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Abstract

Risk budgeting is a portfolio strategy where each asset contributes a prespecified amount

to the aggregate risk of the portfolio. In this work, we propose an efficient numerical

framework that uses only simulations of returns for estimating risk budgeting portfolios.

Besides a general cutting planes algorithm for determining the weights of risk budgeting

portfolios for arbitrary coherent distortion risk measures, we provide a specialised version for

the Expected Shortfall, and a tailored Stochastic Gradient Descent (SGD) algorithm, also for

the Expected Shortfall. We compare our algorithm to standard convex optimisation solvers

and illustrate different risk budgeting portfolios, constructed using an especially designed

Julia package, on real financial data and compare it to classical portfolio strategies.

Keywords Portfolio Allocation, Risk Parity, coherent risk measures, Stochastic Optimisa-

tion

1 Introduction

Since the seminal work of Markowitz, investors are concerned with portfolio strategies that aim

to maximise reward while simultaneously accounting for its riskiness. While the reward of a
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portfolio strategy is commonly captured via its expected return, the risk of a portfolio may be

quantified via e.g., a risk or deviation measure of the aggregate portfolio.

Another important aspect of portfolio strategies is the notion of diversification. Examples

of portfolios that may be viewed as diversified are the equally weighted portfolio or constant

proportion strategy, such as the 60/40 portfolio (60% equities, 40% stocks). These example

portfolios, while they may be diversified in terms of asset allocation, are not diversified in terms

of how each asset contributes to the aggregate portfolio risk. In this paper, we focus on risk

based diversification strategies called risk budgeting portfolios. Risk budgeting portfolios are

portfolio strategies where each asset contributes a prespecified amount to the aggregate risk of

the portfolio. The portfolio where each asset contributes equally to the overall risk – termed

the risk parity portfolio – was coined by Qian (2005) and formally introduced by Maillard et al.

(2010). Today, the best estimate (by the investment company Neuberger Berman1) is that these

strategies have about $120 billion under management. The conceptual difference between the

risk parity portfolio and the equally weighted portfolio is that while the latter invests equally

(in percentage) in each asset, the former has portfolio weights so that the risk of the portfolio

is equally allocated to each asset. Thus, risk budgeting portfolios are strategies that diversify

the risk of the aggregate portfolio among its assets.

Risk budgeting portfolios have only been mathematically formalised recently in Maillard

et al. (2010), and since then the related literature is growing. Early works on the topic focus

on the volatility (variance) of the portfolio, see Maillard et al. (2010) and Roncalli (2013) for a

detailed review. Extension to a multi-period setting has been considered in Li et al. (2021) using

the volatility measure. Cesarone and Tardella (2017) study the connection between risk parity

portfolios with the variance as a measure of risk and the equal variance portfolio, a portfolio

where the variances of each asset are equal. Recently, Bellini et al. (2021) studied risk parity

for expectile risk measures and Anis and Kwon (2022) considers risk parity with additional

cardinality constraints.

Here we develop a framework based on stochastic optimisation to the problem of finding a

long-only risk budgeting portfolio based on convex risk measures. Our algorithms use nothing

more than simulations from the multivariate distribution of the assets’ returns. This is desirable

since, for general joint distributions of assets’ returns, there is no closed-form expression for the

risk measure. Furthermore, depending on the estimators for the return distributions, there

might not be a closed-form expression for the probability density functions of the returns,

however, one might still be able to sample from such distributions, e.g., using Markov Chain

1https://www.nb.com/en/global/insights/risk-parity-and-the-fallacy-of-the-single-cause
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Monte Carlo methods. The proposed algorithms are implemented on a companion Julia package

(da Costa, 2023) - called SamplingRB -, which we used to generate the risk budgeting portfolios

studied in this paper. When the risk measure is chosen as the Expected Shortfall (ES) (also

known as Conditional Value-at-Risk (CVaR)), we also provide specialised algorithms to take

advantage of its special structure.

Although in less generality than our proposal, other authors have also used the ES in risk

budgeting constructions. Boudt et al. (2013) study two investment strategies, the first strategy

minimises the largest ES risk contribution (see Section 2.1, below, for a definition), and the

second portfolio strategy imposes bounds on the ES risk contributions. In Darolles et al. (2015)

the authors claim to construct a risk budgeting portfolio based on both the Value-at-Risk (VaR)

and the ES, writing the VaR or ES risk contributions as conditional expectations (see Tasche

(1999)) and setting them to some prespecified budget. However, no detail on the considered

optimisation problem is given. More recently, Jurczenko and Teiletche (2019) construct risk

budgeting portfolios based on the minimisation of the sum of squared differences between the

ES risk contributions and the target budget. This strategy was used, for example, in Bruder

and Roncalli (2012) but does not lead to a convex optimisation problem. Moreover, it requires

an explicit expression for the risk contributions, which is in contrast to the algorithms proposed

in this paper that are designed to work on simulated scenarios of returns.

Other risk parity formulations (with accompanying optimisation algorithms) were proposed

in Maillard et al. (2010) and Bai et al. (2016). In Maillard et al. (2010), the authors aim at

minimising the sum of all squared differences between pairs of risk contributions. On the other

hand, Bai et al. (2016) propose a least squares formulation, minimising the squared difference

between risk contributions and some auxiliary parameter, with the optimisation performed with

respect to both the weights and the auxiliary parameter. Other formulations are found in Feng

and Palomar (2015).

The optimisation problem solved in this paper has its roots in the logarithm formulation of

Maillard et al. (2010), where the risk budgeting portfolio is studied with the standard deviation

as a risk measure. This formulation was subsequently used in Chaves et al. (2012), Spinu (2013),

and Griveau-Billion et al. (2013), where efficient algorithms to compute standard deviation risk

budgeting portfolios are derived. Similarly to our contribution, Mausser and Romanko (2018)

propose the usage of convex optimisation algorithms to find long-only risk parity portfolios

based on the ES. Differently from our approach, these authors assume the loss distribution

is discrete over the simulated scenarios, while our general cutting planes algorithm naturally

handles continuous distributions. Moreover, we give a scenario decomposition algorithm that
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allows using very large samples.

In this work, we propose a general framework for risk budgeting portfolios for coherent

risk measures, for which the logarithm formulation leads to a convex optimisation problem.

The problem is solved through a cutting planes algorithm that exploits the convexity of the risk

measure to separate the evaluation of the risk from the optimisation itself. This allows us to deal

with very large samples. Specialising for ES, we exploit the Rockafellar-Uryasev representation

of ES, i.e., writing ES as an infimum, for deriving algorithms for the corresponding risk budgeting

portfolios.

The remainder of the paper is structured as follows. Section 2 defines risk contributions

and risk budgeting portfolios. In Section 3, we propose three algorithms for calculating risk

budgeting portfolios for coherent risk measures from simulation. Section 4 is devoted to a

comparison of our cutting plane algorithm to standard convex optimisation solvers for three

different risk measures. Section 5 discusses alternative portfolio strategies which are compared

in Section 6.

2 Risk Budgeting Portfolios

We work on a probability space (Ω,A,P) and denote by L2 = L2(Ω,A,P) the space of all

square-integrable random variables. For a random variable X ∈ L2, we denote its distribution

function by FX(x) = P(X ≤ x) and its (left-) quantile, also called Value-at-Risk (VaR), by

F−1
X (u) = VaRu(X) = inf{y ∈ R | FX(y) ≥ u}, for u ∈ [0, 1], where we adopt the convention

that inf ∅ = +∞.

2.1 The Portfolio and its Risk Contributions

We consider a two period economy (t0 := 0 and T := 1) consisting of d ∈ N assets with prices

p := (p1, . . . , pd) at time t0, and corresponding (random) prices P := (P1, . . . , Pd) at time T .

The investor has an initial endowment v0 > 0 and invests vi = wiv0 ≥ 0 dollars in asset i at time

t0. We call vi the exposure of the portfolio to asset i, and w := (w1, . . . , wd) the strictly positive

portfolio weights with
∑d

i=1wi = 1. Since the investment is non-negative, the investor only

considers buy-and-hold strategies, i.e., the number of shares remain constant. The investor’s

loss of a portfolio with exposure v := (v1, . . . , vd) at time t0 is given by

L(v) := −
d∑

i=1

vi

(
Pi

pi
− 1

)
,

and its risk is assessed through a coherent risk measure ρ : L2 → R as defined in Artzner et al.

