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Abstract: In this work, we derive all finite-size corrections required to ensure the composable security of
continuous-variable quantum key distribution (CV-QKD) protocols under collective Gaussian attacks. Un-
like asymptotic analyses that assume infinite data, our approach accounts for realistic constraints imposed
by finite sample sizes—crucial for practical implementations. We systematically examine how each postpro-
cessing step contributes to the final security guarantees in terms of both correctness and secrecy. Particular
attention is given to the statistical limitations of conventional estimation techniques in the finite-key regime.
We analyze how inaccuracies in parameter estimation can compromise security and identify the conditions
under which secure key generation remains viable. Our results help bridge the gap between theoretical
security proofs and operational CV-QKD systems, supporting the development of reliable quantum com-
munication technologies.
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1. Introduction

Security in communication is a fundamental pil-

lar of contemporary society, as it enables the ex-

change of information without the risk of poten-

tial leaks [1]. However, recent algorithmic de-

velopments pose a threat to this security, par-

ticularly quantum algorithms capable of factor-

ing integers in logarithmic time [2]. In light of

these challenges, research in quantum communi-

cation has sought to exploit the intrinsic proper-

ties of quantum physics to enable uncondition-

ally secure communication [3, 4]. Within this

framework, continuous-variable quantum key dis-

tribution (CV-QKD) has emerged as a promis-

ing approach [5], due to its greater compatibility

with current components used in coherent optical

telecommunication systems [6, 7, 8].

In general, the proofs often rely on theoretical

models of CV-QKD protocols that assume an infi-

nite number of shared signals. However, postpro-

cessing data is mainly based on statistical meth-

ods [9]. In principle, the statistical law of large

numbers guarantees that the postprocessing results

hold in the asymptomatic scenario [10], but this

assumption is obviously impossible to achieve in

practical implementations, such that one must con-

sider finite-size correlations [11, 12] in order to en-

sure genuine composable security [13].

In this work, we derive all the essential finite-size

corrections for the security assurance against col-

lective Gaussian attacks. Thus, we discussed the

effect of postprocessing procedures in correctness,

secrecy and parameter estimation of the protocol

in order to discuss more realistic CV-QKD deploy-

ments.
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2. Continuous-variable quantum key distribu-

tion

In a typical CV-QKD protocol, quantum informa-

tion can be encoded onto coherent states by modu-

lating the amplitude and phase quadratures of laser

light, typically using electro-optic modulators at

the transmitter [6, 7]. This modulation enables the

establishment of a secret-key between two legit-

imate QKD users (Alice and Bob). The modu-

lated coherent states are then transmitted through a

quantum channel, which is assumed to be entirely

controlled by a potential eavesdropper (Eve) [14].

The security of CV-QKD protocols employing

Gaussian-modulated coherent states was initially

proven in the asymptotic regime [15, 16], and

subsequently extended to the finite-size scenario,

guaranteeing universal composability against both

collective [17] and general coherent attacks [18].

Eve’s optimal attack, accounting for finite-size ef-

fects, has been demonstrated to be a Gaussian at-

tack [15]. Consequently, the collective state shared

between Alice and Bob can be assumed to be

Gaussian. In the entanglement-based picture [19],

this state is fully characterized by its covariance

matrix

Γ =

(VA+1)I2 tZσz

tZσz (t2VA+σ
2)I2

 , (1)

where σz is the Pauli matrix and Z =
√

V2
A+2VA

for Gaussian modulation [6].

A widely adopted method to quantifies the aver-

age number of secure bits that Alice and Bob can

distill per signal, after accounting for any infor-

mation that may have been gained by a potential

eavesdropper (Eve), is the Devetak–Winter bound

[20], expressed as

I(x : y)− sup
N :A′→B

H(y : E) (2)

where I(x : y) denotes the mutual information be-

tween Alice’s and Bob’s classical variables x and

y [21], while H(y : E) represents the Holevo in-

formation between Bob’s variable y and the adver-

sary’s quantum system E [22] — computed using

the simpletic eigenvalues of the covariance matrix.

The supremum is taken over all quantum channels

N : A → B that are consistent with the statistics

observed by Alice and Bob during the parameter

estimation step.

The measured data {y}N is related to the transmit-

ted signals {x}N by the linear normal model

yi = t
xi
√
µ
+ zi (3)

where t =
√

T and z is a random variable related to

the noise with variance σ2 = 1+ t2ξ [17]. Consid-

ering that both, Alice and Bob, have access only to

the signals x and y, one needs to estimate VA, t and

σ2, where the latter has a drastic impact for long

distances [23].

