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Abstract This work develops a statistical model for estimating implied volatility sur-
faces, using information about the expectations of market agents contained in the mar-
ket prices of options. The implied volatility curves are estimated by shape-constrained
splines, using a Bayesian method (MCMC) that imposes no-arbitrage conditions on the
price curve using shape restrictions.
Keywords: Implicit Volatility, Non-parametric Estimation, Bayesian Methods, Market
Expectations.
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Resumo Este trabalho desenvolve um modelo estatístico para estimação de superfí-
cies de volatilidade implícita, utilizando informações sobre as expectativas dos agentes
de mercado contidas nos preços de mercado de opções. As curvas de volatilidade im-
plícita serão estimadas por splines com restrição de forma, usando um método bayesiano
(MCMC) que impõe condições de não arbitragem na curva de preço usando restrições
de formato.
Palavras-chave: Volatilidade Implícita, Estimativa Não Paramétrica, Métodos Bayesianos,
Expectativas de Mercado.
Códigos JEL: E3, C41, C43.

1. Introduction

The implied volatility can be considered as a measure of the expected
future risk of a given underlying asset, as it is calculated using market prices
of derivatives and thus incorporates the expectations of market participants.
Therefore, accurately modeling and predicting implied volatility is extremely
important, both theoretically and practically, as this would make it possible to
predict future movements in assets or even more accurately price derivative
instruments.

Based on this assumption, several studies were carried out with the aim of
verifying whether the information contained in the implied volatility would
make it possible to predict movements in the stock market, as well as its
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volatility. In (DAY and LEWIS, 1992), the predictive power of implied volatil-
ity was studied in comparison with that of historical data, using a GARCH
model with the inclusion of implied volatility as an explanatory variable.
They concluded that both have an impact on future volatility. In (XING et al.,
2010), the impact that the shape of the implied volatility curve (skew and
kurtosis) has on future stock market returns was verified. The results were
consistent with the hypothesis that there is additional information embedded
in the volatility curve. Considering an article that deals with the Brazilian
market, we have the study by (VICENTE and GUEDES, 2010) in which a re-
lationship between implied volatilities and realized volatilities was identified.

Therefore, the idea of this work is to build a statistical model to esti-
mate the implied volatility, contemplating the information contained in the
options market about the expectations of market participants in relation to
future movements of stock prices and thus, consequently, be able to use this
model to predict future volatility and more accurately price option contracts.

The main original contribution is in the method used to estimate the im-
plied volatility, with the use of Bayesian inference, through a new non-parametric
formulation for the estimation of the implied volatility, through splines with
shape restrictions, whose application to the Brazilian options market is still
unprecedented. As the method is non-parametric, it is not necessary to as-
sume a functional form or to have a previously established distribution, mak-
ing the model more flexible, but imposing the non-arbitrage conditions nec-
essary for the construction of the price curve and implicit volatility. Added
to this, the shape constraints make the model more robust to the choice of
interpolation nodes and parsimonious in the fit to the data, making it bal-
anced between a good fit while avoiding over-fitting. Furthermore, when
using Bayesian inference, it is possible to go beyond point estimates, with
the construction of posterior distributions and confidence intervals for the re-
gressions, which facilitates the quantification of uncertainty for the estimated
values.

This work is divided into 5 parts. In the second section we review the ex-
isting literature on the construction of implied volatility curves and surfaces,
and the use of Bayesian methods for this purpose. In the third section, we
approach the methodology used to calculate the implied volatilities from mar-
ket prices, and subsequently the implied volatility curves using splines with
shape restriction via Bayesian estimation. In the fourth section, we present
the results obtained and finally, in the last one, the conclusions.



1.1 Objective and justification of relevance

The Black–Scholes-Merton (BSM) ((BLACK and SCHOLES, 1973)) model
serves as an important conceptual reference for the pricing of options, includ-
ing being a kind of “language” among traders, academics and practitioners
who work in this market. However, although it is the most known and widely
used, this model has some simplifications in its assumptions, deviating from
what is observed in the price generating mechanism in the financial markets.
As a result, the model ends up generating incorrect pricing mainly for out-of-
the-money and in-the-money options, as observed in (RUBINSTEIN, 1985).