(1999).
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Definition 2.1. For a coherent risk measure ρ and a portfolio with exposure v, we define the

marginal risk of asset i, i ∈ {1, . . . , d}, by

MRi(v) :=
∂

∂vi
ρ (L(v))

and the risk contribution of asset i, i ∈ {1, . . . , d}, via

RCi(v) := viMRi(v) .

For simplicity, we assume throughout the text that the joint distribution of the losses is

continuous, so that the partial derivatives above are well-defined. Properties of the underlying

distribution that lead to differentiability of the portfolio risk, are shown in Hong and Liu

(2009) (Asms. 1–3) for the Expected Shortfall (ES), and further generalised in Tsanakas and

Millossovich (2016) (Prop. 1.) and Pesenti et al. (2021) (Prop. 3.) to distortion risk measures.

We also refer the reader to Grechuk (2023) who proposes the notion of extended gradients for

convex functionals to overcome the need of requiring continuity of the underlying distributions

by proving the existence and uniqueness of allocation for non-differentiable but convex risk

measures using the extended gradient to define risk contributions.

Lemma 2.2. For a portfolio with exposure v and a coherent risk measure ρ, it holds that

ρ(L(v)) =

d∑
i=1

viMRi(v) =

d∑
i=1

RCi(v) .

Note that by homogeneity of ρ(L(v)), i.e., ρ(L(λv)) = λρ(L(v)) for all λ ≥ 0, the risk

contribution RCi is equal to the Euler allocation and the Aumann-Shapley capital allocation of

asset i, see e.g., Tasche (1999).

We focus on distortion risk measures that are convex on the space of random variables, and

which are defined via the Choquet integral

ρ(L) = −
∫ 0

−∞
1− g(1− FL(x)) dx+

∫ +∞

0
g(1− FL(x)) dx ,

whenever at least one of the two integrals is finite, and where g : [0, 1] → [0, 1] is a non-decreasing

and concave function satisfying g(0) = 0 and g(1) = 1. We further assume that g is absolutely

continuous which gives the following representation of the distortion risk measure (Dhaene et al.,

2012)

ρ(L) =

∫ 1

0
γ(u)F−1

L (u) du , (1)

where γ(u) = ∂−g(x)|x=1−u, 0 < u < 1, and ∂− denotes the derivative from the left. A

well-known example of distortion risk measures is ES at level α ∈ (0, 1) with γ(u) = 1
1−α1{u>α}.
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For a portfolio with exposure v, the risk contribution to asset i of a distortion risk measure

with representation (1) is (Tsanakas, 2009)

MRi(v) = E [Li γ (FL(L))] ,

where Li := −vi

(
Pi
pi

− 1
)
.

We further study the Entropic Value-at-Risk (EVaR) at level α ∈ [0, 1)

EV aRα(L) := inf
t>0

t log
1

1− α
E[eL/t].

If α = 0, this reduces to the expected value, whereas for α → 1 it converges to the essential

supremum of L (Ahmadi-Javid, 2012).

Example 1. Assume the returns Pi−pi
pi

are multivariate Gaussian with mean vector µ and

covariance matrix Σ. Then, the portfolio loss follows a Gaussian distribution with mean µL :=

−v⊤µ and variance σ2
L := v⊤Σv. Moreover,

ESα (L(v)) = µL +
ϕ
(
Φ−1(α)

)
1− α

σL and EVaRα(L(v)) = µL +
√
−2 log(α)σL,

where Φ and ϕ denote the distribution function and density of a standard normal random

variable. The risk contribution of asset i for ES and EVaR are, respectively,

MRES
i (v) = E[Li |L(v) ≥ VaRα(v)] = −µi +

ϕ
(
Φ−1(α)

)
1− α

(Σv)i
σL

,

MREVaR
i (v) = −µi +

√
−2 log(α)

(Σv)i
σL

,

with (Σv)i being the ith component of the vector Σv.

2.2 The Risk Budgeting Portfolio

Assume an investor has risk appetite B† and aims to invest in a portfolio such that each asset

has a (predefined) risk contribution. That is the risk appetite is such that B† :=
∑d

i=1Bi,

where Bi > 0 corresponds to the contribution of the ith asset to the portfolio risk. We denote

B := (B1, . . . , Bd) and callB the risk budget. The following definition of an investment portfolio

is inspired by Roncalli (2013). While the results in this section can be found, e.g., in Maillard

et al. (2010), we provide short proofs for completeness.

Definition 2.3. For a risk budget B = (B1, . . . , Bd) and corresponding risk appetite B† =∑d
i=1Bi, the risk budgeting (RB) portfolio is defined by the exposures v that satisfy

Bi = RCi(v) , for all i = 1, . . . , d .
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For a coherent risk measure, it holds by Lemma 2.2 that B† = ρ(v), that is the risk appetite

is equal to the portfolio risk of the RB portfolio. Thus, an investor with risk budget B who

invests in a risk budgeting portfolio, thus not only specifies the risk contribution of each asset

within the portfolio but also the overall risk of the portfolio. An example of a risk budgeting

portfolio is the risk parity portfolio, in which every asset has equal risk contribution, that is

B := (1d , . . . ,
1
d)B

†.

Proposition 2.4. For a coherent risk measure ρ and a risk budget B, the RB portfolio is the

portfolio with exposure v that satisfies

BiRCj(v) = Bj RCi(v) , for all i, j = 1, . . . , d , (2)

B† = ρ(L(v)) , (3)

where B† is the risk appetite corresponding to the risk budget B.

Proof. Let v be the exposure of a RB portfolio. Then, v fulfils 1 = Bi
RCi(v)

for all i = 1, . . . , d,

and thus (2). B† = ρ(v) holds by Euler’s Theorem. Conversely, let v satisfying (2) and (3),

then, summing Equation (2) over j, and applying Euler’s Theorem, we have for all i

Bi ρ(L(v)) = RCi(v)B
† = RCi(v) ρ(L(v))

and v is a RB portfolio.

The formulation of a RB portfolio as an optimisation problem, which we present in the next

proposition, was first proposed by Maillard et al. (2010).

Theorem 2.5. For a coherent risk measure and a risk budget B, denote by v∗ any optimal

solution to

min
v

ρ(L(v)) , subject to

d∑
i=1

Bi log(vi) ≥ 0 . (4)

Then v := B†

ρ(L(v∗)) v
∗ is a RB portfolio with risk budget B.

The constraint
∑d

i=1Bi log(vi) ≥ 0 implicitly forces the vi’s to be strictly positive so that

the logarithm is well-defined. This is consistent with log(y) being a concave function taking

values −∞ on y ≤ 0, and keeps optimisation problem (4) convex.

Proof. Define the Lagrangian

J(v, λ) := ρ(L(v))− λ

d∑
i=1

Bi log(vi) ,
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with Lagrange multiplier λ ≥ 0. Then, for i ∈ {1, . . . d}, taking derivatives with respect to vi

and imposing the first order condition yields

λ =
1

Bi
v∗iMRi(v

∗) =
1

Bi
RCi(v

∗) . (5)

Hence, the optimal v∗ > 0 fulfils (2). By homogeneity, we may define v := B†

ρ(L(v∗)v
∗ so that

the exposures v satisfies ρ(L(v)) = B†. By Proposition 2.4, this yields a RB portfolio.

Conversely, let vi be strictly positive exposures satisfying (2). Scaling vi so that xi :=

Cvi satisfy
∑

iBi log(xi) = 0, yields a vector x at the boundary of the feasible region. By

homogeneity, it holds that all RCi(x)
Bi

are equal (scaled up by C), so that we can define a positive

λ via Equation (5). Given such λ, the xi are feasible, satisfy the first order conditions, and

complementarity, and are therefore optimal for problem (4).

Due to homogeneity, problem (4) may have no optimal solution. This happens if there

are exposures vi such that ρ(L(v)) < 0 and
∑d

i=1Bi log(vi) ≥ 0. Then, scaling v by a factor

M > 1 will decrease the objective by a factor M , while keeping feasibility since the left-hand

side of the constraint becomes
∑d

i=1Bi(log(vi) + log(M)) = B† log(M) +
∑d

i=1Bi log(vi) ≥ 0.

In particular, this is the case if there is one asset j whose risk is negative, so one can set vj

arbitrarily large and all others to one (so that their logarithm is zero).

Proposition 2.6. If there exists a RB portfolio for a coherent risk measure ρ and a risk budget

B, it is unique.

