cognition
applied to her choices choices, the buyer is unable to establish a strict ranking
among the cars within each individual bin.

This changes if the buyer transitions to a new cognition index λ′ > λ, where
increased effort now allows them to notice the two leftmost digits of the mileage.
Then, each of the previous two bins (20,000s and 30,000s) is subdivided into 10
sub-bins. This enables the buyer to further refine their ranking within each bin.

As cognition increases to higher levels and the buyer progressively takes into
account the third, fourth, and fifth digits of the mileage counters, they are able to
obtain increasingly detailed rankings by partitioning previous indifference classes
into smaller categories. ◊

The examples above suggest that, for certain choices, lower cognition generate
coarser rankings, as before, but these rankings are complete. In particular, this
implies that WARP now holds for each λ instead of only at λ. This is a significant
strengthening of WARPD into WARPC (or Weak Axiom of Revealed Preference
over Categories) below , which itself maps into a specific strengthening of the
utility functional representation, and also of the specific notion of fuzzy transitivity
(5.3).

Axiom 5 (Weak Axiom of Revealed Preference over Categories (WARPC)). For
all λ ∈ Λ, x, y ∈X and S, T ⊆ S with {x, y} ⊆ S ∩ T ,

x ∈ Cλ(S), y ∈ Cλ(T ) Ô⇒ x ∈ Cλ(T ) and y ∈ Cλ(S). (14)

As mentioned, WARPC imposes WARP at each λ. As the examples suggest,
this assumption guarantees a complete and transitive ranking at each level of
cognition, and indifferences under WARPC are always transitive.

Definition 5.2. Given a set Λ with {0, 1} ⊆ Λ ⊆ [0, 1], the family C ∶= {Cλ ∶ λ ∈ Λ}
admits a cognition-dependent categorical representation (CDCR) if and only if,
there exist functions u ∶X Ð→ R and ε ∶ Λ ×X Ð→ R+ such that, for all S ∈ S,

Cλ(S) = {x ∈ S ∶ for all y ∈ S, u(y) − u(x) ≤ ε(λ, x)}, (15)
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with (i) for all x ∈X, ε(λ, x) = 0, (ii) for all x ∈X, ε(⋅, x) is non-increasing, (iii) for
all x, y ∈ X, λ ∈ Λ, u(x) ≥ u(y) Ô⇒ u(x) + ε(λ, x) ≥ u(y) + ε(λ, y), and (iv) for
all x, y ∈ X, λ ∈ Λ, u(x) > u(y) + ε(λ, y) Ô⇒ u(x) > u(z) + ε(λ, z) for all z with
u(z) ≤ u(y) + ε(λ, y). ◊

The utility functional representation is similar to 2.1, except for the extra
property of the thresholds ε. This property establishes that, if x is perceived as
strictly better than y, then x must be perceived as strictly better than z, for all z

in the same category as y.
To wrap up the characterization of WARPC, we modify fuzzy transitivity into

strong fuzzy transitivity and prove an analogous equivalence of fuzzy strong ratio-
nalizability and WOCI/WARPC as to fuzzy rationalizability and WOCI/WARPD.

Definition 5.3 (Strong Fuzzy Transitivity). A fuzzy relation R on X × X is
strongly fuzzy transitive15 only if, for all x, y, z ∈X,

R(x, z) ≥min{R(x, y), R(y, z)}.

◊

It’s important to note that strong fuzzy transitivity is almost identical to fuzzy
transitivity, with the distinction that R(x, z) ≥min{R(x, y), R(y, z)} holds even
when R(x, y), R(y, z) are both less than 1. In other words, the level of detail,
discernment, or granularity required for the decision-maker to assert that x is
worse than z must be at least as high as the minimum level required to perceive
that either x is worse than y or that y is worse than z.

Definition 5.4 (Strong fuzzy rationality). A fuzzy relation R on X ×X is fuzzy
rational only if it satisfies fuzzy reflexivity, fuzzy completeness and strong fuzzy
transitivity. ◊

Definition 5.5 (Strong fuzzy rationalizability). The family C is strongly fuzzy
rationalizable by R (i) R is strongly rational, and (ii) there exists a function
α ∶ ΛÐ→ [0, 1] such that, for all λ ∈ Λ,

Cλ(S) = CR;α(λ)(S),

with α(λ) = 1 for some λ ∈ Λ.
The family C is strongly fuzzy-rationalizable if it is strongly fuzzy rational-

izable by some R. ◊

15This is also known as the min transitivity – the most restrictive of transitivities that stem
from a t-norm. See Ovchinnikov (1981) for a reference on these concepts.
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Theorem 5.2. The following are equivalent.

(i) The family C satisfies WARPC and WOCI.

(ii) The family C admits a cognition-dependent categorical representation.

(iii) The family C is strongly fuzzy-rationalizable.

The proof can be found in Appendix A.7.

6 Relation to the Literature

Information-based models. The general notion of decision-making under
cognitive limitations is and has been the topic of extensive strands of literature
that focus on information acquisition and processing constraints.

Despite some thematic similarities between the present work and these different
strands, there are some important distinctions. First, the model in this paper
specifically allows for intransitive indifference, and hence cycles, for a given cogni-
tion level. In contrast, in models such as rational inattention/costly information
acquisition (Sims, 2003, Matějka and McKay, 2015, de Oliveira et al., 2017, Caplin
et al., 2018, Hébert and Woodford, 2023, Steiner et al., 2017, Chambers et al.,
2020, Maćkowiak et al., 2023), costly contemplation (Ergin and Sarver, 2010),
DDM (Fehr and Rangel, 2011, Woodford, 2014, Fudenberg et al., 2020), search
(Stigler, 1961, Caplin and Dean, 2011, Delaney et al., 2020) and others, conditional
on information, preferences are always complete and transitive.

Second, in this paper’s model, even if cognition is identified with information
(e.g. Section 2.2.1), it can only be used to break ties. In contrast, in information-
based models such as the above, strict preference reversals can and do occur.

Semiorders, just-noticeable differences and more on intransitive indif-
ferences. The case of intransitivite indifferences can be traced back to at least
Armstrong (1950) and Luce (1956). They were among the first to study situations
where a gradual accumulation of changes means local indifference, i.e. at each step,
but not globally, i.e. when comparing the starting point with the end point. This
phenomenom is attributed to existing limits to our perception of small differences.

In this paper paper, cognition is capable of refining perception and thus
shrinking these limits in a particular order according to how difficult certain
comparisons are. By contrast, in the semiorder literature, limits to perception
are typically assumed to be a fixed, physical constraint (Jamison and Lau, 1973,
Fishburn, 1975, Gilboa and Lapson, 1995).
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Fuzzy choice and preferences. Attempts to apply techniques from fuzzy set
theory to choice problems are relatively scarce, and typically focus on specific
mathematical properties of fuzzy binary relations (Ovchinnikov, 1981).