Among the main assumptions assumed by the model, we can mention
that volatility is constant, not being a function of time or the underlying asset;
and that log-returns are normally distributed, that is, prices follow a lognor-
mal distribution. When using the model considering these assumptions in
the presence of time-varying volatility and non-log-Gaussian distributions,
incorrect pricing and distortions in calculated prices are obtained, mainly for
out-of-the-money and in-the-money options.

One of the most notorious evidences that volatility is not constant through-
out the exercise prices is the shape of the implied volatility curve, which is
characteristic, with higher volatility values at the extremes, forming what is
conventionally called the volatility’ smile. That is, options with strike prices
farther from the asset’s current value tend to have higher volatilities than those
with strike prices closer to the price of the underlying asset.

A first alternative to the Black and Scholes model was developed in (COX
et al., 1979). This is the Cox-Ross-Rubinstein (CRR) model, which became
popularly known as the binomial model. Such a model assumes that asset
prices move according to a discrete binomial process. A price tree is formed,
representing the different paths through which the price of the underlying as-
set can follow throughout the life cycle of the option. At the end of each node,
the option price is calculated, and from there, the value of the option at the
preceding nodes is calculated sequentially. This model is recommended when
the asset is paying dividends and also for the pricing of American options, but
can be modified to the presence of a non-constant volatility.

(HESTON, 1993) developed a model with stochastic volatility, assuming
that volatility follows a stochastic process defined by an additional stochastic
differential equation in the model. Through this model, the price of an option
can be derived as an integral of the future density of asset prices, which in turn
can be calculated through an inverse Fourier transform. A rule of thumb used
to correct prices in the BSM model is, instead of using historical volatility
for all strike prices of a given maturity, prices are quoted in terms of another
parameter, which is whether of implied volatility.



In (SCHMALENSEE and TRIPPI, 1978), a numerical method was used
to calculate the volatility of the underlying asset based on the prices reflected
in the options market, a volatility that became known as implied volatility.
Conceptually, implied volatility is defined as the volatility that, when in-
cluded in the BSM model formula, arrives at the option prices observed in
the market. The usual way to calculate it is through inversion using numeri-
cal methods, given that the model formula is nonlinear. The implied volatility
surface can be defined as a set of implied volatilities obtained via BSM based
on market prices for each option strike price and maturity, thus forming a
three-dimensional structure.

Thus, by estimating implied volatility more precisely, it is possible to
arrive at prices with smaller errors in relation to market prices. Based on
this idea, this work will propose a model to estimate the implied volatilities,
with the objective of, when using the information contained in the prices of
the options, arriving at pricing with smaller errors than the classic models
mentioned above, since the expectations will be considered of market agents.

Therefore, the justification for this work is to contribute to the evolu-
tion of methods for estimating volatility curves and, ultimately, for pricing
options using a non-parametric Bayesian approach with the imposition of
no-arbitrage restrictions. This model has the advantage of not assuming a
functional form, and as such it is more robust to misspecification problems
and allowing a more accurate fit to the implied price and volatility curves,
while being consistent with the no-arbitrage constraints needed to asset pric-
ing. Furthermore, after estimating the volatility for each strike price, expira-
tion date and period, the model’s forecast level will be tested, calculating the
implied volatility for one period ahead of the estimated surface.

In the next section, the main methods already used for the construction of
curves and surfaces of implied volatility are revised, considering their positive
and negative points, and we the methodology that be used in our work is
presented.