Proof. Let x and z be two optimal solutions to (4). Since the logarithm is strictly convex, any

convex combination of x and z yields a point strictly in the interior of the feasible set. Then, the

convex combination can be scaled back to the boundary by multiplying all entries by a factor

strictly smaller than one, which yields a solution that has strictly smaller risk; contradicting

optimality.

From a practical point of view, it may be easier to provide a proportional budget of the

portfolio loss instead of the nominal budget, i.e, b = (b1, . . . , bd) with
∑d

i=1 bi = 1. For a fixed

risk appetite B†, the corresponding proportional risk budget b is given by bi =
Bi

B† . In the same

vein, one might be more interested in the weights w of the assets inside the portfolio rather

than their nominal values. For this, one calculates the weights for the desired RB portfolio by

simply normalising the solution of (4) so that it sums to one.

If an investor has an initial endowment cv0, c > 0, and aims to find a RB portfolio with risk

budget cB, then the optimal RB weights are equal to those of a RB portfolio with endowment

v0 and risk budget B. Therefore, in the algorithms presented in Section 3, we assume, without

loss of generality, that v0 = 1.
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3 Algorithms

As problem (4) is convex, one might use convex optimisation algorithms to solve it. Since

our aim is to consider the cases when the returns have complex distributions, in which the

portfolio’s risk ρ(L(v)) does not posses a simple expression as a function of v, we present

two main algorithms in this paper. The first builds an approximation of the portfolio risk by

evaluating the returns in a (large) number of scenarios, which is similar to a Sample Average

Approximation (SAA) for risk-neutral problems. The resulting problem is then solved via a two-

step procedure, building an approximation of the risk measure, as a function of the investment

v using cutting planes. In the special case of ES, one can first obtain an equivalent formulation

for problem (4) and only then apply cutting planes. The second algorithm uses stochastic

gradient descent, by sampling scenarios and evaluating a stochastic gradient. Both approaches

are implemented in the companion Julia package SamplingRB (da Costa, 2023) which is used

in Sections 4 and 6 to generate the risk budgeting portfolios.

After one has obtained an optimal solution v∗ to problem (4), it can be normalised to either

realise the desired total investment v0, the total risk appetite B†, or to portfolio weights w that

sum to one.

3.1 Sample Average Approximation and Cutting Planes

The idea for Sample Average Approximation (SAA) – see Prékopa (1995) – is to choose N

scenarios of the realisations of the underlying random variables and replace the expectation

(or, in our case, the risk measure) by its value in the sample. In our problem, this amounts

to sampling N vectors of (the joint distribution of) the prices P of the assets. This effectively

discretises the random variable L(v) into a vector ofN realisations of the losses, which we denote

by ℓ(j)(v) for j = 1, . . . , N . Thus, we obtain a discrete distribution for the random variables, so

one might wonder about differentiability of the risk measure implied by the definition of the RB

portfolio. It should be noted that we use SAA to find an approximate solution to optimisation

problem (4), and therefore we only need to approximate the risk measure.

A concrete implementation of an algorithm for solving optimisation problem (4) depends

on the chosen coherent risk measure ρ. Given the scenarios of the prices and an exposure v,

the evaluation of ρ(L(v)) also yields a set of “change-of-probabilities” ζ, such that ρ(L(v)) =

Eζ [L(v)]. This shows that ζ is a subgradient of ρ(·) at L(v) (Shapiro et al., 2009), and, using

the chain rule, one may obtain the subgradient of ρ ◦ L at v.
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3.2 Cutting-planes for Expected Shortfall

In the case of the ES, one has a further possibility, since it has a compact formulation as an

optimisation problem itself. For a given random variable Z ∈ L2, the ES at level α ∈ [0, 1) has

representation (Rockafellar and Uryasev, 2000)

ESα[Z] = min
t

t+
1

1− α
E[(Z − t)+] , (6)

where (x)+ = max{x, 0} denotes the positive part. Other risk measures which admit a repre-

sentation similar to (6), where the risk measure can be written as an infimum include the EVaR

(Dentcheva et al., 2010, Theorem 12), which we will consider in the sequel, and higher moment

risk measures (Krokhmal, 2007) .

Substituting the representation of ES in problem (4), with L(v) in place of Z, we obtain an

alternative optimisation problem for the risk budgeting portfolio

min
v,t

t+
1

1− α
E[(L(v)− t)+] (7a)

s.t.
d∑

i=1

Bi log vi ≥ 0. (7b)

Note that for fixed v (which does not need to sum to one), the infimum in t is attained at the

VaRα of the portfolio losses L(v).

In an SAA setting and given N samples for the portfolio loss, we can replace the expectation

in equation (7) by its sample average

1

N

N∑
j=1

(ℓ(j)(v)− t)+.

For a small number of scenarios N , and number d of assets, this discrete version of problem (7)

can be solved directly. However, for a relatively large number of scenarios, which is required to

handle the relevant cases when α is close to one, one may again split the problem in two stages,

obtaining a decomposition amenable to cutting planes. We keep the variables v and t in the

first stage problem, which becomes:

min
v,t

t+Q(v, t) (8a)

s.t.

d∑
i=1

Bi log vi ≥ 0, (8b)

where the scenario average is replaced by the value function Q(v, t) that will be evaluated in the

second stage. The corresponding value function Q(v, t) = 1
N(1−α)

∑N
j=1(ℓ

(j)(v)− t)+ is convex,

but not differentiable in (v, t). Therefore, problem (8) can be solved using cutting planes to

approximate the function Q from below. This is done as follows:
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1. add an extra optimisation variable z to (8);

2. add the constraint z ≥ Q(v, t);

3. replace Q(v, t) by z in the objective function.

The idea for using cutting planes is to approximate the constraint z ≥ Q(v, t) by a family of

linear inequalities of the form

Q(v, t) ≥ c+
d∑

i=1

πivi + πtt,

that are valid forQ, and use them for z instead. One standard way of generating such inequalities

is to use the subgradient inequalities for convex functions. The subgradient inequalities of the

value function Q are

Q(v, t) ≥ Q(v0, t0) + g⊤ ((v, t)− (v0, t0)) ,

where g is a subgradient of Q at (v0, t0).

In the context of our risk-parity portfolio, we start from the optimisation problem

argmin
v,t,z

t+ z (9a)

s.t.
n∑

i=1

Bi log vi ≥ 0, (9b)

and alternatively add constraints and optimise, as described in Algorithm 1. Since the point

v = (1, . . . , 1); t = 0 is feasible for every choice of Bi, the loop can always be started from it.

At each iteration in Algorithm 1, the value of the solution to the first stage optimisation,

z∗, corresponds to an under-approximation of Q(v, t), since we use only linear subgradient

inequalities and further minimise over z. Thus, when evaluating Q in the second stage in the

next iteration, we always obtain a larger value than z∗. Finally, when the values of z∗ and

the evaluation of Q in the second stage coincide, then the first-stage problem has evaluated

Q exactly at the current point, and z∗ is the optimal solution; since, for all other points, the

first-stage problem underestimates Q.

The value function Q(v, t) itself can be decomposed in scenarios. For j ∈ {1, . . . , N}, denote

by P (j) a realisation of the random variable P , and by ℓ(j)(v) = ξ(j)
⊤
v, where ξ(j) =

(
p−P (j)

p

)
,

a realisation of the loss. Then the value function becomes

Q(v, t) =
1

N

N∑
j=1

(ξ(j)
⊤
v − t)+

1− α
=

1

N

N∑
j=1

Q(v, t; ξ(j)) (10)
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Algorithm 1: Cutting Planes for Risk Budgeting portfolios under ES

Data: Budgets Bi (in dollars)

Data: Tolerance ε

Set vi = 1, t = 0 ; // initial guess for allocation and VaR

Set k = 0, zLB = −∞ ; // iteration counter & lower bound

while True do

/* Second stage: evaluate Q and its subgradient at (v, t): */

q = 1
N

∑N
j=1Q(v, t; ξ(j));

g = 1
N

∑N
j=1 ∂Q(v, t; ξ(j));

if q − zLB < ε then // Found optimal solution

Normalise w = v/sum(v);

return (w, t∗)

/* First stage: refine approximation and re-evaluate */

Add inequality z ≥ q + g⊤ ((v, t)− (v0, t0)) to (9)

Solve the first stage (9) for (v, t, z), save optimal values v∗, t∗ and z∗;

v := v∗; t := t∗ ; // Update trial point

zLB = z∗ ; // and lower bound

end

so that Q(v, t; ξ(j)) can be evaluated separately for each scenario ξ(j). The same holds for the

subgradients, which for each scenario j are given by

∂Q(v, t; ξ(j)) =


(ξ(j),−1)/(1− α) if Q(v, t; ξ(j)) > 0,

0 otherwise.