While the present paper, through WOCI and WARPD, is able to recover
fuzziness as a property of the revealed preferences, other examples such as Dasgupta
and Deb (1991), Dutta (1987), Banerjee (1995) attempt to justify fuzziness as a
primitive in terms of preference imprecision, uncertainty or vagueness. The present
work seems to be the first to discuss fuzziness as a result of behavioral inputs from
choices.

Other related work. Manzini and Mariotti (2007) and Manzini and Mari-
otti (2012) study choices generated by applying different rationales sequentially.
Because the rationales are allowed to have strict disagreements, IIA is violated,
which is not the case in the present paper. They also assume that the sequence of
rationales persists until a single option remains; thus they do not study when and
how indifferences may emerge and what their properties are.

The work most closely related to this study is presented in Tyson (2021). In
that work, the author examines decision-makers with cognitive limitations who
stochastically perceive only a coarse representation of their preference rankings.
The nature of these coarse rankings bears a resemblance to the concept proposed
in this paper. However, in Tyson (2021), these coarse rankings are assumed to be
complete, meaning that perceived indifferences are always transitive. Additionally,
the specific coarse ranking observed by the decision-maker is subject to randomness,
following a particular distribution based on the exponential. Tyson (2021) also
assumes that the decision-maker selects one element from her random choice
correspondence also at random, uniformly. In contrast, this paper’s model has
choice correspondences that are deterministic given cognition. Moreover, no
explicit assumptions about the mechanism through which an alternative is picked
from the set of choice correspondences is made.

7 Conclusion

This paper introduces cognition as a crucial mental resource, essential for the
detailed articulation of choices and preferences. In the absence of full cognition,
decision-makers are only approximate optimizers, in a sense that is made pre-
cise by either (i) combination of WOCI/WARPD, (ii) the cognition-dependent
representation or (iii) the notion of fuzzy rationalizability.

Applications then showed how consumers’ limited cognition can influence
competitiveness and pricing decisions.
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The model proposed places a prominent emphasis on indifference: as cogni-
tive levels decrease, the prevalence of indifference increases, resulting in larger
choice correspondences. In this context, decision-makers employing lower levels
of cognition might care very little about which specific option is picked from a
multitude of alternatives they find indifferent. That means they can then become
more susceptible to behavioral biases and heuristics that influence the final se-
lection. This susceptibility can manifest in various ways, such as inertia (e.g.,
failing to cancel an auto-renewing subscription), advertising effects (e.g., choosing
a brand seen recently on TV or clicking the first ad link in a Google search),
and reliance on alphabetical order (e.g., selecting a service provider based on its
position in the phone book). Investigating the implications of such behavioral
postulates, especially when combined with indifference is a promising avenue for
future research.

Methodologically, the paper contributes to the literature on fuzziness. It
establishes economic foundations for fuzzy preferences and fuzzy choice, assigning
economic significance to degrees of membership and degrees of relationship through
a granularity interpretation of fuzziness. While the granularity interpretation is
suitable for the contexts considered in the paper, it’s important to note that other
interpretations of fuzziness could be equally valid and valuable, particularly in
regards to decision settings enriched by a secondary dimension, such as similarity,
or preference intensity. Studying the applicability of fuzziness in these scenarios
could provide some new and valuable insights, and is worth investigating.
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A Appendix

A.1 Proofs and auxiliary results: characterization and main theo-
rem

Proposition A.1 (Ordering Λ). If the family {Cλ ∶ λ ∈ Λ} satisfies WOCI, then
≥ defined as above weakly orders Λ.

Proof. The relation ≥ is a weak order if and only if it is complete and transitive.

Completeness. Fix λ, λ′ ∈ Λ. Suppose that λ′ ≱ λ. That is, there exists a set
S ∈ S such that Cλ′(S)�⊆Cλ(S). By Nestedness, it must be that Cλ(S) ⊊ Cλ′(S).
By Consistency, that means that Cλ(T ) ⊆ Cλ(T ) for all T ∈ S, and thus λ ≥ λ′.

Transitivity. Suppose λ ≥ λ′ and λ′ ≥ λ′′. Then, for all S ∈ S, Cλ(S) ⊆ Cλ′(S) ⊆
Cλ′′(S). That means that λ ≥ λ′′ as well. ∎

Proposition A.2. If the family {Cλ ∶ λ ∈ Λ} satisfies WOCI and X is finite, then
there exists a finite number of ≥-equivalence classes on Λ.

Proof. Since X is finite, we can write S ∶= {S1, . . . , Sn}. For each i, the family of
sets {Cλ(Si) ∶ λ ∈ Λ} is nested, in the sense that Cλ(Si) ⊆ Cλ′(Si) whenever λ ≥ λ′.

Fix i, and consider the function gi ∶ Λ Ð→ Cλ(Si). Note that ∣ Im (gi)∣ <∞ –
after all, Si is finite, so there are finitely many subsets of Si. Since each Cλ(Si) is
necessarily a subset of Si, it follows that the image of gi must be finite.

Let C1
i , C2

i , . . . , CLi
i denote the possible values that gi can take, and consider

the inverse images Λℓi
i ∶= g−1

i (C
ℓi
i ) for ℓi ∈ {1, . . . , Li}. The collection of inverse

images Λi = {Λ1
i , . . . , ΛLi

i } is a partition of Λ.
Construct the finer partition by intersecting elements of each Λi:

Λ̃ = {Λℓ1
1 ∩Λℓ2

2 ∩ . . . ∩Λℓn
n ∶ ℓi ∈ {1, . . . , Li} for all i ∈ {1, . . . , n}}

Note that Λ̃ is finite. Moreover, for any λ, λ′ belonging to an element Λℓ1
1 ∩Λℓ2

2 ∩
. . . ∩Λℓn

n of Λ̃, by construction Cλ(Si) = Cλ′(Si) = Cℓi
i . ∎

Proposition 2.2. WARPD holds if and only if C satisfies

(i) α (independence of irrelevant alternatives): For all λ ∈ Λ S, T ∈ S
with S ⊆ T , and x ∈ S,

x ∈ Cλ(T ) Ô⇒ x ∈ Cλ(S).

42



(ii) λβ: For all λ ∈ Λ, S, T ∈ S with S ⊆ T , x, y ∈ Cλ(S),

y ∈ Cλ(T ) and [x ∈ Cλ(S) or y ∈ Cλ(T )] Ô⇒ x ∈ Cλ(T ).

Proof. WARPD Ô⇒ α. Suppose WARPD holds, and let S, T ∈ S with S ⊆ T

and λ ∈ Λ. Let x ∈ Cλ(T ) ∩ S. Because Cλ(S) must be nonempty, there exists
y ∈ Cλ(S). By WARPD, y ∈ Cλ(S).