For operational purposes, we use the Protocol op-
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eration 1 to describe the sequence of steps re-

quired to implement a CV-QKD scheme under re-

alistic assumptions. In summary, this protocol

begins with the quantum signal preparation and

transmission, followed by coherent detection at

the receiver’s end. Subsequently, classical post-

processing steps are applied, including sifting,

parameter estimation, information reconciliation,

and privacy amplification. At the end of the proto-

col, Alice must have a string S A and Bob a string

S B, such that S A = S B with high probability, and

this shared string is secret with respect to any po-

tential eavesdropper. Considering these character-

istics, this protocol is characterized as a prepare

and measure protocol [6].

Protocol operation 1 — Prepare and Measure

1. State preparation: Alice modulates coherent

states by applying a Gaussian modulation to

both quadratures, independently drawn from

a centered normal distribution with variance

VA, and sends them through the quantum

channel to Bob.

2. State measurement: Bob performs hetero-

dyne detection on each incoming state, simul-

taneously measuring both quadratures.

3. Information reconciliation: Bob sends clas-

sical information to Alice over an authenti-

cated public channel in order to correct her

data. A forward error correction code is

used, where Bob’s data serves as the refer-

ence.

4. Parameter estimation: Alice uses a ran-

domly selected subset of the correlated data

to estimate channel parameters ensuring they

fall within acceptable thresholds for security.

5. Privacy amplification: Alice and Bob apply

a privacy amplification protocol to distill a

shared secret key, reducing any partial infor-

mation potentially held by an eavesdropper to

a negligible level, thus ensuring composable

security.

3. Finite-size effects

Finite-size effects have a significant impact on the

security of CV-QKD protocols, as they introduce

statistical fluctuations that must be carefully ac-

counted [12]. In practical implementations, only a

finite number of signals can be exchanged, which

limits the precision with which parameters can be

estimated. As a result, incorporating finite-size ef-

fects is essential for achieving composable secu-

rity, where the generated key can be securely used

in subsequent cryptographic tasks even in the pres-

ence of an adversary with unbounded quantum ca-

pabilities [17, 11].

A protocol is said to be secure if it is both cor-

rect and secret [24]. The correctness means that

the final keys generated by Alice and Bob must

be perfectly identical (S A = S B). Also, the proto-

col must ensure secrecy, requiring that Alice’s key
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S A follows a uniform probability distribution and

remains completely independent of any quantum

system E controlled by an eavesdropper.

For a protocol to be considered ideal, it must

simultaneously satisfy a third fundamental crite-

ria. The protocol should demonstrate robustness,

which means it will never terminate prematurely

in the absence of any eavesdropping activity, con-

tinuing to function properly when the communi-

cation channel is undisturbed [18]. Here, we are

interested only in security of the protocol, so we

assume a perfect robustness protocol without any

aborting probability.

3.1. Correctness

To ensure the correctness of the protocol, the mea-

sured data must allow for efficient information rec-

onciliation, such that S A = S B [24]. This proce-

dure takes place immediately after the state mea-

surement step, where Bob obtains a classical out-

come from the received quantum states. A key

parameter used to quantify how much informa-

tion can be recovered during reconciliation is the

reconciliation efficiency β ∈ [0,1], where β = 1

corresponds to a perfectly efficient reconciliation

scheme.

Furthermore, one must ensure that error correc-

tion succeeds with probability pec, or equivalently

fails with probability FER = 1− pec, known as the

frame error rate [6]. The value of pec depends

on several factors, including the signal-to-noise ra-

tio, the target reconciliation efficiency β, and the ϵ-

correctness parameter ϵcor, which bounds the prob-

ability that Alice’s and Bob’s strings differ after er-

ror correction and successful verification of their

hashes [11]. In particular, a protocol it is called

ϵcor− correct if Pr[S A , S B] ≤ ϵcor.

Considering this aspects, the finite-size correlation

related to the correctness are given by

kϵcor = pEC(βI(x : y)−H(y : E)) . (4)

3.2. Secrecy

The finite number of exchanged quantum signals

introduces statistical uncertainty in the estimation

of Eve’s information and affects the secrecy of the

final key. To ensure security even in this finite-

size regime, a correction term∆(n) that depends on

the probability of failure of the secrecy ϵsec proce-

dure is introduced in the key-rate expression [12].