2. Literature review

2.1 Implied volatility curves

Over the years, different types of techniques have been used in the litera-
ture to model implied volatilities. In (SHIMKO, 1993) it was proposed to use
a simple quadratic polynomial to adjust the volatility curve in relation to the
strike prices. In (MALZ, 1997) the curve was adjusted in relation to the delta
of the options using the same polynomial method. In (CAMPA et al., 1998),
instead of using a polynomial method, a natural spline was used to model



the implied volatility in relation to the strike price, in order to better capture
the smoothing of the curve. In (BLISS and PANIGIRTZOGLOU, 2002) they
used a smoothing cubic spline to adjust the implied volatility in relation to
the option’s delta. In (PANIGIRTZOGLOU and SKIADOPOULOS, 2004)
the same smoothing cubic spline was used, but in relation to the strike prices.
Finally, in (LAURINI, 2011) a smoothing B-splines method was used under
monotonicity and convexity restrictions, adjusting the implied volatility in
relation to the moneyness of the options.

2.2 Construction of implied volatility surfaces

In (ALEXANDER, 2001), principal components analysis (PCA) was ap-
plied to the daily variation of the implied volatility differential between a
given strike price and at-the-money (ATM) volatility in each term. In addi-
tion, a second approach was made with the application of the PCA to the
daily variation of volatility as a function of the delta in each term. (KAMAL
and DERMAN, 1997) also used PCA, but with the application of PCA to
the daily variation of the volatility surface, that is, we worked with volatility
as a function of delta and maturity. In (CONT and FONSECA, 2002) they
applied principal component analysis to the volatility surface as a function
of term and moneyness for the SP500 and FTSE100 indices. The volatility
surface for these indices was built from option prices on the market, being
subjected to a smoothing process before principal component analysis.

(HOMESCU, 2011) revise the main methodologies for building an im-
plied volatility surface. Different topics related to the construction of such
surfaces in practice are addressed, such as arbitrage-free conditions for both
the strike price and the time, the problem of carrying out extrapolations be-
yond the central region, choosing functions for calibration, as well as the
selection of algorithms for numerical optimization.

2.3 Construction of surfaces using Bayesian methods

Finally, we revise the use of Bayesian methods for the estimation of func-
tion surfaces related to financial problems. In (AVELLANEDA et al., 2000),
the volatility surface was constructed using a non-parametric method known
as feed-forward neural network. The formulation of the problem was done in
a Bayesian way, imposing a prior structure on the components of the neural
network. After constructing the volatility surface, Dupire’s equation ((Dupire,
1994) was used to estimate the local volatility surface.

In (CALDEIRA et al., 2010) a dynamic model was proposed for the term
structure of the interest rate, considering two different types of specification
for the (NELSON and SIEGEL, 1987) model. In the first specification is



introduced conditional heteroscedasticity, using a stochastic volatility model
with common factors. In the second, a model was made with individually
latent factors following an auto-regressive process with stochastic volatility.
Bayesian inference was conducted by the method of Markov chain Monte
Carlo (MCMC).

In (LAURINI, 2013), to predict the evolution over time of the interest
rate term structure, a non-parametric model based on penalized splines with
Bayesian estimation made by a combination of Gibbs and Metropolis Hast-
ings was used, again using a Markov chain Monte Carlo (MCMC) method.

In (ALMEIDA and QIN, 2020) a non-parametric Bayesian method was
used to predict and estimate the volatility surface from market data. Gaus-
sian processes with different kernels characterizing covariance functions were
used. Posterior distributions and confidence intervals were obtained for the
implied volatilities. In the study it was concluded that the Bayesian method
is a powerful alternative to the existing pricing models.

Based on the analysis of the available literature on the subject, as well as
considering the strengths of each method, a semi-parametric Bayesian model
will be proposed in this work to predict and estimate the implied volatility
surface. In this method, regressions via splines with shape constraints will be
used, more specifically C-splines, that is, splines with convexity constraint.
The functions will be estimated using Markov chain Monte Carlo (MCMC)
algorithms. By using a Bayesian framework it will be possible to produce
uncertainty estimates much more easily than in comparison with a frequentist
paradigm, in addition to enabling comparison and selection between models.