WARPD Ô⇒ λβ. Let S, T ∈ S with S ⊆ T and λ ∈ Λ.
Fix x, y ∈ Cλ(S) and y ∈ Cλ(T ). Suppose x ∈ Cλ(S). By WARPD, x ∈ Cλ(T ).
Now suppose instead that y ∈ Cλ(T ). By WARPD, once again we must have

x ∈ Cλ(T ).
α and λβ Ô⇒ WARPD. Fix λ ∈ Λ, S, T ∈ S with {x, y} ⊆ S ∩ T .
Let x ∈ Cλ(S) and y ∈ Cλ(T ).
From α: Cλ(S) ∩ (S ∩ T ) ⊆ Cλ(S ∩ T ). Thus, x ∈ Cλ(S ∩ T ).
Also from α: Cλ(T ) ∩ (S ∩ T ) ⊆ Cλ(S ∩ T ). Thus, y ∈ Cλ(S ∩ T ).
From λβ: x ∈ Cλ({x}) and x ∈ Cλ(S), implying x ∈ Cλ(S). Similarly, x ∈

Cλ(S ∩ T ).
From λβ: x, y ∈ Cλ(S ∩ T ) and x ∈ Cλ(S). Because x ∈ Cλ(S), we have that

y ∈ Cλ(S).
Also from λβ: x, y ∈ Cλ(S ∩ T ) and y ∈ Cλ(T ). Because x ∈ Cλ(S ∩ T ), we

must have that x ∈ Cλ(T ). ∎

Theorem 2.1. The family C satisfies WARPD and WOCI if and only if it admits
a cognition-dependent representation.

Proof. WARPD and WOCI Ô⇒ cognition-dependent representation.
Fix C satisfying WARPD and WOCI.
With some abuse of notation, redefine Λ using its equivalence classes (according

to the weak order ≥ implied by WOCI) as its basic elements. This guarantees that
Λ is linearly ordered.

Let u be a utility function representing the decision maker’s preferences at
cognition level λ. We know that such a function exists because WARPD implies
WARP at λ.

Define the thresholds as follows. Let ε(λ, x) ∶=maxz∈X{u(z) ∶ x ∈ Cλ({x, z})}−
u(x). Clearly, ε(λ, x) ≥ 0 for all x, λ, with ε(λ, x) = 0.

We first show that, for every S ∈ S, x ∈ Cλ(S) if and only if u(y)−u(x) ≤ ε(λ, x)
for all y ∈ S:

u(y) > u(x) + ε(λ, x) Ô⇒ x�∈Cλ(S). Fix S ∈ S, λ ∈ Λ, and let x ∈ S. Suppose that
there exists y ∈ S with u(y) > u(x) + ε(λ, x). That means x�∈Cλ({x, y}). By
WOCI, y ∈ Cλ({x, y}). By WARPD, x�∈Cλ(S).
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x�∈Cλ(S) Ô⇒ u(y) > u(x) + ε(λ, x). suppose that x�∈Cλ(S). Then, there exists y

such that x�∈Cλ({x, y}), implying (by WOCI) that Cλ({x, y}) = Cλ({x, y}) =
{y}, and thus that u(y) > u(x) (by WARP at λ). By way of contradiction,
assume u(y) ≤ u(x)+ε(λ, x). Then, there exists z ∈X such that u(z) ≥ u(y)
and x ∈ Cλ({x, y}). We have that z ∈ Cλ({x, y, z}) (by WARP at λ);
moreover, because x ∈ Cλ({x, z}), WARPD implies x ∈ Cλ({x, y, z}). Since
y ∈ Cλ({x, y}) (again, by WARP at λ), WARPD also then implies that
x ∈ Cλ({x, y}) – a contradiction. Hence, it must be that u(y) > u(x)+ε(λ, x).

Next, we show that the remaining properties of the cognition-dependent repre-
sentation hold.

(i) for all x ∈ X, ε(λ, x) = 0. Evident from the definition of ε, and from the
fact that WARPD implies WARP at λ.

(ii) for all x ∈X, ε(⋅, x) is non-increasing. Fix λ, λ′ arbitrarily, and suppose
ε(λ, x) > ε(λ′, x) for some x. Then, there exists a z such that x ∈ Cλ({x, z})
but x�∈Cλ′({x, z}). By WOCI, that means that Cλ′({x, z}) ⊊ Cλ({x, z}),
and thus λ′ > λ.

(iii) for all x, y ∈ X,λ ∈ Λ, u(x) ≥ u(y), then u(x) + ε(λ, x) ≥ u(y) + ε(λ, y).
Suppose, by way of contradiction, that u(x) ≥ u(y) but u(x)+ε(λ, x) < u(y)+
ε(λ, y) for some x, y ∈X and λ ∈ Λ. Then, there exists zy such that u(zy) >
u(x) ≥ u(y), y ∈ Cλ({y, zy}) but x�∈Cλ({x, zy}). Since u(zy) > u(x) ≥ u(y),
zy ∈ Cλ({x, y, zy}). By WARPD, it must then be that Cλ({x, y, zy}) = {y, zy}.
But because x ∈ Cλ({x, y}) and y ∈ Cλ({x, y, zy}), WARPD also implies that
x is in Cλ({x, y, zy}), a contradiction.

Cognition-dependent representation Ô⇒ WARPD and WOCI.
Suppose the family C ∶= {Cλ ∶ λ ∈ Λ} admits a cognition-dependent representa-

tion. We show that WOCI and WARPD hold.

WOCI holds. Nestedness. For every λ, λ′ ∈ Λ, either λ > λ′, λ < λ′ or λ = λ′

holds (since Λ is totally ordered). If λ = λ′, then ε(λ, ⋅) = ε(λ′, ⋅), and
thus Cλ(S) = Cλ′(S) for all S. Suppose then that λ > λ′ without loss
of generality; then u(y) − u(x) ≤ ε(λ, x) Ô⇒ u(y) − u(x) ≤ ε(λ′, x).
Thus, Cλ(S) ⊆ Cλ′(S) for all S and nestedness holds.

Consistency. Regarding consistency, if Cλ(T ) ⊊ Cλ′(T ) for some T , that
means that there exists x, y ∈ T such that ε(λ′, x) > u(y)−u(x) > ε(λ, x),
so that λ ≥ λ′. But then, from the above, we know that Cλ(S) ⊆ Cλ′(S)
for all S.
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WARPD holds. Let λ ∈ Λ, x, y ∈ X and S, T ∈ S with {x, y} ⊆ S ∩ T . Let
x ∈ Cλ(S) and y ∈ Cλ(T ). We show that x ∈ Cλ(T ) and y ∈ Cλ(S).

x ∈ Cλ(T ). The above implies u(x) ≥ u(zS) for all zS ∈ S, and u(y)+ε(λ, y) ≥
u(zT ) for all zT ∈ T . Since u(x) ≥ u(y), u(x) + ε(λ, x) ≥ u(y) + ε(λ, y)
(by property (iii) of the cognition-dependent representation), and thus
u(x) + ε(λ, x) ≥ u(zT ) for all zT ∈ T , i.e. x ∈ Cλ(T ).

y ∈ Cλ(S). Since u(y) + ε(λ, y) ≥ u(zT ) for all zT ∈ T and u(x) ≥ u(zS) for
all zS ∈ S, we have u(y) + ε(λ, y) ≥ u(x) ≥ u(zS) for all zS ∈ S, i.e.
y ∈ Cλ(S).