(11)

Note that this approach provides only an estimate of the portfolio risk on the objective

function. Therefore, when using the true distribution for evaluating the actual risk of the

portfolio, the result will differ due to statistical error. The statistical error can be reduced by

increasing the number of scenarios to evaluate Q in (10).

We add two remarks regarding the numerical implementation. First, cutting planes algo-

rithms usually require a compact domain. In our setting, since the RP inequality
∑

iBi log(vi) ≥

0 allows v to be unbounded, we also include (somewhat arbitrary) bounds vi ≤ M , with some

large M > 0, for the portfolio composition in problem (9), and check that none of these con-

straints is active in the returned solution. Second, for the ES risk measure one may include in

the optimisation problem (9) the inequality constraint z ≥ 0. This constraint helps stabilise the

12



Algorithm 2: General Cutting Planes algorithm for Risk Budgeting portfolios

Data: Budgets Bi (in dollars)

Data: Tolerance ε

Data: Risk measure ρ

Set v0 = (1, . . . , 1) ; // initial guess for allocation

Set k = 0, z0 = −∞ ; // iteration counter & lower bound

while True do

/* Evaluate the risk and its subgradient at vk: */

q = ρ(L(vk));

g = Eζ [∂L(v
k)];

if q − zk < ε then // Found optimal solution

Normalise v∗ = vk/sum(vk) ;

return v∗ ;

/* Refine approximation and re-evaluate */

Add inequality z ≥ q + g⊤(v − vk) to (12)

Increment k;

Solve (12) for (v, z), save optimal values vk and zk

end

optimisation problem since otherwise it could diverge to very negative values of z and t during

the initial iterations. Further details can be checked in our implementation in da Costa (2023).

3.3 Cutting planes for coherent risk measures

A similar approach can be employed for a cutting-planes algorithm that handles an arbitrary

coherent risk measure ρ. Since we do not assume a particular form, such as the one we used in

equation (6), we can only rewrite optimisation problem (4) as

min
v,z

z , subject to
d∑

i=1

Bi log(vi) ≥ 0 . (12)

where the extra variable z will approximate the entire objective function ρ(L(v)). Notice that,

in particular, we do not obtain a scenario decomposition as was obtained in equation (10).

At each iteration k, we evaluate the objective function at vk, and obtain its subgradient gk

at vk. The subgradient inequalities now translate to

z ≥ ρ(L(vk)) + (gk)⊤(v − vk)

13



Algorithm 3: SGD for Risk-Parity under ES

Data: Budgets Bi (in dollars)

Data: Number of iterations N

Data: Steps αk

Set vi = 1, t = 0 ; // initial guess for allocation and VaR

Set k = 1 ; // initial iteration number

while k ≤ N do

Sample a scenario ξ from the distribution of P ;

g = ∂Q(v, t; ξ) ; // Subgradient of Q from equation (11)

(v, t) −= αk[g + (0, 1)] ; // Update current iterate

Project v into feasible set
∑

iBi log(vi) ≥ 0. ; // Recover feasibility

k += 1 ; // Update iteration count

end

Return the average of all feasible points produced during the algorithm.

which are added to (12). By repeatedly adding more constraints, we eventually get a good

approximation for the objective function near the optimal solution v∗, see Algorithm 2.

3.4 Stochastic Gradient for Expected Shortfall

Instead of discretising the scenarios a priori, one could start from the two-stage decomposition

in (8) but where Q(v, t) = 1
1−αE[(L(v)− t)+] is the true expectation. Then, it is easy to obtain

a stochastic gradient for Q, given a sample of the random vector P . Since the objective function

is t + Q(v, t), the actual gradient must be shifted to account for the term t. In this manner,

we obtain Algorithm 3, which is a version of projected stochastic gradient descent (SGD) – see

Prékopa (1995).

This scenario decomposition available for the ES risk measure is due to the Rockafellar-

Uryasev formulation of the ES in Equation (6). We remark that this decomposition is useful

in the SGD setting, where we sample a different scenario at each iteration, and also in the

SAA setting, in that it allows for a large number of scenarios to be evaluated independently.

We further observe that this decomposition was possible after the introduction of the auxiliary

variable t in the optimisation problem.

If one is interested in applying SGD to a different risk measure than ES, it would be necessary

to obtain a reformulation that allows such a decomposition. Simple examples of such risk

measures are (finite, convex) combinations of ESα at different α levels, higher moment risk

measures and EVaR.

14



4 Numerical studies

In this section we compare the performance of the cutting planes algorithm described in Section

3 to standard convex optimisation solvers on a series of risk budgeting problems, i.e. their

solutions to optimisation problem (4).

4.1 Experiment setup

In all numerical examples in this section, we solve the risk parity portfolio (apart from Section

4.4, where we study different budgets), i.e., B1 = . . . = Bd, for different asset dimension

d ∈ {2, 5, 10, 25, 50, 100}, assuming an initial endowment of v0 = 1. We compare the cutting

planes algorithm, either Algorithm 1 or Algorithm 2 depending on the risk measure considered,

denoted here by CP, with three convex optimisation solvers, IpOpt (Wächter and Biegler, 2006),

SCS (O’Donoghue et al., 2016) and, MOSEK (Mosek, 2022). All solvers are called from Julia:

our cutting planes algorithm uses JuMP to build the first-stage problem (9) or (12) and to add

cuts; IpOpt utilises the JuMP (Dunning et al., 2017) interface, and SCS and MOSEK rely on

Convex.jl (Udell et al., 2014). In order to compare run times, the precision in all solvers is set

to 10−6. All algorithms use N ∈ {1 000, 2 000, 3 000, 4 000, 5 000} scenarios and solve the risk

parity problem 10 times. All results are averaged over these 10 runs.

The data generating process for the asset returns is assumed to be either multivariate Gaus-

sian or multivariate Student t with 5 degrees of freedom. This distributional assumption allows

to calculate the risk contributions of the obtained portfolio weights in closed-form, thus not

adding additional statistical uncertainty. For both the Gaussian and Student t, we generate a

vector of returns µ and a covariance matrix Σ for the case when d = 100 and subset its first

components accordingly for the lower asset dimension cases. The expected returns, generated
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Figure 1: Sharpe ratios for the multivariate Gaussian model (left) and the multivariate Student

t model (right)
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Algorithm 4: Algorithm for generating µ and Σ

Data: Asset dimension d = 100

Set αB = 1 ; βB = d0.4 log(d) ;

for i, j = 1, . . . , d do

Sample Li,j
iid∼ Beta(αB, βB);

end

Set Σ = LLT ;

for 1, . . . d do

Sample
Si

4

iid∼ Beta(2, 5)

Set µi = Σii × Si ;

end

Return µ and Σ

using Algorithm 4, range from 0.7% to 60% and the volatilities (square root of the diagonal

of Σ) vary between 10% and 31%. Note that even though the parameters are the same in the

Gaussian and t models, in the former the standard deviation for component i is Σii, while for

the latter it is Σii

√
ν

ν−2 , where we set the degree of freedom to ν = 5. These values are such

that the Sharpe ratio of each asset is between 0.05 and 2.7, as seen in Figure 1.

4.2 Expected Shortfall

First, we consider the performance of the cutting planes algorithm for the risk parity problem

with ES and confidence levels α ∈ {0.9, 0.95, 0.99}. Figures 2 and 3 present the log 10 of the

average run time (over 10 different runs) as a function of the asset dimension d. The different

panels correspond to increasing numbers of scenarios N . All plots in Figure 2 are based on

the multivariate Gaussian model with α = 0.90, while the results in Figure 3 correspond to the

multivariate Student t model with α = 0.90. Results for the other values of α, i.e., α = 0.95 and

α = 0.99, are qualitatively equivalent and presented in Appendix A. From both run time plots,

we see that the proposed cutting planes algorithm is consistently faster than all alternatives.

SCS, which is faster than CP when both the asset dimension (d) and the number of scenarios

(N) is small, presents run times that grow much faster than the other solvers when the asset

dimension d goes beyond 10. A similar behaviour is observed with IpOpt.

Differently from SCS and IpOpt, MOSEK appears to be much less sensitive to the asset

dimension, exhibiting a much slower increase in run time, especially when the number of sce-

narios is large. However, MOSEK seams to be sensitive to increases in the number of scenarios.