This term accounts for the deviation between the

estimated and actual amount of information poten-

tially leaked to an eavesdropper, written as

∆(n) ≡ (2dimHx+3)

√
log2(2/ϵ̄)

n

+
2
n

log2

(
1
ϵPA

)
, (5)

where Hx is the Hilbert space associated with the

raw key variable x and ϵsec = ϵPA+ ϵ̄, with ϵ̄ being

a smoothing parameter and ϵPA the failure proba-
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bility of the privacy amplification step [11]. Both

parameters are chosen to ensure composable secu-

rity and must be numerically optimized in order

to obtain a key ϵsec-indistinguishable from Eve’s

measurement.

The first term in ∆(n) captures the statistical

fluctuation in the estimation of Eve’s knowledge

and quantifies how the smooth min-entropy ap-

proaches the von Neumann entropy as n increases

[17]. The second term reflects the impact of

the privacy amplification procedure, ensuring that

the compression of the raw key is sufficient to

eliminate any residual information available to an

eavesdropper [11].

As a result, the secret key rate in the finite-size

scenario becomes:

kϵcor+ϵsec = pEC
[
βI(x : y)−H(y : E)−∆(n)

]
. (6)

3.3. Parameter estimation

In CV-QKD, parameter estimation plays a cen-

tral role in ensuring the security of the proto-

col. Unlike the asymptotic regime, where the law

of large numbers guarantees convergence of esti-

mators to true values, finite-size implementations

require careful statistical treatment. In particu-

lar, the uncertainty in estimating t and σ2 limits

the achievable secret key rate, as underestimating

Eve’s information can compromise security [17].

The maximum likelihood estimation (MLE)

method provides estimators for t and σ2 in a linear

model:

t̂ =
m∑

i=1

yixi

x2
i

, σ̂2 =

m∑
i=1

(yi− t̂xi)2

m
. (7)

and confidence intervals are derived by defining

conservative bounds:

tmin ≈ t̂− zϵPE/2

√
σ̂2

mVA
, (8)

σ2
max ≈ σ̂

2+ zϵPE/2
σ̂2
√

2
√

m
, (9)

where zϵPE/2 = erf−1(1− ϵPE/2), with erf() being

the error function [25].

These bounds ensure that, except with probability

ϵPE/2, the true values of t and σ2 lie within the

estimated intervals. Incorporating these estimates,

the worst-case covariance matrix becomes

ΓϵPE =

(VA+1)I2 tminZσz

tminZσz (t2minVA+σ
2
max)I2

 , (10)

which defines a confidence region with security

parameter ϵPE . This approach ensures composable

security under collective attacks in finite-size im-

plementations. Finally,

kϵ =
npEC

N
(βI(x : y)−HϵPE(x : E)−∆(n)) (11)

where ϵ = pECϵPE + ϵcor + ϵsec, which means that

one must ensure that the key is secure against any
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eavesdropper attack, up to a probability of failure

ϵ [26].

4. Numerical investigations

In this section, we investigate the impact of the

finite-size scenario on the secret key rate of the

CV-QKD protocol. For this purpose, we consider

the protocol described in Protocol Operation 1,

with heterodyne detection and reverse reconcilia-

tion. The protocol parameters used in the simu-

lations are presented in Tab. 1, based on exper-

imental implementations reported in the literature

[7, 27, 28, 29, 12].

Table 1: Protocol parameters used in numerical in-
vestigations.

Protocol parameter Symbol Value

Hilbert space dimension dimHx 2 (bin.)

Quantum duty µ 2 (het.)

Detector efficiency ηeff 0.8

Excess noise ξ 0.01 SNU

Modulation variance VA 5 SNU

Fraction of raw key n/N 0.5

Reconciliation efficiency β 0.95

Success probability of EC pEC 0.9

To compute the asymptotic secret key rate, we use

Eq. (2), which assumes infinite statistics. For the

finite-size analysis, we apply Eq. (11), which in-

corporates the statistical uncertainty through the

penalty term ∆(n) as well as the confidence in-

tervals for the estimated parameters tmin and σ2
max

obtained via MLE. Here, we adopt ϵPE = ϵcor =

ϵ̄ = ϵPA = 10−10 for the security parameters, yield-

ing an overall composable security level of ϵ ≈

3.9 ·10−10 against collective Gaussian attacks

Figure 1: Secret-key rate using the discussed pro-
tocol with parameters from Table 1. The black
solid line represents the asymptotic limit, the
green line uses the real values of the channel
with N = 2 · 108, and the red lines correspond to
the MLE-based estimation for N = 2 · 106 (dot-
dashed), 2 ·107 (dotted), and 2 ·108 (solid) signals.
In all finite-size cases, the estimated key rate re-
mains below the ideal case, ensuring security.