∎

A.2 Experimental evidence

For each set S of alternatives and each T ⊊ S, the proportion of subjects that
chose T or a proper subset of T should increase with the information treatment, if
WOCI holds in the aggregate. However, this expected pattern is not universally
observed for all S, T (See Table 2 below for the data on choices from {1, 2, 3, 4},
when all alternatives are available).

Moving from the sentence to the video treatment seems to have the expected
effect (See e.g. Table 2, where the only – very minor – exception is for T = {1, 3}).
The training information treatment seems to cause more frequent reversals – despite
a general trend of choice set contraction (in terms of cardinality). This could be
due to agent heterogeneity. Another potential explanation is that the information
provided in the training treatments goes beyond a few details necessary for breaking
ties between similarly attractive options. Instead, the acquired information through
practice might be much more substantial and even surprising, fundamentally
altering how subjects perceive the problem and hence causing strict reversals in
how the options are ranked.

A.3 Information interpretation

Suppose we interpret an increase in cognition as a type of information acquisition,
i.e. more cognition reinterpreted as “better informed” in a particular sense.

To perform this translation, let Ω denote the set of states of the world. Assume
each state of the world is a possible complete and transitive ranking of alternatives.
For example, with three alternatives, there are the following 14 possible states of
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Cλ({1, 2, 3, 4}) sentence video training

{1} 4.55% 3.36% 5.41%
{2} 3.03% 7.14% 1.35%
{3} 1.52% 5.46% 1.35%
{4} 3.03% 5.04% 10.81%
{1, 2},{1},{2} 10.61% 14.29% 10.81%
{1, 3},{1},{3} 16.67% 16.39% 12.16%
{1, 4},{1},{4} 7.58% 13.45% 21.62%
{2, 3},{2},{3} 4.55% 14.29% 2.7%
{2, 4},{2},{4} 9.09% 15.55% 27.03%
{3, 4},{3},{4} 6.06% 15.55% 13.51%
{1, 2, 3},{1},{2},{3},{1, 2},{1, 3},{2, 3} 33.33% 35.29% 20.27%
{1, 2, 4},{1},{2},{4},{1, 2},{1, 4},{2, 4} 16.67% 36.13% 60.81%
{1, 3, 4},{1},{3},{4},{1, 3},{1, 4},{3, 4} 31.82% 42.44% 35.14%
{2, 3, 4},{2},{3},{4},{2, 3},{2, 4},{3, 4} 27.27% 36.13% 36.49%

Table 2: S = {1, 2, 3, 4}

the world:

x ≻ y ≻ z x ≻ z ≻ y

y ≻ x ≻ z y ≻ z ≻ x

z ≻ x ≻ y z ≻ y ≻ x

x ∼ y ≻ z x ≻ y ∼ z

x ∼ z ≻ y y ≻ x ∼ z

y ∼ z ≻ x y ≻ z ∼ x

z ≻ x ∼ y x ∼ y ∼ z

Under absolute ignorance, assume that the agent treats all alternatives as
identical, i.e. the decision-maker acts as if she’s indifferent. We denote that by
x ◻ y ◻ z, where ◻ will stand in for “does not know” the relationship between
elements.

Now suppose an agent can acquire information regarding the state of the world.
Here are the things the DM can learn if x ≻ y ≻ z is the true state of the world:

• x ◻ y, y ◻ z, x ◻ z
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• x ≻ z, x ◻ y, y ◻ z

• x ≻ z x ≻ y, y◻z or x ≻ z, x◻y, y ≻ z (exclusive; only one of these is available,
depending on which comparison is easier, x and y or y and z)

• x ≻ y ≻ z

The idea is that the relationship between alternatives that are ranked further
apart is easier to gauge than the relationship between alternatives that are closer
together.

Importantly, though, the decision-maker does not know this, or rather, the
decision-maker does not use this information to derive more information.

For example, if she acquires a signal that tells her that x ≻ z, x◻ y, y ◻ z, then
if she understood the process by which this signal is generated, then she would
know that x and z must be further apart; i.e. it must be that x ≿ y. From this
point, she would probably then choose x, because even if x and y are tied in the
true state of the world, she could reason that there is a chance that they are not,
making x the superior option.

This is not the approach we take. Instead, the decision-maker’s signals is
already the condensed, post-processing, potentially flawed interpretation of the
signal by the decision-maker has. Thus we treat it as it is. If x ≻ z, x ◻ y, y ◻ z,
then at this point she chooses x when given x and z, but will not be able to
pick a single option when given x and y or y and z. That is, we assume that the
decision-maker cannot make any more inferences about the true state of the world
at that point.

This is a fundamentally different approach from an information acquisition
model where the decision-maker uses the information obtained to rationally update
her prior, i.e. where she does the maximum amount of inference that she can. In
these models, cognitive constraints are usually assumed to be costs to information
acquisition, but that is clearly not the same as imposing the inference constraints
that we do here.

If we want both approaches to coincide, then intransitive indifferences obviously
cannot exist. Given that, suppose x ≻ y ≻ z is the true state of the world. Then
the available signals are

• x ◻ y, y ◻ z, x ◻ z

• x ≻ z x ≻ y, y ◻ z or x ≻ z, x ◻ y, y ≻ z

• x ≻ y ≻ z

Suppose the decision maker receives x ≻ z x ≻ y, y ◻ z. This paper’s model
predicts that she would pick x over y, x over z but wouldn’t be able to pick a
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single alternative out of y and z. In order for her to have this same behavior
while exerting the maximum amount of inference, assume all utilities take values
in {2, 1, 0}, and that the decision-maker’s prior establishes Pr(u(w) = j) = 1/3 for
all w ∈ {x, y, z} and all j ∈ {2, 1, 0}. Then, when she learns x ≻ z x ≻ y, y ◻ z, the
decision maker realizes that the only possibilities are:

u(x) = 2, u(y) = u(z) = 1
u(x) = 2, u(y) = u(z) = 0
u(x) = 1, u(y) = u(z) = 0
u(x) = 2, u(y) = 1, u(z) = 0
u(x) = 2, u(y) = 0, u(z) = 1

then, E[u(x)] = 2 ⋅ 4/5 + 1 ⋅ 1/5 = 9/5 and E[u(y)] = E[u(z)] = 2/5, implying the
DM at this point prefers x to both y and z, but would be indifferent between y

and z.

A.4 Proof: collusive outcomes in Bertrand duopolies

Proposition 3.1. Assume consumers select an alternative by uniformly picking
an element of Cλ({x1, x2}). If (w− c) ≤ (2/λ)(1−λ)c, then the unique equilibrium
is at p1 = p2 = w.

