

<mark>AV</mark>ALIAÇÃO DO PROCESSO DE PRODUÇÃO DE GIN A PARTIR DE CACHAÇA <mark>U</mark>TILIZANDO ALAMBIQUE E COLUNA DE DESTILAÇÃO

Gabriela Souza (G)¹; Luciara Borges (G)¹; Robert Amaro (G)¹; Rejane C. Santana (PQ)²; Alexandre F. Pereira (PQ)²; César A. S. Silva (PQ)^{1*}

¹Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil. cesar.sodre@ufv.br

²Departamento de Química, Universidade Federal de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil.

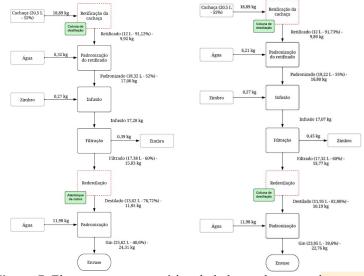
RESUMO

RESUMO - O gin, cuja origem remonta ao século XVII, é produzido a partir de álcool etílico de origem agrícola, zimbro, água e compostos vegetais aromáticos. Este estudo teve como objetivo investigar o processo de produção do gin, delineando suas etapas, avaliando a influência do tipo de equipamento (alambique de cobre vs. coluna de destilação) sobre o rendimento, por meio de balanços de massa e energia, e comparar a bebida final com uma amostra comercial, considerando teor alcoólico, acidez volátil e teor de cobre. O gin obtido em alambique apresentou maior rendimento e teor alcoólico, atribuídos aos parâmetros de tempo e temperatura. As maiores perdas ocorreram nas etapas de filtração e destilação; a padronização foi a que mais contribuiu para o volume final. O teor alcoólico foi semelhante entre as amostras, exceto na comparação com a amostra comercial após 90 dias. A acidez volátil equalizou-se ao longo do tempo, e o cobre foi indetectável em todas as análises.

Palavras-chave:balanço de massa; acidez; graduação alcoólica; teor de cobre.

Introdução

O gin tem se destacado como uma das bebidas com maior crescimento no mercado consumidor. Sua produção envolve, principalmente, três matérias-primas: álcool etílico de origem agrícola, aromatizantes vegetais e água. Apesar da crescente difusão desse destilado, a produção de gin ainda é pouco explorada no Brasil, sendo evidente a escassez de informações detalhadas sobre os Padrões de Identidade e Qualidade (PIQ) e sobre o processo produtivo dessa bebida. Diante desse cenário, torna-se relevante aprofundar o conhecimento sobre a fabricação e caracterização do gin, cuja demanda vem crescendo no mercado nacional. Assim, o presente estudo teve como objetivo avaliar a influência do tipo de equipamento — coluna de destilação ou alambique de cobre — na produção de uma formulação padrão de gin. Foram analisadas as etapas do processo produtivo, reunindo informações relevantes acerca dos insumos utilizados, das operações unitárias aplicadas, dos resíduos gerados e das características do produto.


Experimental

Insumos

Para fabricação do gin, foi escolhida a cachaça branca (não envelhecida), de marca comercial popular e graduação alcoólica de 60° GL, identificada em refratômetro de mão comum, adquirida em cachaçaria local. A cachaça foi retificada, em coluna de destilação, para aumento do seu teor alcóolico, caracterizando um álcool etílico potável de origem agrícola, segundo especificações do Art. 86° do Decreto nº 2.314, de 4 de setembro de 1997. Os demais insumos, grãos de zimbro e água mineral potável, foram adquiridos em mercado local, sendo manipulados e armazenados de acordo com recomendações do fabricante.

Produção do Gin

Os fluxogramas de produção do Gin com os respectivos balanços de massa estão representados na Figura 1.

Figura 7. Fluxograma esquemático do balanço de massa do processo de fabricação de gin.

Caracterização da bebida produzida

A graduação alcoólica foi determinada conforme os métodos 2 e 3 da Portaria nº 76, de 26 de novembro de 1986, do Ministério da Agricultura, Pecuária e Abastecimento (MAPA)¹. A acidez volátil seguiu a metodologia oficial de ensaio nº 05 da mesma Portaria¹. O teor de cobre foi determinado com base na metodologia descrita pela AOAC².