The results in Fig. 1 clearly show the severe im-

pact of parameter estimation in finite-size scenar-

ios. While the asymptotic and real-value curves

extend to over 60 km, the MLE-based estimation

leads to a significant reduction in achievable dis-

tance. This is especially evident for small block

sizes (N = 2 · 106), where the uncertainty in esti-

mating transmittance and excess noise leads to a

rapid drop in the secret key rate. As the block size

increases, the estimated values converge toward

the real values, and the secret key rate approaches

the ideal scenario. These results highlight the im-

portance of precise statistical estimation and the

need for large data blocks to ensure secure key dis-

tribution in practical implementations.
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5. Perspectives and conclusion remarks

Future improvements in CV-QKD protocols will

likely focus on enhancing both error correction

and privacy amplification in the finite-size regime.

Optimizing reconciliation efficiency while mini-

mizing leakage during information reconciliation

remains a critical challenge, especially at low

SNRs [28]. On the secrecy side, tighter finite-size

bounds and improved estimations of the smooth

min-entropy can increase the secret-key rate and

reduce the block length required for secure key

generation.

Parameter estimation is another key area for devel-

opment, particularly in regimes with short block

lengths and limited resources. Advanced tech-

niques, including machine learning and adaptive

estimators, may offer more accurate characteriza-

tions of the quantum channel and noise parame-

ters. Recently, Galvão et. al (2025) have proven

security against collective attacks for parameter

estimation using neural networks [30]. This could

lead to more accurate confidence intervals, and

better key rate optimization.

In conclusion, the security of CV-QKD proto-

cols in practical scenarios relies heavily on ro-

bust finite-size analysis, especially in the compos-

able framework. As protocols move from labo-

ratory demonstrations to real-world deployment,

addressing these limitations through improved sta-

tistical methods, numerical optimization, and effi-

cient implementation of classical post-processing

will be essential for achieving reliable and scalable

quantum communication networks.

Acknowledgement

This work was fully funded by the project HW

DSP: Development and Prototyping of Multicore

SoC with Dedicated Accelerators and RISC-V

DSP, supported by QuIIN – Quantum Industrial

Innovation, the EMBRAPII CIMATEC Compe-

tence Center in Quantum Technologies. Financial

resources were provided by the PPI IoT/Industry

4.0 program of the Brazilian Ministry of Sci-

ence, Technology and Innovation (MCTI), under

grant number 053/2023, in partnership with EM-

BRAPII.

References

[1] United Nations. United nations global principles for
information integrity, 2024. Accessed: 2025-07-12.

[2] P.W. Shor. Algorithms for quantum computation: dis-
crete logarithms and factoring. In Proceedings 35th
Annual Symposium on Foundations of Computer Sci-
ence, pages 124–134, 1994.

[3] Renato Renner. Security of Quantum Key Distribution.
PhD thesis, 2006.

[4] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and
Hugo Zbinden. Quantum cryptography. Rev. Mod.
Phys., 74:145–195, Mar 2002.

[5] Frédéric Grosshans and Philippe Grangier. Continuous
variable quantum cryptography using coherent states.
Phys. Rev. Lett., 88:057902, Jan 2002.

[6] Fabian Laudenbach, Christoph Pacher, Chi-Hang Fred
Fung, Andreas Poppe, Momtchil Peev, Bernhard
Schrenk, Michael Hentschel, Philip Walther, and
Hannes Hübel. Continuous-variable quantum key
distribution with gaussian modulation—the theory of
practical implementations. Advanced Quantum Tech-
nologies, 1(1):1800011, 2018.

[7] Yichen Zhang, Yiming Bian, Zhengyu Li, Song Yu,

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future – 2025



and Hong Guo. Continuous-variable quantum key dis-
tribution system: Past, present, and future. Applied
Physics Reviews, 11(1):011318, 03 2024.

[8] Vladyslav C. Usenko, Antonio Acín, Romain Al-
léaume, Ulrik L. Andersen, Eleni Diamanti, To-
bias Gehring, Adnan A. E. Hajomer, Florian Kan-
itschar, Christoph Pacher, Stefano Pirandola, and Va-
lerio Pruneri. Continuous-variable quantum communi-
cation, 2025.

[9] Yi Luo, Xi Cheng, Hao-Kun Mao, and Qiong Li. An
overview of postprocessing in quantum key distribu-
tion. Mathematics, 12(14), 2024.

[10] George Casella and Roger Berger. Statistical inference.
CRC press, 2024.