Proof. Each firm’s demand is given by:

Di(p1, p2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if pi > pj(2 − λ)

1/2 if pj/(2 − λ) ≤ pi ≤ pj(2 − λ)

1 if pi < pj/(2 − λ)

Profits for firm i then are:

Πi(p1, p2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if pi > pj(2 − λ)

(pi − c)/2 if pj/(2 − λ) ≤ pi ≤ pj(2 − λ)

pi − c if pi < pj/(2 − λ)

We assume that to undercut the competitor’s price, a firm needs to discount
their own price by a minimum of k > 0, where k is sufficiently small.

There are a few cases to consider, depending on the relationship between
parameters. Usually, the solution boils down to verifying whether it is preferable
to split the market (and thus choose pi =max{pj(2 − λ), w}) or to undercut (i.e.
choose pi = pj/(2 − λ) − k).
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Case I: c(2 − λ) < w/(2 − λ)

• If pj ≤ c/(2 − λ), any price pi ≥ c is a best-response, as it guarantees zero
profits:

BR(p2) = [c,∞)

• If c/(2 − λ) < pj ≤ c(2 − λ), then the best-response is to choose pi = pj(2 − λ):

BR(pj) = {pj(2 − λ)}

• If c(2 − λ) < pj ≤ w/(2 − λ), then

BR(pj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{pj(2 − λ)} if 0 < λ ≤ 2 −
√

2
√

w
c+2k+w or pj < (2−λ)(c+2k)

2−(2−λ)2

{pj/(2 − λ) − k} if 2 −
√

2
√

w
c+2k+w < λ < 1 and pj > (2−λ)(c+2k)

2−(2−λ)2

{pj/(2 − λ) − k, pj(2 − λ)} if 2 −
√

2
√

w
c+2k+w < λ < 1 and pj = (2−λ)(c+2k)

2−(2−λ)2

where the thresholds for λ and pj are computed by comparing profits.

• If w/(2 − λ) < pj < w, then

BR(pj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{w} if 0 < λ ≤ 2(c+2k)
c+2k+w or

2(c+2k)
c+2k+w < λ < 2 −

√
2w

c+2k+w and pj < (2−λ)(c+2k+w)
2

{pj/(2 − λ) − k} if 2 −
√

2
√

w
c+2k+w ≤ λ < 1 or

2(c+2k)
c+2k+w < λ < 2 −

√
2w

c+2k+w and pj > (2−λ)(c+2k+w)
2

{pj/(2 − λ) − k, pj(2 − λ)} if 2(c+2k)
c+2k+w < λ < 2 −

√
2w

c+2k+w and pj = (2−λ)(c+2k+w)
2

• If w ≤ pj ≤ w(2 − λ), then anything above w is not optimal. The question is
whether to choose w and split the market, or to choose pj/(2 − λ) − k.

BR(pj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{w} if 0 < λ < 2(c+2k)
c+2k+w and pj < (2−λ)(c+2k+w)

2

{pj/(2 − λ) − k} if 2(c+2k)
c+2k+w ≤ λ < 1 or pj > (2−λ)(c+2k+w)

2

{pj/(2 − λ) − k, pj(2 − λ)} if 0 < λ < 2(c+2k)
c+2k+w and pj = (2−λ)(c+2k+w)

2

• If pj > w(2 − λ), then clearly BR(pj) = {w}.

We conclude that, in this case, a pure-strategy equilibrium exists if and only
if w ∈ BR(w), i.e. if and only if 0 < λ < 2(c+2k)

c+2k+w (note that w ≤ (2−λ)(c+2k+w)
2 for

those values of λ). See Figures 7, 8 and 9 for a depiction of Case I and its three
sub-cases.
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Figure 7: Case I (c < w/(2 − λ)2), low λ (λ < 2(c + 2k)/(c + 2k +w))

Case II: c(2−λ) ≥ w/(2−λ) ≥ c In Cases II and III, where margins are sufficiently
low, the unique Nash equilibrium occurs when both firms choose p1 = p2 = w. The
full analysis is similar to the one for Case I:

• pj ≤ c/(2 − λ)
BR(pj) = [c,∞)

• c/(2 − λ) < pj ≤ c(2 − λ)

BR(pj) = {pj(2 − λ)}

• w/(2 − λ) < c(2 − λ) < pj ≤ w The two options are w or pj/(2 − λ) − k. As it
turns out, by comparing profits we obtain

BR(pj) = w.
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Figure 8: Case I (c < w/(2 − λ)2), intermediate λ (2(c + 2k)/(c + 2k + w) < λ <
2 −
√

2w
c+2k+w )
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Figure 9: Case I (c < w/(2 − λ)2), high λ (λ > 2 −
√

2w
c+2k+w )
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Figure 10: Case II (w/(2 − λ) ≥ c ≥ w/(2 − λ)2)

• w < pj ≤ w(2 − λ)

BR(pj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{w} if pj < (2−λ)(c+2k+w)
2

{pj/(2 − λ) − k} if pj > (2−λ)(c+2k+w)
2

{w, pj/(2 − λ) − k} if pj = (2−λ)(c+2k+w)
2 .

• p2 > w(2 − λ) In this case,
BR(pj) = w.

See Figure 10

Case III: c(2 − λ) > w > c > w/(2 − λ)

• pj ≤ cj/(2 − λ)
BR(pj) = [c,∞)

53



• c/(2 − λ) < pj ≤ c

BR(pj) = {min{pj(2 − λ), w}}

• c < pj ≤ c(2 − λ) Because pj(2 − λ) > c(2 − λ) > w,

BR(p2) = {w}

• c(2 − λ) < pj ≤ w(2 − λ)

BR(pj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{w} if pj < (2−λ)(c+2k+w)
2

{pj/(2 − λ) − k} if pj > (2−λ)(c+2k+w)
2

{w, pj/(2 − λ) − k} if pj = (2−λ)(c+2k+w)
2 .

• p2 > w(2 − λ)

In this case,

BR(p2) = {w}.

See Figure 11 for a depiction of Case III.
∎

A.5 Proofs: monopolist pricing and brand loyalty

Proposition 3.2. For each λ ∈ (0, 1), there exist thresholds vλ and vλ ∈ (0, 1)
with vλ < vλ, such that the monopolist’s optimal prices p∗(λ, v) satisfy:

p∗(λ, v̄) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1+(1−λ)2
2 if v ∈ [0, vλ],

v + (1 − λ)2 if v ∈ (vλ, vλ),
λ
2 if v ∈ [vλ, 1].

(9)

Moreover, the optimal profit π∗(λ, v̄) ∶= π(λ, v̄; p∗(λ, v̄)) is continuous in v̄ and
satisfies:

π∗(λ, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1+(1−λ)2
2 )

2
if v ∈ [0, vλ],

(v + (1 − λ)2)(1 − v) if v ∈ (vλ, vλ),

(λ
2 )

2 if v ∈ [vλ, 1].