Resultados e Discussão

Balanço de massa

Os fluxogramas esquemáticos de produção das bebidas, em alambique de cobre e coluna de destilação (Figura 1), apontam os fluxos de entrada e saída de matéria em cada etapa da fabricação. A maior redução de massa foi observada na etapa de destilação, como esperado, uma vez que esta visa concentrar o teor alcoólico do produto, promovendo a eliminação de grande parte da água e de álcoois superiores que poderiam comprometer a qualidade sensorial da bebida. Por outro lado, a etapa de padronização foi a que mais contribuiu para o aumento do volume final, considerando-se a adição inicial de 6 litros de água por destilado antes da infusão e, posteriormente, mais 12 litros, com o objetivo de atingir a faixa desejada de graduação alcoólica (35–54% v/v a 20 °C). De acordo com Bonicontro³, alambiques de cobre operam em batelada e, embora apresentem menor rendimento e maior demanda energética em comparação às colunas de inox, oferecem vantagens na qualidade do destilado, como a remoção de compostos sulfurados, redução de acidez e de aldeídos, além de contribuir positivamente para o perfil sensorial. Já as colunas, que realizam destilação contínua, possibilitam maior rendimento, mas apresentam dificuldades de higienização e tendem a concentrar álcoois de cadeia ramificada (óleos fúseis), que comprometem a qualidade. Contrariando a literatura, o alambique apresentou maior rendimento (24,31 kg) e teor alcoólico em comparação à coluna (22,76 kg), resultado atribuído à análise pontual e à retenção de resíduo alcoólico no interior da coluna, que interfere nas destilações subsequentes.

Caracterização do Gin

Para caracterização das bebidas e validação das metodologias de produção, amostras de gin foram submetidas a análises em triplicata de teor alcoólico, acidez volátil e teor de cobre. Como referência, utilizou-se uma amostra comercial adquirida localmente, produzida em 05 de abril de 2021. Os resultados estão apresentados na Tabela 1.

Tabela 1. Resultado das análises de caracterização do Gin.

	Gin alambique	Gin coluna	Amostra padrão
15 dias			-
Teor alcoólico %(v/v)	42,67ª	38,00 ^a	36,40ª
Acidez volátil (mg/100mL)*	3,28ª	3,00 ^{ab}	1,99 ^b
Teor de cobre (mg/l)	-0,03**	-0,03**	-0,03**
90 dias			-
Teor alcoólico %(v/v)	40,60°	39,60 ^a	36,40 ^b

Acidez volátil (mg/100mL)*	1,79ª	1,83ª	1,99ª
Teor de cobre (mg/l)	-0,03**	-0,03**	-0,03**

^{*} mg de ácido acético/100 mL de amostra. ** não detectado por espectrometria de absorção atômica com chama. Os valores seguidos de letras iguais, em uma mesma linha, não diferem entre si pelo teste de Tukey a 5% de probabilidade de erro.

A comparação entre as amostras demonstrou que não houve diferença significativa no teor alcoólico entre os gins produzidos em alambique e coluna, nos períodos de 15 e 90 dias. A amostra comercial, entretanto, apresentou diferença significativa em relação às amostras produzidas após 90 dias, embora todas estejam dentro dos limites legais (35-54% v/v). O gin de alambique apresentou queda de 5% no teor alcoólico, enquanto o de coluna aumentou 4,2%, variações atribuídas à evaporação de compostos voláteis e possíveis desvios na amostragem. O maior rendimento e teor alcoólico do gin de alambique estão associados à destilação mais lenta, resultante de parâmetros operacionais como controle de temperatura e tempo de parada. A amostra comercial apresentou desvio de 4% em relação ao teor informado no rótulo. Quanto à acidez volátil, houve redução ao longo da maturação, com valores próximos entre as amostras após 90 dias. Todas apresentaram níveis inferiores aos limites legais para destilados. O teor de cobre foi indetectável em todas as amostras e períodos, estando, portanto, abaixo do limite máximo de 5 mg/L estabelecido pela legislação brasileira. A ausência de cobre pode ser atribuída à boa prática de higienização dos equipamentos e à bidestilação, que contribui para a remoção de resíduos metálicos, conforme apontado por Boza & Horii⁴ e Garbin et al.⁵.

Conclusões

O presente trabalho permitiu a definição de um fluxograma padrão para a produção de gin, composto por oito etapas: retificação da cachaça, padronização do retificado, infusão, filtração, redestilação, padronização, envase e maturação. Com base no balanço de massa global, o alambique apresentou desempenho superior à coluna de destilação, no entanto, a redestilação em alambique demandou aproximadamente o dobro do tempo em relação ao processo conduzido na coluna, indicando maior eficiência em qualidade e rendimento, embora com menor produtividade em termos de tempo de processamento.

Referências

- 1- Association of Official Analytical Chemists, *Official Methods of Analysis*, AOAC, Arlington, 1995, 26, 6–7.
- 2- Brasil, Ministério da Agricultura, Pecuária e Abastecimento, *Portaria nº 76*, Diário Oficial da República Federativa do Brasil, Brasília, 1986, 28 nov, Seção 1, pt. 2.
- 3- N. Bonicontro, *Mapa da Cachaça*, 2019, Disponível em: https://www.mapadacachaca.com.br/artigos/al-kohuldestilacao-em-alambique-ou-em-coluna-na-visao-de-um-produtor-de-cachaca/ (acesso em 01 nov. 2021).
- 4- Y. Boza; J. Horii, Ciênc. Tecnol. Aliment. 2000, 20(3), 279–284.
- 5- R. Garbin et al., Ciênc. Rural 2005, 35(6), 1436–1440.