The proposed CP algorithm, however, is able to merge the best of all the contenders: it is both
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Figure 2: Comparison of run times for different algorithms for the ES risk budget-

ing problem: Cutting Planes, IpOpt, MOSEK, SCS. From left to right, N =

1000, 2 000, 3 000, 4 000, 5 000. All plots are based on the multivariate Gaussian model with

α = 0.90.
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Figure 3: Comparison of run times for different algorithms for the ES risk budget-

ing problem: Cutting Planes, IpOpt, MOSEK, SCS. From left to right, N =

1000, 2 000, 3 000, 4 000, 5 000. All plots are based on the multivariate Student t model with

α = 0.90.

less sensitive to asset dimension and number of scenarios and moreover faster than MOSEK in

all setups studied.

Overall, the simulation studies show that the proposed cutting planes algorithm is robust to

the statistical model of the returns, to the number of assets in the portfolio, and to the number

of scenarios, in the sense that the run time is mostly unaffected (it ranges from 0.17 seconds to

0.90 seconds in the examples of Figures 2 and 3). The speed of the cutting planes algorithm

allows us to study a realistic risk budgeting problem over a long time horizon in Section 6.
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4.3 Entropic VaR and Distortion risk measures

In this section we discuss the computational efficiency of the cutting planes algorithm for two

different risk measures: the Entropic Value-at-Risk (EVaR) and a distortion risk measure. For

the EVaR we use α = 0.95, and for the distortion risk measure we take g(x) =
√
x, for x ∈ [0, 1].

Table 1 reports the run time and the Entropic VaR risk contributions (computed as in

Example 1) for the Gaussian distribution with d = 5 and N = 1000. We observe that SCS

and IpOpt present serious problems with EVaR. For this configuration, the IpOpt algorithm

Solver Run time Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

CP 1.55 0.109 0.0854 0.115 0.0667 0.121

SCS 120.97 0.256 2.17× 10−5 0.125 1.36× 10−5 0.198

MOSEK 1.43 0.256 0.000643 0.120 0.00176 0.199

IpOpt 3382.49 0.117 2.03× 10−19 0.176 1.51× 10−19 0.298

Table 1: Run time (in seconds) and EVaR risk contributions of each one of the d = 5 assets.

takes almost one hour and eventually stops at a solution that clearly does not satisfy the risk

parity constraint, as the risk contributions are far from being the equal across assets. SCS finds

a solution with similarly inaccurate risk contributions but in “only” two minutes. The cutting

planes algorithm and MOSEK present similar run times, but the CP converges to a slightly

more balanced portfolio in this example, see Table 1. When the dimension of the problem is

increased to d = 100 and N = 5000, a single run of CP takes 4.76s while that of MOSEK takes

64.29s. After normalising the risk contributions to sum to one (which by homogeneity of the risk

contributions is equivalent to normalising the weights), we observe that the risk contributions

calculated by MOSEK are much less uniform than those by CP. This can be seen in Figure 4,

where MOSEK’s solution contains one asset whose risk contributions is more than 40% of the

portfolio EVaR. We further show in Figure 5 the average run times of the CP algorithm for

the EVaR risk budgeting problem with multivariate Student t returns. The run time results for

EVaR are similar to those of ES in Section 4.2 in that even in the largest problem CP is able to

converge (up to the required precision), on average, in less than 10 seconds. We also note that

the CP algorithm is mostly unaffected by the number of scenarios N .

For the distortion risk measure with g(x) =
√
x, the cutting planes is the only viable solution

across the proposed solvers. Even for the simplest problem of Gaussian returns, d = 2, and

N = 1000, IpOpt, SCS and MOSEK run out of memory on the 32Gb computer used for

the experiments. Therefore, only run times for the cutting planes algorithm are presented in

Figure 6. Even after averaging over 10 different runs, the results are considerably more volatile
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Figure 4: Normalised risk contributions for EVaR and the Gaussian model with d = 100 and

N = 5000 using Cutting Planes and MOSEK. Solid horizontal at 0.01.
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Figure 5: Run times for the Cutting Planes algorithm for the EVaR risk budgeting problem.

From left to right, N = 1000, 2 000, 3 000, 4 000, 5 000. All plots are based on the multivariate

Student t model.

than the ones observed for ES and EVaR. This is due to a combination of factors. First,

sorting the losses, which is required for calculating distortion risk measures, may be faster or

slower depending on the simulations themselves and not just their size. Second, the number

of CP iterations to achieve convergence may be more volatile in this setting. Nonetheless,

convergence is achieved fast enough in order to enable sensitivity studies and backtests over

vast time horizons and portfolio sizes.

In Appendix A, we also report the run times for the multivariate Gaussian model, which

are qualitatively similar.
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Figure 6: Run times for the Cutting Planes algorithm for the distortion risk budgeting problem.

From left to right, N = 1000, 2 000, 3 000, 4 000, 5 000. All plots are based on the multivariate

Student t model.

4.4 Non-equal risk budgets

We conclude this section with an analysis of the cutting planes algorithm in the case where

the risk budgets are different across assets. For this, we consider portfolios of dimension d = 2,

proportional budgets (b1, b2) ∈ {(0.5, 0.5), (0.6, 0.4), (0.7, 0.3), (0.8, 0.2), (0.9, 0.1)} and ES as the

risk measure. Figure 7 presents the log-mean-runtime of the algorithms, as a function of the

budget assigned to the first asset under the Gaussian model. That is, the x-axis depicts the

proportional budget of the first asset, e.g., 0.6 means a risk budgeting portfolio with proportional

budget of (0.6, 0.4). Each plot represents a different value of N , and a similar plot for the

student-t model is presented in Figure 18, in the Appendix.

As discussed in Section 4.2, SCS can outperform CP for very low dimensional problems and

small number of simulated scenarios, but as soon as N > 3 000, the proposed CP algorithm

becomes faster than all competitors. It is also clear that none of the solvers is sensitive to

the changes in the risk budgets: it takes approximately the same time to solve the risk parity

problem (b1 = b2 = 0.5) or, e.g., the risk budgeting problem with b1 = 0.9, b2 = 0.1.

5 Investment Strategies

In this section we present several portfolio selection methods and the stochastic models used

to generate the RB portfolios. For comparison purposes we set v0 = 1 in which case v = w

and we write w throughout this section. Further, we consider only portfolios that are fully

invested with (1⊤w = 1) and long-only (w ≥ 0). All portfolios are adjusted based on a set of ∆

days previous to the current period, say t. In other words, data in the interval [t−∆, t− 1] is
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Figure 7: Comparison of run times for different algorithms for the ES risk budgeting problem

with two assets and different risk budgets. Cutting Planes, IpOpt, MOSEK, SCS. From

left to right, N = 1000, 2 000, 3 000, 4 000, 5 000. All plots are based on the multivariate

Gaussian model with α = 0.95.

used to construct the portfolio at time t. We assume all portfolios are rebalanced daily. Daily

rebalancing guarantees that the portfolios have the risk budgeting characteristic at all days. Of

course, some heuristics could be used to reduce the number of trades. For example, one could

trade only if the risk contributions vary by, say, more than 1%; when the number of shares on

the previous day is kept constant.

Apart from the proposed RB portfolios with the ES risk measure, all other portfolios rely

only on estimates of the mean vector µ and covariance matrix Σ of the returns, which we

estimate without imposing any assumption on its probabilistic distribution. That is, at time

t, the mean vector and covariance matrix of the returns are estimated through their empirical

counterparts

µ̂i,t =
1

∆

∆∑
k=1

ri,t−k and Σ̂i,j,t =
1

∆

∆∑
k=1

(ri,t−k − µ̂i,t−k)(rj,t−k − µ̂j,t−k), (13)

where pt = (p1,t, . . . , pd,t) and rt = (r1,t, . . . , rd,t) are the vectors of prices and returns of all d

assets at time t, respectively, and ri,t =
pi,t−pi,t−1

pi,t−1
. Due to the small number of assets under

consideration, the non-linear shrinkage estimator for the covariance matrix (see, e.g., Ledoit

and Wolf (2017) and Ramprasad (2016)) did not provide any significantly different allocations,

and thus are not reported.

For all portfolios introduced in the next subsection, we use the implementations presented

in the vignette of the R package riskParityPortfolio (de M. Cardoso and Palomar, 2021).
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5.1 Mean-Variance Portfolio Selection Models

In what follows, we give a brief description of portfolio selection models that are only based

on the mean and covariance of returns only. For simplicity, we suppress the time index and

assume portfolios are being computed for a generic time period t, each period with its respective

empirical mean and covariance estimates, see Equation (13).