(10)

Proof. Maximizing each piece of the profit function, we get

p =min{λ/2, v − (1 − λ)}
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Figure 11: Case III (c > w/(2 − λ))
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for the top part,
p = v + (1 − λ)2

for the middle part, and

p =max{(1 + (1 − λ)2)/2, v + (1 − λ)2}

for the bottom part. Using each of these prices, profits are then:

min{λ/2, v − (1 − λ)}(λ −min{λ/2, v − (1 − λ)})

for the top price,
(v + (1 − λ)2)(1 − v)

for the middle price, and

max{(1+ (1−λ)2)/2, v+ (1−λ)2}(1−max{(1+ (1−λ)2)/2, v+ (1−λ)2}+ (1−λ)2)

for the bottom price.
Now, all that remains is to determine which of the three possibilities above is

better for each pair (λ, v). Solving yields:

p∗(λ, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1+(1−λ)2
2 if v ≤ 1

2 −
(1−λ)2

2

v + (1 − λ)2 if 1
2 −

(1−λ)2
2 < v < 1

2(2λ − λ2 +
√

λ4 − 4λ3 + 7λ2 − 8λ + 4)
λ
2 if v ≥ 1

2(2λ − λ2 +
√

λ4 − 4λ3 + 7λ2 − 8λ + 4)

with maximal profits

π∗(λ, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1+(1−λ)2
2 )

2
if v1 ≤ 1

2 −
(1−λ)2

2

(v1 + (1 − λ)2)(1 − v1) if 1
2 −

(1−λ)2
2 < v1 < 1

2(2λ − λ2 +
√

λ4 − 4λ3 + 7λ2 − 8λ + 4)

(λ
2 )

2 if v1 ≥ 1
2(2λ − λ2 +

√
λ4 − 4λ3 + 7λ2 − 8λ + 4)

so that vλ ∶= 1
2 −

(1−λ)2
2 and vλ ∶= 1

2(2λ − λ2 +
√

λ4 − 4λ3 + 7λ2 − 8λ + 4). ∎

Proposition 3.3. When T = 1, the optimal price is given by p∗1(λ) = λ/2, and
profits are Π∗(λ) = λ2/4.

When T ≥ 2, p∗1(λ) = λ−1/2 and p∗t (λ) = 1/2 for all t ∈ {2, . . . , T}. Total profits
are given by Π∗(λ) = λ(λ − 1/2) + (T − 1)1/4.

Proof. Consider the case of T = 2.
At t = T , the solution follows:
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p∗t (λ, vt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ
2 if v̄ ≥ v̄λ

vt if 1
2 < v < v̄λ

1
2 if v ≤ 1

2

where v̄λ = 1
2(1 +

√
1 − λ2).

with profit

π∗t (λ, vt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ2

4 if v̄t ≥ v̄λ
t

vt(1 − vt) if 1
2 < vt < v̄λ

t

1
4 if vt ≤ 1

2

Since at t = 1, v̄1 = 1, we have that v̄2 = min{pt−1 + (1 − λ), 1}. Hence we can
write the optimal second-period prices as a function of the first-period prices:

p∗t (λ, pt−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ
2 if pt−1 + (1 − λ) ≥ v̄λ

t

vt if 1
2 < pt−1 + (1 − λ) < v̄λ

1
2 if pt−1 + (1 − λ) ≤ 1

2

Thus, at t = 1, the monopolist maximizes the following combined profit function:

Π(λ, v̄1; p1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2/4 if p1 + (1 − λ) ≥ 1

(λ − p1)p1 + λ2/4 if 1 ≥ p1 + (1 − λ) ≥ v̄λ

(λ − p1)p1 + (λ − p1)(p1 + (1 − λ)) if v̄λ > p1 + (1 − λ) > 1/2

(λ − p1)p1 + 1/4 if p1 + (1 − λ) ≤ 1/2
(16)

Maximizing the expression above yields p∗1 = λ − 1/2. Note that p∗1 can very
well be negative, if λ < 1/2; this is worth it because it drives down v̄2.

If T > 2, then the same strategy should be optimal. Choosing an identical p1

as in the case above ensures that the profits are as high as possible in the first
two periods. For the remaining periods, the firm can then pick pt(λ) = 1/2 and
ensure maximum per-period profits at every subsequent t. Thus, there is no better
strategy. ∎
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A.6 Proofs and auxiliary results: revealed fuzzy preferences

Proposition A.3. If R is a fuzzy complete relation, the following two properties
are equivalent.

(i) For all x, y, z ∈X, max{R(x, y), R(y, z)} = 1 Ô⇒ R(x, z) ≥min{R(x, y), R(y, z)}.

(ii) For all x, y, z ∈X, min{R(x, y), R(y, z)} = 1 Ô⇒ R(z, x) ≤min{R(z, y), R(y, x)}.

Proof. Suppose (i) holds. Fix x, y, z ∈X such that min{R(x, y), R(y, z)} = 1. Then,
R(z, y) ≥min{R(z, x), R(x, y)} = R(z, x). Similarly, R(y, x) ≥min{R(y, z), R(z, x)} =
R(z, x). Putting both conclusions together, we get R(z, x) ≤min{R(z, y), R(y, x)}.
Note that this direction does not require fuzzy completeness.

Now suppose (ii) holds. Fix x, y, z ∈X such that max{R(x, y), R(y, z)} = 1.
If R(x, z) = 1, then there’s nothing to prove. Then consider, in turns, that

exactly one of R(x, y), R(y, z) is equal to 1, and that R(x, z) < 1.
Suppose R(x, y) = 1, R(y, z) < 1. Fuzzy completeness gives us that R(z, x) =

1. Then, R(y, z) ≤ min{R(y, x), R(x, z)}. This implies R(x, z) ≥ R(y, z) =
min{R(x, y), R(y, z)}.

Now suppose that R(x, y) < 1 and R(y, z) = 1. Fuzzy completeness gives
us R(y, x) = 1. Then, R(x, y) ≤ min{R(x, z), R(z, y)}. This implies R(x, z) ≥
R(x, y) =min{R(x, y), R(y, z)}. ∎

Theorem 4.1. The following are equivalent.

(i) The family C satisfies WARPD and WOCI.

(ii) The family C admits a cognition-dependent representation.

(iii) The family C is fuzzy-rationalizable.

Proof. The equivalence between (i) and (ii) has already been established, so it
suffices to show that (i) and (iii) are equivalent.

Suppose WARPD and WOCI hold, and take Λ to be a linear order with
maximum λ. Let α ∶ ΛÐ→ (0, 1] be any strictly increasing function with α(λ) = 1.

Let R(x, y) =max{α(λ) ∶ x ∈ Cλ({x, y})}.
We must show that R is fuzzy rational and that, for all S, Cλ(S) = CR;α(λ)(S).
Because each Cλ is nonempty, Cλ({x, y}) contains either x, or y, or both.