3. Methodology

3.1 Black-Scholes model

To calculate the implied volatilities from market prices, the Black-Scholes
model will be used, following the main convention of the implied volatility
literature. In (BLACK and SCHOLES, 1973), it is assumed that S, that is, the
price of the underlying asset, follows a geometric Brownian motion (GBM),
in the form of the following equation:

dSt = µStdt +σStdBt

where µ is the drift, σ is the volatility and Bt is a stochastic process that
follows a Brownian motion. Considering the payoff of a call as max(St −K,0)
and that of a put as max(K − St ,0), when resolving the EDPs respecting the
boundary conditions, one arrives the option prices solution for a non-dividend
asset:



ct = StN(d1)−Ke−rT N(d2)
pt = Ke−rT N(−d2)−StN(−d1)

d1 = ln( St
K )+(r+1/2σ2)T

d2 = d1 −σ
√

T

Where:
ct - European call premium in t.
pt - European put premium in t.
St - Price of the asset defined in t.
t – current period.
K – Call option strike price.
T – Time to maturity of the call option.
σ – Implicit volatility.
r - Risk-free interest rate.
N(.)˘T hestandardnormalcumulative f unction

The option pricing formula developed for this model is used to calculate
the value of European options to call or put stocks. The formula assumes that
the volatility of the underlying asset is constant. With the definition of the
other parameters of the Black-Scholes equation, such as asset price, interest
rate, strike price, maturity and volatility, it is possible to arrive at the value of
the premium for the option. This premium at time t of a European-type call
option, which is exercised only on the expiration date.

The model has the following assumptions:
(1) the risk-free rate is constant until option expiration (2) returns have a

log normal distribution and volatility is constant, (3) there are no dividends
(Merton Model includes), (4) options are exercised only at maturity, (5) there
are no transaction costs, (6) there are no risk-free arbitrage opportunities, and
(7) there are no short sales.

Of these assumptions we will particularly delve into the non-existence of
arbitrage opportunities, as this has a direct impact on the shape of the options
price surface and, therefore, on the shape of the implied volatility surface. As
discussed by (LAURINI, 2011):

“In the classic option pricing model of Black and Scholes, the non-arbitrage
conditions are equivalent to the existence of a risk-neutral density (density of
price states), which gives the base price of the asset in each possible state of
nature in a risk-neutral measure. Fundamental conditions for the imposition
of non-arbitrage are given by the relationship between the price of the options
and the strike.”

Therefore, consider C(K,T) as the price of a call option on a stock with



strike price K and expiry date T, with a given expiration date Tf . In (CARR
and WU, 2010), the non-arbitrage conditions for a call option with a fixed
strike price and term to maturity are:

C(K,0) = max[0,STf −K]

max[0,St −Ke−rT ]⩽C(K,T )⩽ St
Put −Call −Parity : C(K,T )+Ke−rT = P(K,T )+St

For options with different expiration dates and strike prices:

If K1 > K2, then 0 ⩽C(K2,T )−C(K1,T )⩽ (K1 −K2)e−rT

C(K,T ) is a convex function for K
C(K,T ) is a monotonically increasing function for T

Thus, when building the curves, any points violating these constraints
generate arbitrage opportunities. Therefore, such restrictions must be taken
into account in the development of the model.

3.2 Implied Volatility

Implicit volatility is the volatility obtained by using the market prices of
options in the Black-Scholes model formula, that is, given the market price of
an option, by inverting the price function one can arrive at the corresponding
implicit volatility.

Assume an observed price of a call option C∗, the implied volatility value
σ∗ is the one that satisfies the following relation:

C∗ =C(S,K,r,σ∗,T )

However, as the volatility parameter of the Black and Scholes (1973) for-
mula above cannot be isolated to obtain the implied volatility, given the non-
linearity of the formula, it is necessary to use numerical methods for extract-
ing the roots of the price functions.

According to (CONT and FONSECA, 2002), the implied volatility σ∗
t (K,T )

exists and is unique because the price of a call (or put) option as a function of
volatility is a monotonic mapping of [0,+∞) to [0,St −KerT ] or [0,KerT −St ]).
If we stick to (K,T), σ∗

t (K,T ) is a stochastic process. If we fix it at t, it is de-
pendent on maturity T and strike K.