Portfolio 5.1 (Maximum Sharpe ratio (msr)). The maximum Sharpe ratio portfolio (Sharpe,

1966) is implemented assuming that the risk free rate is zero. The weights of the maximum

Sharpe ratio portfolio are the solution to

max
w

w⊤µ√
w⊤Σw

, subject to w ≥ 0 and 1⊤w = 1.

By homogeneity, the maximum Sharpe ratio portfolio can be transformed to a quadratic opti-

misation problem given by

min
v

v⊤Σv , subject to v ≥ 0 and µ⊤v = 1.

Then, to get weights w, one simply normalises the solution v.

Portfolio 5.2 (Markowitz Mean-Variance (mmv)). The weights for the Markowitz (1952) mean-

variance portfolio are given by

max
w

w⊤µ− λw⊤Σw , subject to w ≥ 0 and 1⊤w = 1 ,

where λ > 0 is user-defined risk-aversion parameter. In our experiments we set λ = 1
2 .

Portfolio 5.3 (Global minimum variance (gmv)). As per its name, the weights of the global

minimum variance portfolio are such that the portfolio’s variance is minimised. Under assump-

tion of no short selling and full investment restrictions, the gmv weights are the solution to

min
w

w⊤Σw , subject to w ≥ 0 and 1⊤w = 1 .

Note that the gmv is equivalent to mmv under the assumption that expected returns are all equal

to zero.

Portfolio 5.4 (Equal weights (ew)). The equal weights portfolio assumes that the weights are

equal to wi = 1/d, for all i ∈ {1, . . . , d}, and constant throughout time.

5.2 Risk Budgeting Portfolios

We compare the portfolios introduced in the previous section with different risk budgeting

portfolios. Specifically, we consider the standard deviation risk parity first studied in Maillard
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et al. (2010) and a Gaussian risk parity with the ES risk measure, where the returns are assumed

to follow a multivariate Gaussian distribution. In the next section, we describe two further risk

budgeting portfolios with the ES risk measure, where the underlying returns follow dynamic

conditional correlation models. For all the risk parity portfolios, the ES is computed h = 5 days

ahead.

Portfolio 5.5 (Standard deviation risk parity (sdrp)). Most of the literature concerning risk

parity portfolios is based on the assumption that the risk is measured by the standard deviation

of the portfolio, that is

ρ(L(v)) =
√
v⊤Σv .

Under this assumption, the risk budgeting optimisation problem (4) can be efficiently solved

via the algorithm proposed in Feng and Palomar (2015).

Portfolio 5.6 (Gaussian risk parity (grp)). For this portfolio we measure the risk of the portfo-

lio via the ES for a pre-specified security level α and assume that the returns follow a multivariate

Gaussian distribution.

Recall that for calculating risk budgeting portfolios via the algorithms in Section 3, we only

require simulated loss scenarios at time t+h. Thus, to obtain the Gaussian risk parity portfolio

at time t, we first estimate the mean and covariance of the returns from data at time t (using

data from [t − ∆, t − 1] and Equation (13)), and then simulate Gaussian returns up to time

t+ h.

To compare the Gaussian risk party grp portfolio with risk budgeting portfolios calculated

on returns that do not follow a multivariate Gaussian distribution, we consider two dynamic

conditional correlation models discussed in the next section; leading to risk-budgeting portfolios

rpa and rpb.

5.2.1 Dynamic Conditional Correlation Models

In order to model the time series dynamics of the returns, we use a DCC-GARCH model

(Engle (2002)). As seen below, the DCC-GARCH model accounts for the fact that even though

returns are generally serially uncorrelated, they may present contemporaneous correlation. The

heteroskedasticity in the returns is handled by univariate GARCH models (one for each asset)

and the residual’s correlation is dynamically modelled.

Let us denote by Ri,t = log
(

Pi,t

pi,t−1

)
the (random) log-return of asset i at time t. The vector

with log-returns is denoted by Rt = (R1,t, . . . , Rd,t) assumed to satisfy

Rt = µt + ϵt,
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where ϵt = H
1/2
t zt. The d-dimensional vector zt is assumed to be i.i.d. and scaled, in the sense

that each component of zt has mean 0 and variance 1. Therefore, µt and Ht are, respectively,

the conditional mean (d-dimensional vector) and covariance (d × d matrix) of Rt, when data

up to time t− 1 has been observed.

The Dynamic Conditional Correlation (DCC) model proposed by Engle (2002) assumes that

the conditional covariance of the returns can be decomposed as follows

Ht = DtStDt,

with Dt = diag(
√
h11,t, . . . ,

√
hdd,t) being a matrix with the conditional standard deviations of

the returns and St the dynamic conditional correlation matrix of dimension d× d.

Positive definiteness of the time-dependent correlation matrix St is achieved through a proxy

process, which, for each d× d matrix Qt, is defined as

Qt = (1−A−B)Q̄+Azt−1z
⊤
t−1 +BQt−1,

and

Q̄ =
1

∆

t−1∑
k=t−∆

zkz
⊤
k

is the unconditional matrix of the standardised errors zt. Recall that, at time t the model is

estimated using data from t − ∆ to t − 1. To ensure stationarity and positive definiteness of

Qt, it is assumed that the real numbers A and B are such that A,B ≥ 0 and A+ B < 1. The

correlation matrix of interest is then defined as

St = diag(Qt)
−1/2Qt diag(Qt)

−1/2,

where here diag(Qt) is the diagonal matrix whose entries are the diagonal elements of Qt.

Different specifications for the marginal conditional variances (h11,t, . . . , hdd,t) of the returns

lead to different market models. In our examples, we consider two different market models,

leading to two risk budgeting portfolios. The first portfolio (rpa), assumes that all conditional

variances follow a standard GARCH model, while for the second portfolio (rpb), all conditional

variances follow a GJR-GARCH. Both DCC models are estimated using the R package rmgarch

(Ghalanos, 2019) through maximum likelihood.

Portfolio 5.7 (DCC-GARCH (rpa)). This risk budgeting portfolio consider the risk measure

ES at level α and assumes that the conditional variances in the DCC model are given by a simple

univariate GARCH(1,1) model, see, e.g., Bollerslev (1986). That is, for each asset i ∈ {1, . . . , d},

the conditional variance of the returns at time t are given by

hii,t = θi + aiϵ
2
i,t−1 + bihii,t−1,
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where ai, bi ≥ 0, θi > 0, and ϵi,t are i.i.d standard normally distributed.

Portfolio 5.8 (DCC-GJR-GARCH (rpb)). This risk budgeting portfolio also considers the

ES risk measure at level α. The difference between this portfolio (rpb) and the rpa is on

the specification of the conditional variances in the DCC. For the rpb, we assume a GJR-

GARCH(1,1) model, see, e.g., Glosten et al. (1993),

hii,t = θi + (ai + ci1{ϵi,t−1<0})ϵ
2
i,t−1 + bihii,t−1,

with ai, bi, ci ≥ 0, θi > 0, and ϵi,t are i.i.d standard normally distributed.. This model can be

seen as an extension of the DCC-GARCH, accounting for the stylised fact that negative shocks

at time t− 1 have a stronger impact in the variance at time t than positive ones.

To calculate the optimal weights for the risk budgeting portfolios rpa and rpb, we use

Algorithm 1.

6 Comparison of Portfolio Strategies

In this section we analyse the long-run performance of the mean-variance portfolio models and

the risk budgeting strategies under a universe of equity indices from some of the major economies

in the world. Since different investors may have access and/or preferences to different ETFs

that replicate the indices, we perform all the analysis assuming the investor trades assets that

perfectly replicate the indices. Henceforth, we refer to the indices as assets. The universe of

assets considered in this example is presented in Table 2. The data has been collected from

Yahoo! Finance using the R package BatchGetSymbols Perlin (2020), using the tickers from the

first column in Table 2. The daily adjusted closing prices were retrieved for the period ranging

from 04/Jan/2000 to 30/Dec/2020.

Summary statistics for all assets across the period of study are presented in Table 3. In

this table we present the annualised volatility, annualised return, annualised Sharpe ratio (ratio

between return and volatility), VaR0.05, ES0.05, and the maximum drawdown for the entire

period. Figure 8 displays the values of each asset over the time period. For comparison, the

assets were normalised to have initial price of 100$.