Then, R(x, y) = 1 or R(y, x) = 1, i.e. R is fuzzy complete.
Now suppose R(x, y) = 1 and R(y, z) = 1 and consider λ = max{µ ∈ Λ ∶ z ∈

Cµ({x, z})}. Note that R(z, x) = α(λ), since α is strictly increasing. Successive
applications of WARPD yield: z ∈ Cλ({x, y, z}) Ô⇒ z ∈ Cλ({y, z}) Ô⇒ y ∈
Cλ({x, y, z}) Ô⇒ y ∈ Cλ({x, y}). That means that R(y, x) ≥ α(λ) and R(z, y) ≥
α(λ) both hold, and thus R is fuzzy transitive.
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Finally, we show that Cλ(S) = CR;α(λ)(S) for every S ∈ S. Let x ∈ Cλ(S). By
WARPD, x ∈ Cλ({x, y}) for all y ∈ S. Thus, R(x, y) ≥ α(λ) for all y ∈ S. But then,
x ∈ CR;α(λ)(S).

Conversely, suppose x ∈ CR;α(λ)(S). Then, R(x, y) ≥ α(λ) for all y ∈ S. That
means x ∈ Cλ({x, y}) for all y ∈ S. By WARPD, we have that x ∈ Cλ(S).

Now assume that (iii) holds. We show that WARPD and WOCI hold.
Let Λ be ordered according to α. That is, say that λ′ > λ whenever α(λ′) > α(λ).

WOCI clearly holds since the α-cuts are nested. Moreover, α(λ) = 1 for some λ;
since 1 ≥ α(λ) for all λ, λ ≥ λ for all λ.

For WARPD, fix x, y ∈ S ∩ T with x ∈ Cλ(S) and y ∈ Cλ(T ).
Suppose x /∈ Cλ(T ). Then, there exists zT ∈ T such that R(x, zT ) < α(λ).

By fuzzy completeness, R(zT , x) = 1. Since x ∈ Cλ(S), R(x, y) ≥ α(λ) = 1 Ô⇒
R(x, y) = 1.

Then, by fuzzy transitivity, R(y, zT ) ≤ R(x, zT ) < α(λ); thus y /i nCλ(T ), a
contradiction. Thus, x ∈ Cλ(T ).

Now suppose y /∈ Cλ(S). That is, there exists zS ∈ S such that R(y, zS) < α(λ).
That means R(zS , y) = 1, by fuzzy completeness. Moreover, R(x, zS) = 1, since
x ∈ Cλ(S). By fuzzy transitivity, we have that R(y, x) ≤ R(y, zS) < α(λ). But
then y couldn’t be in Cλ(T ), a contradiction. ∎

A.7 Proofs: Extensions

A.7.1 Fuzzy rationalizability: an alternative characterization

Instead of dealing with a fuzzy rational preference relation R, one can equivalently
characterize a system of nested crisp binary relations. Let A be a finite subset of
[0, 1], with 1 ∈ A, and consider the following definition.

Definition A.1 (System of nested semiorders (SNS)). A family {Rα ∶ α ∈ A} of
(crisp) binary relations a system of nested semiorders if:

(i) xRα′y Ô⇒ xRαy for all α′ > α.

(ii) If xR1y and yR1z, then zRαx implies zRαy and yRαx.

(iii) R1 is a weak order.

◊

A family {Rα ∶ α ∈ A} is a system of nested semiorders because each Rα is, in
fact, a semiorder, as the following proposition demonstrates.

Proposition A.4. If {Rα ∶ α ∈ A} is a SNS, then for each α ∈ A, Rα is a
semiorder.
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Proof. Partial order: Completeness and reflexivity is a direct consequence of
(iii) and (i). If z��Rαy and y��Rαx, then by (iii) z��Rαx.

Semitransitivity: if z��Rαy and y��Rαx, then if wRαx we have two cases. First,
if wR1x, then we have that wR1x and xR1z. By (ii), because z��Rαx, it must be
that z��Rαw.

Second, if xR1w, then it must be that xR1w and wR1y (Otherwise, wRαx

would imply yRαx, by (iii)). Thus, wR1y and yR1z, so since z��Rαy, it must be
that z��Rαw.

Interval order: Finally, we show that the interval order property holds.
Suppose x��Rαy and z��Rαw. If xRαw, then we have two cases.

First, if xR1w, then yR1x, xR1w and wR1z, so x��Rαz, Because yR1x and xR1z,
this implies z��Rαy.

Second, if wR1x, then because xRαw it must be that yR1w. Since wR1z, we
must then have that z��Rαy. ∎

Proposition A.5. The family {Rα ∶ α ∈ A} is an SNS if and only if the function
R ∶X ×X Ð→ [0, 1] defined by

R(x, y) ∶=max{α ∈ A ∶ xRαy}, for all x, y ∈X (17)

is fuzzy rational.

Proof. Let {Rα ∶ α ∈ A} be a system of nested semiorders.
since xRαy ⇐⇒ R(x, y) ≥ α, it must be that R(x, y) =max{α ∈ A ∶ xRαy}
Since R1 is a weak order, xR1y or yR1x for all x, y ∈X. Thus, max{R(x, y), R(y, x)} =

1.
Now suppose R(x, y) = 1 or R(y, z) = 1 for some x, y, z ∈X. Let us consider a

few cases.
If both R(x, y) = 1 and R(y, z) = 1 then xR1y and yR1z, implying xR1z (by

(iii)), and thus R(x, z) = 1.
If R(x, y) = 1 and R(y, z) < 1, then it must be that R(z, y) = 1. If R(x, z) = 1,

then there’s nothing left to prove. If R(z, x) = 1, then zR1x and xR1y. For
α = R(y, z), we have that yRαz. That means yRαx and xRαz, implying R(x, z) ≥
α = R(y, z) =min{R(x, y), R(y, z)}.

If R(x, y) < 1 and R(y, z) = 1, then it must be that R(y, x) = 1. If R(x, z) = 1,
then there’s nothing left to prove. If R(z, x) = 1, then yR1z and zR1x. For
α = R(x, y), we have that xRαy. That means xRαz and zRαy, implying R(x, z) ≥
α = R(x, y) =min{R(x, y), R(y, z)}.

Now fix R ∶ X ×X Ð→ [0, 1] fuzzy rational, and let xRαy ⇐⇒ R(x, y) ≥ α.
The first property holds trivially.
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If xR1y and yR1z, then R(x, y) = R(y, z) = 1. Then, R(z, x) ≤min{R(z, y), R(y, x)}.
So whenever zRαx, zRαy and yRαx.

Finally, max{R(x, y), R(y, x)} = 1 implies xR1y or yR1x, i.e. R1 is complete.
Moreover, xR1y and yR1z ⇐⇒ R(x, y) = R(y, z) = 1, which in turn implies
R(x, z) = 1 ⇐⇒ xR1z, so R1 is transitive. Thus, R1 is a weak order. ∎

The above implies that fuzzy rationalizability could be alternatively character-
ized in terms of an SNS, since the above equivalence implies

Corollary A.5.1.

CR;α(S) = {x ∈ S ∶ for all y ∈ S, xRαy}.