According to (ORLANDO and TAGLIALATELA, 2017), the most ac-
curate calculation of implied volatility is by the Newton-Raphson numerical
method, which is also the one that converges most quickly. The process is fast
and simple, as the function ct (or pt ) is monotonic increasing with respect to
volatility.



One can describe the Newton-Raphson method as below. Suppose a con-
tinuous and differentiable function f(x) and it is known that the root of the
function is close to the point x = x0. By Newton’s method the best approxi-
mation to the root is as follows:

x1 = x0 − f (x0)
f ′(x0)

This process is repeated as many times as necessary until the desired ac-
curacy is achieved. In general, for any xn value, the next value is given by:

xn+1 = xn − f (xn)
f ′(xn)

If x0 is in the neighborhood of 0 and f ′(x) ̸= 0 then the method will con-
verge.

Implicit volatility surfaces or curves cannot have an arbitrary shape and
therefore, to build admissible surfaces or curves, one must follow the restric-
tions imposed by the non-arbitrage conditions. With that in mind, we will
impose the restrictions that all calculated implicit volatilities must be greater
than or equal to zero, and the volatility curves, for a given maturity period,
must have a convex shape in relation to the strike price.

3.3 Shape constrained splines

Splines are piecewise polynomials that are continuously differentiable
to a certain degree and are connected by a sequence of points, known as
nodes. Each segment is polynomials that connect smoothly to each other
at the nodes. A spline function can be represented as a linear combination of
its basis functions.

Thus, before talking about base spline functions, we need to define a se-
quence of nodes. Suppose K is a set of nodes indexed by m, a positive integer,
we have the following sequence (k1,k2...,km) so that the interior nodes are be-
tween the nodes of boundary L and U. Defining d as the degrees of freedom
of the basis function and q = d + 1 as the order. We define the sequence of
nodes with additional nodes at the ends, L = k1 < k2 < ... < km+2 = U . In
this way, it is possible to construct a B-spline, that is, a base spline, by means
of a recursive formula. Thus, the ith basis function B-spline of degree d and
order q can be defined recursively as follows:

B1,q(x) = 1 for ki ⩽ x < ki+1
B1,q(x) = 0 for all other cases

Bi,q(x) =
x−ki

ki+q−1−ki
Bi,q−1(x)+

ki+q−x
ki+q−ki+1

Bi+1,q−1(x) for q > 1



A M-spline can be considered as a B-spline normalized according to (CURRY
and SCHOENBERG, 1966). Given the sequence of nodes, the i-th basis func-
tion M-spline of degree d and order q, denoted by Mi,q(x), can be considered
as a basis function B -spline normalized, if it satisfies the following relation:

Mi,q(x) =
q

(ki+q−ki)
Bi,q(x)

Furthermore, a M-spline can be defined analogously to a B-spline, through
a recursive formula, as follows:

Mi,q(x) =
q

(q−1)(ki+q−ki)
[(x− ki)Mi,q−1(x)+(ki+q − x)Mi+1,q−1(x)]

A I-spline of order q+1 is found by integrating a M-spline of order q. In
this way, when we integrate a M-spline from L to x, we arrive at a I-spline, as
shown below:

Ii,q+1(x) =
∫ x

L Mi,q(u)du

For the interval L ⩽ x ⩽ U M-splines are strictly positive. Thus, by def-
inition, I-splines are monotonically non-decreasing from L to U. Therefore,
(RAMSEY, 1988) proposed the use of I-splines for monotonic regressions. A
monotonically increasing function can be obtained by a linear combination of
I-splines and an additional intercept term, so that monotonicity is ensured by
constraining the coefficients of the I-splines to be positives. Analogously, a
regression can be performed for a monotonically decreasing function, simply
restricting the coefficients of the I-splines to be negative.

In (MEYER, 2008) C-splines of degree q+1 and order q+2 were formed
as the integration of I-splines of order q+1, so to be estimated with curvature
constraints. The relationship between I-splines and M-splines can be seen as
below:

Ci,q+2(x) =
∫ x

L Ii,q+1(u)du

Functions with concave or convex shape constraints can be approximated
using a linear combination of C-splines, an identity function and an intercept
term. To estimate a convex regression function, just restrict the C-splines
coefficients to non-negative values.