6.1 Results

As previously discussed, for each portfolio strategy, parameters are estimated using the previous

∆ returns. For the following experiments, is set the estimation window to five “business years”,

i.e., ∆ = 5 × 252. For the portfolios dependent on our algorithm (rpa, rpb) we assume the
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Ticker Name Country

1 ^NDX NASDAQ 100 USA

2 ^GSPC S&P 500 USA

3 ^HSI Hang Seng Index HKG

4 ^FTSE FTSE 100 GBR

5 ^DJI Dow Jones Industrial Average USA

6 ^GDAXI DAX Performance-Index GER

7 ^RUT Russell 2000 GBR

8 ^FCHI CAC 40 FRA

9 ^BVSP Ibovespa BRA

10 000001.SS SSE Composite Index CHN

11 ^N225 Nikkei 225 JPN

Table 2: Universe of assets.

horizon for the risk measures is set as h = 5 days ahead. As remarked in the opening statement

of Christoffersen et al. (1998): “There is no one ‘magic’ relevant horizon for risk management”.

The choice of h = 5 (one business week) is a compromise between the usual regulatory 10-

days ahead horizon and the managerial one day ahead (see Meyer and Quell (2020)). Unless

explicitly stated otherwise, we calculate the ES at significance level α = 0.95 using N = 1000

simulations at time t + h. For the DCC-GARCH models, we compare two different marginal

specifications, simple GARCH leading to portfolio rpa and GJR-GARCH leading to portfolio

rpb. Both DCC-GARCH models are simulated using the function dccsim from the R package

rmgarch Ghalanos (2019).

For a global perspective on the performance of the portfolios under consideration, Figure

9 presents the wealth of each asset over time, where all portfolio have an initial endowment of

100$. When analysing the entire time period, the Markowitz’s minimum-variance (mmv) portfolio

shows the highest return in February 2020, a portfolio value 5 times the initial endowment. The

maximum Sharpe ratio (msr) portfolio returns around 4.5 times the initial endowment. All

other portfolios provide returns around 3 times the initial endowment. It should be noticed,

however, that the performance of portfolios are not consistent through time. For instance, in

early 2013, the msr portfolio shows the worst cumulative performance.

The equal weights (ew) portfolio is consistently presenting the worst performance. As we see

below, due to the similarity of the portfolio composition of the risk parity and the ew portfolio,
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Max.

Volatility Return Sharpe VaR0.05 ES0.05 drawdown

NASDAQ 100 24.36% 18.17% 0.746 -2.36% -3.80% -62.17%

S&P 500 22.29% 9.11% 0.409 -2.07% -3.62% -64.59%

Hang Seng Index 26.15% 4.51% 0.172 -2.52% -4.07% -73.94%

FTSE 100 21.28% 0.92% 0.043 -2.12% -3.34% -56.73%

Dow Jones Industrial Average 21.39% 8.65% 0.404 -1.99% -3.45% -60.74%

DAX Performance-Index 24.67% 7.21% 0.292 -2.39% -3.89% -62.86%

Russell 2000 28.44% 8.45% 0.297 -2.66% -4.52% -70.32%

CAC 40 25.18% 0.81% 0.032 -2.48% -3.99% -69.31%

Ibovespa 31.65% 9.69% 0.306 -2.94% -4.75% -73.77%

SSE Composite Index 28.48% 8.26% 0.290 -2.96% -4.74% -80.97%

Nikkei 225 26.28% 4.47% 0.170 -2.55% -4.14% -70.92%

Table 3: Summary statistics for the assets. The volatility, return, and Sharpe ratio are annu-

alised.

the risk parity portfolios present performances similar to the ew portfolio.

Figure 10 shows the daily returns for all pairs of portfolios, where each point denotes the

returns for a specific day. First, we note that all pairs are positively dependent, but some,

such as the portfolios based on risk parity (sdrp, grp95, rpa95, and rpb95) and ew have very

similar returns for almost all days. On the other hand, the msr portfolio stands out as the one

whose returns have a weaker dependence to the others. It should be noticed, that having the

same daily returns is a necessary, but not sufficient, condition to guarantee two portfolios are

identical.

While the analysis of pairs of returns from Figure 10 suggests that the risk parity portfolios

are robust to different model assumptions, Figure 11 explores the sensitivity to the significance

level α of the ES. In each one of the four sub-figures, we present the histogram of the returns

for specific portfolios. On the top-left figure, we present the competing portfolios, from where

we note a slightly heavier tail in the msr. In the other sub-figures we fix the portfolio strategy

(either grp, rpa, or rpb) and vary the significance level α. Within each sub-figure/model the

histograms are almost indistinguishable, suggesting some robustness with respect to α.

Table 5 in the Appendix B presents the same summary statistics reported Table 3 for

all portfolios, including ES significance levels α ∈ {0.80, 0.85, 0.90, 0.95, 0.96, 0.97, 0.98, 0.99}.
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Figure 10: Scatter plot of daily returns of all pairs of portfolios.

Although some fluctuation is seen, there does not seem to be a clear dependence of the statistics

on the significance level. Over the entire 15 years of data, as we see in Figure 9, the mmv portfolio

has the highest annualised return, followed by the msr. The higher returns of the msr portfolio

are linked to a high volatility, the highest in the sample. As expected, the global minimum

variance (gmv) shows the lowest volatility. Even though the msr portfolio is constructed to have

the maximum Sharpe ratio, since the parameters are backward-looking, other portfolios achieve

Sharpe ratios even higher, see Table 4.

Contrary to popular belief, we do not observe a stronger resistance (as measured through the

Sharpe ratio) of the risk parity portfolios during moments of crisis, e.g. 2008 and 2020. This can

be explained by the fact that all assets in the investment universe belong to the same asset class

(Equity indices) and concurrently observed strong losses during these periods. Additionally, the

investment strategies studied are bounded to be long-only and fully invested.

Among the proposed risk parity portfolios (sdrp, grp, rpa, and rpb), their annualised volatil-
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ities vary between 18.44% and 19.33%, which are smaller than those of mmv and msr. Of the two

DCC-GARCH risk parity models (rpa and rpb), the volatility adjusted performance (Sharpe

ratio) is uniformly lower, across all α levels, for the GJR-GARCH model (rpb). Nonetheless,

both models’ Sharpe are higher than the ew’s and smaller than those of other portfolios. The

maximum drawdown for the risk parity portfolios (sdrp, grp, rpa, and rpb) is on par with the

equal weights portfolio (ew) and significantly higher than those of the best performing portfolios

(msr and mmv). A similar result is observed for the respective VaR0.05 and ES0.05.
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Figure 11: Histogram of the returns of all portfolios considered.

In order to evaluate the performance of the portfolios on a yearly basis, Table 4 presents

the Sharpe ratio for all portfolios for each of the 15 years under consideration. Highlighted are

the three best Sharpe ratios of the year; where dark green corresponds to the largest Sharpe

ratio. It should be noted that in 2008, 2011 and 2018 all portfolios presented negative returns

and conclusions based solely on the Sharpe ratio must be made with care. In Table 4 we see

a cluster of highlighted cells for the msr, mmv and gmv. Once again, the two DCC-GARCH

portfolios present very similar performance throughout the years.

The weights of all 11 assets for each portfolio is presented in Figure 12. As suggested by

Figure 10, msr, mmv, and gmv are the most dissimilar ones. From the weights of the mmv portfolio,
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msr mmv gmv ew sdrp grp95 rpa95 rpb95

2006 0.96 4.40 0.80 2.11 3.06 3.13 2.72 2.69

2007 2.85 1.95 1.91 1.47 1.74 1.75 1.62 1.59

2008 -1.16 -1.43 -0.77 -1.24 -1.32 -1.33 -1.24 -1.24

2009 2.96 1.93 2.53 1.85 1.96 2.03 1.72 1.72

2010 -0.36 0.18 -0.16 0.45 0.39 0.47 0.40 0.38

2011 -1.56 -0.55 -1.78 -0.65 -0.69 -0.68 -0.75 -0.73

2012 0.51 0.87 0.09 1.13 1.16 1.17 1.15 1.24

2013 2.83 1.94 2.78 1.82 1.81 1.86 1.59 1.69

2014 2.17 2.85 1.87 1.33 1.73 1.70 1.71 1.72

2015 0.68 0.36 0.72 0.31 0.33 0.34 0.33 0.35

2016 0.58 1.01 0.69 1.10 1.04 1.08 1.04 0.98

2017 3.27 4.03 3.26 2.93 3.08 3.09 3.05 3.04

2018 -0.55 -1.02 -1.02 -1.04 -1.05 -1.09 -1.00 -1.05

2019 2.92 2.33 2.89 2.63 2.62 2.63 2.64 2.62

2020 0.99 0.15 1.32 0.39 0.37 0.37 0.34 0.33

Table 4: Yearly Sharpe ratios for each portfolio. highest Sharpe in the year, second largest

Sharpe in the year and third best Sharpe in the year.

we see that the mmv, for some periods of time, is fully invested in one single asset or, at most,

two. A similar, although not so extreme, behaviour is observed for the msr and gmv portfolios.