A.7.2 Incomplete data: proofs

Proposition 5.1 (WARPD decomposition). A family C satisfies WARPD if and
only if the three conditions below hold.

(i) Contraction. For all S, T ∈ S with S ⊆ T , Cλ(T ) ∩ S ⊆ Cλ(S).

(ii) Expansion. For all S ∈ S and x ∈ S, if x ∈ Cλ({x, y}) for all y ∈ S, then
x ∈ Cλ(S).

(iii) No Cognitive Cycles. For all x, y, z ∈ X, if either x ∈ Cλ({x, y}) and
y ∈ Cλ({y, z}) or x ∈ Cλ({x, y}) and y ∈ Cλ({y, z}), then x ∈ Cλ({x, z}).

Proof. WARPD Ô⇒ (i):
Suppose x ∈ Cλ(T ) ∩ S. Let z ∈ Cλ(S). By WARPD, since x, z ∈ S ∩ T ,

x ∈ Cλ(T ) and z ∈ Cλ(S), we must have that x ∈ Cλ(S).
WARPD Ô⇒ (ii):
Suppose x ∈ S, and x ∈ Cλ({x, y}) for all y ∈ S. Let z ∈ Cλ(S). By WARPD,

since x, z ∈ {x, z} ∩S, x ∈ Cλ({x, z}) and z ∈ Cλ(S), we must have that x ∈ Cλ(S).
WARPD Ô⇒ (iii):
Suppose x ∈ Cλ({x, y}) and y ∈ Cλ({y, z}). Note that WARPD implies y ∈

Cλ({y, z}) as well. Now consider {x, y, z}. If x ∈ Cλ({x, y, z}), then WARPD
guarantees that x ∈ Cλ({x, z}) and thus x ∈ Cλ({x, z}). If y ∈ Cλ({x, y, z}), then
by WARPD x ∈ Cλ({x, y, z}). Then, even if z ∈ Cλ({x, z}) (and not x), WARPD
guarantees that x ∈ Cλ({x, z}). Finally, if z ∈ Cλ({x, y, z}), then y ∈ Cλ({x, y, z})
as well (by WARPD, since y ∈ Cλ({y, z})). Since x ∈ Cλ({x, y}), this means that
x ∈ Cλ({x, y, z}). Then, even if z ∈ Cλ({x, z}) (and not x), WARPD guarantees
that x ∈ Cλ({x, z}).

Similarly, suppose now x ∈ Cλ({x, y}) and y ∈ Cλ({y, z}). Now consider
{x, y, z}. If x ∈ Cλ({x, y, z}), then WARPD guarantees that x ∈ Cλ({x, z}) and
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thus x ∈ Cλ({x, z}). If y ∈ Cλ({x, y, z}), then by WARPD x ∈ Cλ({x, y, z}),
thus x ∈ Cλ({x, z}) and x ∈ Cλ({x, z}). Finally, if z ∈ Cλ({x, y, z}), then y ∈
Cλ({x, y, z}) as well and thus x ∈ Cλ({x, y, z}). Then, even if z ∈ Cλ({x, z}) (and
not x), WARPD still guarantees that x ∈ Cλ({x, z}).

(i)+(ii)+(iii) Ô⇒ WARPD:
Let {x, y} ⊆ S ∩ T with x ∈ Cλ(S) and y ∈ Cλ(T ).
By Contraction, x ∈ Cλ({x, y}) and y ∈ Cλ({y, z}) for all z ∈ T . By No Cycles,

x ∈ Cλ({x, z}) for all z ∈ T . By Expansion, x ∈ Cλ(T ).
Moreover, by Contraction, x ∈ Cλ({x, t}) for all t ∈ S and y ∈ Cλ({x, y}). By

No Cycles, y ∈ Cλ({y, t}) for all t ∈ S. By Expansion, y ∈ Cλ(S). ∎

A.7.3 X infinite: proofs

Theorem 5.1. Suppose X is compact. The family C satisfies WARPD, WOCI
and continuity if and only if it admits a cognition-dependent representation where
u is continuous.

Proof. The continuity of u is a standard for regular rational preferences; see e.g.
Kreps (1988).

The rest of the proof goes through basically without any changes. The only
thing to note is that, in setting

ε(λ, x) ∶=max
z∈X
{u(z) ∶ x ∈ Cλ({x, z})} − u(x)

We have that {z ∈X ∶ x ∈ Cλ({x, z})} is a closed subset of X (and thus compact)
if Rλ as defined is continuous. Then, the continuity of u ensures its maximum is
attained within the set. Thus ε remains well-defined. ∎

Corollary 5.2.1. The function u in a cognition-dependent representation is unique
up to a monotone transformation. Moreover, given u, each ε(λ, x) is bounded by
some ε(λ, x) > 0 and ε(λ, x) > 0 satisfying ε(λ, x) ≥ supλ′>λ ε(λ′, x):

ε(λ, x) > ε(λ, x) ≥ ε(λ, x).

Moreover, if X is connected, then the threshold function ε is unique given u.

Proof. u is unique up to a monotone transformation and inf{u(z) ∶ x��Rλz}−u(x) >
ε(λ, x) ≥max{supλ′>λ ε(λ′, x), max{u(z) ∶ xRλz}} − u(x).

If, given u, for every ũ ∈ (u(z), u(z′)) for all z, z′ in X, there exists z̃ such that
u(z̃) = ũ, then ε(λ, x) is unique given u (a sufficient condition for this is for X to
be connected). ∎
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A.7.4 No intransitive indifferences: proofs

Theorem 5.2. The following are equivalent.

(i) The family C satisfies WARPC and WOCI.

(ii) The family C admits a cognition-dependent categorical representation.

(iii) The family C is strongly fuzzy-rationalizable.

Proof. WARPC and WOCI Ô⇒ CDCR
Suppose u(x) > u(y)+ε(λ, y) and fix z with u(z) ∈ [u(y), u(y)+ε(λ, y)]. Since

y ∈ Cλ({y, zy}) and zy ∈ Cλ({zy, z}), y ∈ Cλ({z, zy, y}), implying y ∈ Cλ(y, z).
By WARPC, if z ∈ Cλ({x, z}) and y ∈ Cλ({y, z}), then y ∈ Cλ({x, y}), a

contradiction.
CDCR Ô⇒ WARPC and WOCI.

WARPC holds. Let λ ∈ Λ, x, y ∈ X and S, T ∈ S with {x, y} ⊆ S ∩ T . Let
x ∈ Cλ(S) and y ∈ Cλ(T ). We show that x ∈ Cλ(T ) and y ∈ Cλ(S).

x ∈ Cλ(T ). Since x ∈ Cλ(S), u(x) + ε(λ, x) ≥ u(y). Suppose there exists
zT ∈ T such that u(zT ) > u(x) + ε(λ, x). By property (iv), u(zT ) >
u(y) + ε(λ, y), a contradiction with the fact that y ∈ Cλ(T ).

y ∈ Cλ(S). Identical argument as above, with y and T instead of x and S.

∎
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