Similarly, to estimate a concave regression function, a linear combination
of C-splines with coefficients constrained to non-positive values is performed,
plus a linear combination of the identity vector with unrestricted coefficients.

Estimates for regression functions under a combination of constraints can
also be done analogously. However, as in this work only curvature constraints
will be used, this topic will not be addressed.



3.4 Regression via shape-constrained splines

Non-parametric regression methods allow estimating a function with the
minimum of assumptions and, therefore, are the most indicated when a para-
metric form is not available. In the case of regressions by splines it is nec-
essary that the number of nodes and their positions are specified beforehand.
If the function estimate is not robust to these choices, the inference of the
regression function is impaired.

Making estimates exclusively using shape constraints such as those of
monotonicity or curvature do not require previously defining parameters, how-
ever, in general they are not smooth, nor parsimonious, causing the degrees
of freedom of the model to end up having values, in a certain way , ele-
vated. splines regressions are smooth, flexible, and parsimonious estimators
of nonparametric functions. However, the number and position of nodes are
sensitive. Therefore, one way to make them robust in choosing nodes is by
imposing shape constraints. Thus, by joining the regression by splines with
the shape constraint, the method becomes both flexible and robust.

Spline regressions basically work as follows: a set of basis functions is
formed and used as regressors in an OLS model. The base functions are
smooth and have segments with polynomials of a certain degree, positioned
between the nodes specified by the user. The set of linear combinations of the
basis functions is large enough to provide high flexibility to the model, which
also raises a certain concern about over-fitting.

One way to avoid over-fitting is to include a penalty term to reduce the
flexibility of the regression estimator. In the case where shape constraints are
imposed, however, this technique is not necessary, as the constraints them-
selves do not allow the formation of peaks, valleys or sinuosity in the fit,
remedying the over-fitting.

In this work, given the convex shape of the implied volatility curves, C-
splines will be specifically used to estimate the regression functions. Below
there is a description of the method proposed in Meyer (2008) to estimate
regression functions with convexity restriction.

Consider a regression model, where X and Y are the predictor variables
and the response variables, respectively. The observed data are independent
pairs (xi,yi), such that i ∈ 1,...,n. It is assumed that the true function f(·) is
continuous and has a certain known shape restriction, in this specific case,
convexity.

A convex curve can be estimated through a linear combination of C-spline
basis functions, an identity function, and an intercept term, whose C-spline
coefficients are restricted to non-negative values. In convex regression, the
coefficients are estimated by restricted least squares in order to minimize the



squared error loss, as follows:

θ̂ = argmin
θ

∑
n
i=1[yi − (α0 +α1xi +β⊤C(xi))]

2, s.a. β ⩾ 0

where yi is each observed value of the independent variable, α0 is the inter-
cept, α1 is the coefficient of the linear term, and C(xi) is a vector of C-splines
evaluated at each xi.

3.5 Bayesian inference for shape-constrained splines

Non-parametric and semi-parametric regression estimation can also be
modeled using the Bayesian paradigm. The advantages of the Bayesian method
are that it makes it possible to generate joint posterior distributions for the co-
efficients and, therefore, allows inference through various sampling methods,
including for frameworks with shape constraints, as is our case.

In (HACKSTADT, 2011) an adaptation of the method developed in (MEYER,
2008) was made, in which a model is proposed, using a Bayesian approach,
for estimation regression splines with shape restrictions. The proposed method-
ology uses the Gibbs sampler, an MCMC algorithm, which makes it possible
to infer the posterior distribution from random draws, making this process
easier, since it is not trivial to obtain the variance of the vector of coeffi-
cients of a regression with constraints in a frequentist framework. In addi-
tion, through this method it is also possible to use model selection tools that
are more difficult or impossible to work with under a frequentist paradigm.