[11] Stefano Pirandola. Composable security for contin-
uous variable quantum key distribution: Trust levels
and practical key rates in wired and wireless networks.
Phys. Rev. Res., 3:043014, Oct 2021.

[12] Nitin Jain, Hou-Man Chin, Hossein Mani, Cosmo
Lupo, Dino Solar Nikolic, Arne Kordts, Stefano Pi-
randola, Thomas Brochmann Pedersen, Matthias Kolb,
Bernhard Ömer, Christoph Pacher, Tobias Gehring,
and Ulrik L. Andersen. Practical continuous-variable
quantum key distribution with composable security.
Nature Communications, 13(1):4740, Aug 2022.

[13] R. Canetti. Universally composable security: a new
paradigm for cryptographic protocols. In Proceedings
42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145, 2001.

[14] Renato Renner. Security of quantum key distribu-
tion. International Journal of Quantum Information,
06(01):1–127, 2008.

[15] Raúl García-Patrón and Nicolas J. Cerf. Unconditional
optimality of gaussian attacks against continuous-
variable quantum key distribution. Phys. Rev. Lett.,
97:190503, Nov 2006.

[16] Miguel Navascués, Frédéric Grosshans, and Antonio
Acín. Optimality of gaussian attacks in continuous-
variable quantum cryptography. Phys. Rev. Lett.,
97:190502, Nov 2006.

[17] Anthony Leverrier, Frédéric Grosshans, and Philippe
Grangier. Finite-size analysis of a continuous-variable
quantum key distribution. Phys. Rev. A, 81:062343,
Jun 2010.

[18] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B.
Scholz, M. Tomamichel, and R. F. Werner. Continuous
variable quantum key distribution: Finite-key analysis
of composable security against coherent attacks. Phys.
Rev. Lett., 109:100502, Sep 2012.

[19] Frédéric Grosshans, Nicolas J. Cerf, Jérôme Wenger,
Rosa Tualle-Brouri, and Philippe Grangier. Virtual
entanglement and reconciliation protocols for quan-

tum cryptography with continuous variables. Quantum
Info. Comput., 3(7):535–552, October 2003.

[20] Igor Devetak and Andreas Winter. Distillation of secret
key and entanglement from quantum states. Proceed-
ings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 461(2053):207–235, 2005.

[21] Thomas M Cover. Elements of information theory.
John Wiley & Sons, 1999.

[22] Michael A Nielsen and Isaac L Chuang. Quantum
computation and quantum information. Cambridge
university press, 2010.

[23] Duan Huang, Peng Huang, Dakai Lin, and Guihua
Zeng. Long-distance continuous-variable quantum key
distribution by controlling excess noise. Scientific Re-
ports, 6(1):19201, Jan 2016.

[24] Marco Tomamichel, Charles Ci Wen Lim, Nicolas
Gisin, and Renato Renner. Tight finite-key analysis
for quantum cryptography. Nature Communications,
3(1):634, Jan 2012.

[25] A. Monfort. Cours de statistique mathématique. Col-
lection "Economie et statistiques avancées". Econom-
ica, 1982.

[26] Valerio Scarani and Renato Renner. Quantum cryp-
tography with finite resources: Unconditional secu-
rity bound for discrete-variable protocols with one-way
postprocessing. Phys. Rev. Lett., 100:200501, May
2008.

[27] Qiming Lu, Qi Shen, Yuan Cao, Shengkai Liao, and
Chengzhi Peng. Ultra-low-noise balanced detectors
for optical time-domain measurements. IEEE Trans-
actions on Nuclear Science, 66(7):1048–1055, 2019.

[28] Mario Milicevic, Chen Feng, Lei M. Zhang, and
P. Glenn Gulak. Quasi-cyclic multi-edge ldpc codes
for long-distance quantum cryptography. npj Quantum
Information, 4(1):21, Apr 2018.

[29] Hou-Man Chin, Nitin Jain, Darko Zibar, Ulrik L. An-
dersen, and Tobias Gehring. Machine learning aided
carrier recovery in continuous-variable quantum key
distribution. npj Quantum Information, 7(1):20, Feb
2021.

[30] Lucas Q. Galvão, Davi Juvêncio G. de Sousa,
Micael Andrade Dias, and Nelson Alves Ferreira
Neto. Neural network for excess noise estimation
in continuous-variable quantum key distribution un-
der composable finite-size security. arXiv:2507.23117
[quant-ph], 2025.

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future – 2025


	Introduction
	Continuous-variable quantum key distribution
	Finite-size effects
	Correctness
	Secrecy
	Parameter estimation

	Numerical investigations
	Perspectives and conclusion remarks