Both mmv and msr are strongly invested on NASDAQ 100 between 2013 and 2020. During this

period, NASDAQ 100 presented extremely high returns, compared to the other assets in the

sample, leading to similar behaviour in the portfolios.

Within the risk parity strategies, the first noticeable feature is the fact that all portfolios are

much more balanced than msr, mmv, and gmv. Due to the nature of the assets under consideration

(all with volatilities between 20% and 30%), the sdrp is, not surprisingly, similar to ew. As the

empirical returns are sufficiently close to zero, the ES is proportional to the standard deviation

under the Gaussian hypothesis (see Example 1). Therefore, the allocations under the grp95

should converge to those of sdrp when N → +∞. This convergence is studied in Figure 13,

where we present the grp95 portfolio generated using N = 10 000, instead of N = 1000 (Figure

12) samples in Algorithm 1. As expected, the grp computed with larger sample size N is closer

to sdrp.
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Figure 12: Allocations within each portfolio. NASDAQ 100, S&P 500, Hang Seng Index,

FTSE 100, Dow Jones Industrial Average, DAX Performance-Index, Russell 2000,

CAC 40, Ibovespa, SSE Composite Index, Nikkei 225
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Figure 13: Weights of the grp95 portfolio. Differently from Figure 12, here using N = 10 000

samples.

The portfolio weights under the DCC-GARCH models (rpa95 and rpb95) are very similar,

while the weights under the DCC-GJR-GARCH specification (rpb) appear to be more robust.

This suggests that a more flexible model may be needed to take full advantage of the risk parity

strategy using ES. Overall, the major movements observed in the sdrp weights are similar to

those of both risk parity portfolios. For example, all risk parity portfolios start with a large

proportion of wealth invested in the SSE Composite Index and the weights in that asset in the

portfolios decrease steadily until the global financial crisis in 2008, after which the weights start

to increase again. Differently from the msr and the mmv, a major change in the weights of the

rpa95 and rpb95 portfolios is observed during the Covid-19 Pandemic.

It must be stressed that the behaviour of the risk parity portfolios constructed using the ES

as a risk measure and complex multivariate dynamics for the returns is only currently possible

due to the algorithms developed in this paper (Section 3).

7 Conclusions

We presented three optimisation algorithms tailored to the problem of constructing risk bud-

geting portfolios for coherent risk measures. One key benefits of the proposed algorithms is the

fact that no analytical expressions for the densities of the assets’ returns is needed, indeed both

our cutting planes algorithms and stochastic gradient descent algorithms rely only on scenarios

of returns. We compare our cutting planes algorithm with standard convex optimisation solvers

and show that our algorithm is significantly faster, particularly for increasing asset dimension

and number of scenarios. Moreover, for a distortion risk measures with continuous distortion

function and the Entropic VaR, only our cutting planes algorithm converges.

We apply our proposed algorithm to construct portfolios based on 11 equity indices and

analyse the performance of the risk parity portfolios compared to other investment strategies.

In this particular application we see that some of the risk parity portfolios are empirically similar
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to a portfolio with equal weights; a conclusion to date only available for risk parity portfolios

using the standard deviation as a risk measure.
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A Numerical studies

In this section we provide additional plots for the numerical exercises of Section 4. Figures 14

and 15 complement, respectively, the multivariate Gaussian and Student t analysis for the ES

with α = 0.95 and α = 0.99. Figures 16 and 6 show the run times for the multivariate Student

t for the Entropic VaR and distortion risk measures, respectively.
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(a) Multivariate Gaussian model with α = 0.95.
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(b) Multivariate Gaussian model with α = 0.99.

Figure 14: Comparison of run times for different algorithms for the ES risk budget-

ing problem: Cutting Planes, IpOpt, MOSEK, SCS. From left to right, N =

1000, 2 000, 3 000, 4 000, 5 000.
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(a) Multivariate Student t model with α = 0.95.
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(b) Multivariate Student t model with α = 0.99.

Figure 15: Comparison of run times for different algorithms for the ES risk budget-

ing problem: Cutting Planes, IpOpt, MOSEK, SCS. From left to right, N =

1000, 2 000, 3 000, 4 000, 5 000.
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Figure 16: Run times for the Cutting Planes algorithm for the EVaR risk budgeting problem.

From left to right, N = 1000, 2 000, 3 000, 4 000, 5 000. All plots are based on the multivariate

Gaussian model.
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Figure 17: Run times for the Cutting Planes algorithm for the distortion risk budgeting problem.

From left to right, N = 1000, 2 000, 3 000, 4 000, 5 000. All plots are based on the multivariate

Gaussian model.
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Figure 18: Comparison of run times for different algorithms for the ES risk budgeting problem

with two assets and different risk budgets: Cutting Planes, IpOpt, MOSEK, SCS. From

left to right, N = 1000, 2 000, 3 000, 4 000, 5 000. All plots are based on the multivariate

student t model with α = 0.95.
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B Summary statistics

Table 5 reports the annualised volatility, annualised return, and annual Sharpe ratio, as well

as the VaR0.05, ES0.05, and the maximum drawdown of all considered portfolios. We observe

that the statistics for the risk parity portfolios with different ES security level do not change

drastically.

Volatility Return Sharpe VaR0.05 ES0.05 Max drawdown

sdrp 18.44% 9.37% 0.508 -1.67% -2.91% -59.89%

msr 23.54% 12.88% 0.547 -2.05% -3.67% -70.75%

gmv 17.02% 9.71% 0.571 -1.56% -2.69% -58.36%

mmv 26.87% 14.79% 0.551 -2.56% -4.21% -66.58%

ew 18.89% 8.80% 0.466 -1.69% -2.97% -59.48%

grp80 18.49% 9.40% 0.508 -1.70% -2.91% -60.74%

grp85 18.49% 9.38% 0.507 -1.70% -2.91% -60.62%

grp90 18.50% 9.49% 0.513 -1.71% -2.91% -60.38%

grp95 18.51% 9.58% 0.517 -1.69% -2.91% -60.36%

grp96 18.53% 9.45% 0.510 -1.69% -2.92% -60.32%

grp97 18.52% 9.33% 0.504 -1.70% -2.92% -60.24%

grp98 18.53% 9.23% 0.498 -1.69% -2.92% -60.23%

grp99 18.56% 9.43% 0.508 -1.69% -2.92% -59.99%

rpa80 18.89% 8.89% 0.471 -1.69% -2.99% -60.26%

rpa85 18.82% 8.90% 0.473 -1.68% -2.98% -60.40%

rpa90 18.79% 8.93% 0.475 -1.68% -2.97% -60.34%

rpa95 18.88% 8.93% 0.473 -1.69% -2.99% -60.22%

rpa96 18.96% 9.04% 0.477 -1.70% -3.00% -60.19%

rpa97 19.02% 9.03% 0.475 -1.72% -3.01% -60.28%

rpa98 19.13% 8.98% 0.469 -1.72% -3.02% -59.89%

rpa99 19.33% 8.87% 0.459 -1.70% -3.06% -59.83%

rpb80 18.89% 8.89% 0.471 -1.68% -2.99% -60.34%

rpb85 18.83% 8.85% 0.470 -1.67% -2.98% -60.27%

rpb90 18.76% 8.90% 0.474 -1.66% -2.97% -60.37%

rpb95 18.71% 8.78% 0.469 -1.66% -2.96% -60.25%

rpb96 18.75% 8.77% 0.468 -1.66% -2.97% -60.28%

rpb97 18.75% 8.93% 0.476 -1.68% -2.96% -60.19%

rpb98 18.77% 9.00% 0.479 -1.67% -2.97% -60.21%

rpb99 18.76% 8.90% 0.474 -1.66% -2.96% -59.69%

Table 5: Statistics for all portfolios. The volatility, return and Sharpe ratio are annualised.
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