In this model, gamma distributions will be adopted as priors for coeffi-
cients that are real positive, with hyperparameters chosen such that the vari-
ance is large and the mean relatively small. When using C-splines, shape
restrictions will be imposed simply by requiring that the coefficients of the
base functions of splines be non-negative.

Consider X and Y as a series of predictor variables and response variables,
respectively. The observed data are independent pairs (xi,yi), such that i ∈
1,...,n. Assume the model y = η + ε , where

ε ∼ N(0,τ−1)

η =
m

∑
j=1

β jδ j +
p

∑
j=1

α jυ j

where δ j are the basis vectors corresponding to the shape constraint of the
function f (.); υ j are the vectors of the observed values of the covariates to
be modeled parametrically; m is the number of chosen nodes. When using a
Bayesian method for inference prior densities are defined for the coefficients



α and β . To enforce the shape restrictions, the values of β will be restricted
to the set of positive real numbers.

The priors for each parameter will be given as follows:

τ ∼ Gamma(d1,d2)
β j ∼ Gamma(c1,c2)

α ∼ N(0,MI)

Where the parameters d1 and d2 were chosen such that the mean of the
prior d1/d2 is the inverse of the model variance. The mean c1/c2 was chosen
to be a prior of R (range) divided by m, where R is the range of the function f,
that is R = f (max(x)−min(x)) and m is the number of interior nodes of the
function. And finally, M is a parameter chosen discretionarily. In (HACK-
STADT, 2011) M = 1000 was used, a value that will also be adopted in this
work.

As the posterior distribution is analytically intractable, the way to obtain it
is through a Markov Chain Monte Carlo (MCMC) method, more specifically
the Gibbs sampling algorithm.

At each iteration t, random drawings of the complete conditional distribu-
tions are generated for the parameters in the Gibbs sampler, as follows:

η
(t) =

m

∑
j=1

β
(t)
j δ j +

p

∑
j=1

α
(t)
j υ

(t)
j

The estimator (posterior mean) of the function f̂ in xi is calculated by
averaging the η

(t)
i values obtained in N iterations, after removing the burn-in,

as follows:

f̂ (xi) =
1

N −B

N

∑
t=B+1

η
(t)
i

Where N is the total number of iterations of the MCMC algorithm and B
is the Burn-in.

3.6 Selecting models and hyperparameters

The comparison between the different possible models is an important
component of any modelling process. Below are listed some metrics to be
used in the work to define and select which model is most appropriate for the
dataset under study.

The Akaike Information Criteria (AIC) measures the relative quality of
statistical models for a given set of data, that is, it estimates the quality of



each model in comparison with other models for the same data, penalizing
for the complexity of the model. The measurement of quality is done through
the amount of information lost by the model, so that the more information
the model loses, the lower its quality. However, this measure is valid only
asymptotically, requiring some kind of correction if the data set is small. The
methodology used in the AIC aims to indicate the best balance for the model,
between quality of fit to the data and simplicity. In other words, you are
dealing with the risk of overfitting and underfitting.

Assume a given statistical model, for a given set of data. Let k be the
number of parameters estimated in the model and L be the maximized value
of the likelihood of the model, we have that the value for the AIC is the
following:

AIC =−log(L)+2(k)

with k a measure of model complexity, usually the number of parameters in
the model.

Within the set of models analyzed for the same data, the preferred model
is the one with the lowest value for the AIC. Thus, the AIC measures the
quality of fit to the data through the likelihood function, at the same time
that it includes a penalty related to the number of parameters estimated in the
function. The penalty aims to control overfitting, by penalizing the increase
in the number of model parameters, balancing with the quality of the fit to the
data.

It is worth mentioning that the AIC is not informative regarding the ab-
solute quality of the model, only being a tool for comparing one model with
the other. Therefore, it is important to use metrics other than the AIC when
performing model selection, in order to validate the absolute quality of the se-
lected model. One way to carry out this validation is through metrics related
to the residuals generated by the models under analysis.

Another indicator that we will use in our work is the Bayesian information
criterion (BIC), also known as Schwarz information criterion (SIC). Like the
AIC, it is a relative model selection indicator, in which models with lower
values for the indicator are preferred. The measurement of the quality of the
models is based on the likelihood function, similarly to the AIC and there is
also a penalty term, however the BIC also takes into account the sample size
for the penalty.

Assume a given statistical model, for a given set of data. Let k be the num-
ber of estimated parameters in the model, L be the maximized value of the
likelihood of the model and N be the number of observations in the sample,
we have that the value for the BIC is the following:



BIC =−log(L)+ log(N)(k)

When comparing various models, in general, the best is the one with the
lowest value for the BIC. However, it is important to consider that the BIC
can be used to compare estimated models only when the number of dependent
variables are identical in all models being compared. Furthermore, it is worth
noting that, like the AIC, the BIC should not be used to measure the absolute
quality of the model.

In view of this, to measure the absolute quality of fit to the model data,
metrics related to the residuals of each model will also be used. The mean
error (ME), in general, refers to the average of all errors of a given estimation.
An error in this context is the difference between the value measured by the
model and the correct value, that is, the observed value. This measure can be
calculated according to the formula below:

ME = 1
N ∑

N
i=1 residuals

The mean error (ME) usually results in a value that is not very useful
analytically, because when adding negative and positive errors, one cancels
the other, resulting in an ME close to zero. A more widely used metric that
corrects this problem is mean absolute error (MAE).

The mean absolute error (MAE) is calculated by the sum of the absolute
difference between the observed values and the estimated values of a given
model, divided by the sample size, that is, it is the arithmetic mean of the
absolute errors. This measure can be calculated according to the formula
below:

MAE = 1
N ∑

N
i=1 |residuals|

Among the advantages of using the Mean Absolute Error (MAE) are the
easy interpretability and the fact that each error influences the MAE in the
same way.

4. Results

4.1 Database

For this work, it was decided to specifically use Petrobras preferred shares
(PETR4) and their respective option contracts, as it is the stock with the high-
est number of option contracts, as well as having the most liquid contracts in
the Brazilian variable income market. In addition, it has an extensive history,
having been, throughout this period, an extremely representative action of the



market movements of the Brazilian stock exchange in the most varied scenar-
ios faced by the country, given the characteristics of the Brazilian economy
intrinsically linked to commodities , as well as the fact that it is a state-owned
company and its market performance is also associated with country risk.

As a database, daily quotations available on the B3 website were used, for
shares and for all option contracts with trades carried out in the period. The
period considered for this work comprises daily quotations of these securities
ranging from 2010-01-04 to 2022-06-30. It is worth mentioning that given
the nature of option contracts, which expire monthly and have variable strike
prices at each expiration depending on the current price of the underlying as-
set, it was not possible to obtain relevant historical data that included intraday
prices for the options. In this way, we only obtain the daily opening, high,
low and closing prices of stocks and options.

First of all, a filter was made on the options contracts, considering only
those with a minimum daily financial volume of R$ 200,000.00. Such a filter
was made with the intention of discarding those contracts that did not have
many trades carried out on the day, thus not being representative for the for-
mation of market prices and, therefore, would probably generate outliers for
the calculated implicit volatilities. After the filter, 75.49% of the number of
original contracts in the database remained for call options and 75.54% for
put options.

In order to calculate the implied volatility, it is necessary that the prices
of the options occurred at the same time as the observed price of the share.
As only contracts with high liquidity were selected, it is reasonable to assume
that these had a continuous flow of trades throughout the day and, therefore,
it was considered that the maximum and minimum prices of the options were
observed at the same moment as the maximum prices and minimum of the
action. In addition, analogously, we consider that the closing prices of the
liquid options occurred simultaneously with those of the stock.

As for the opening prices, there is evidence of a difference in trading
hours between the stock and the options, given the large distortions and dis-
parities seen in the calculated implied volatilities, which is why we discard
the opening prices.

Therefore, for the purpose of constructing the curves and surfaces of im-
plicit volatilities, it was considered that the maximum, minimum and closing
quotations for shares and options, for a given day, occurred in the same pe-
riod t. That is, each daily curve will be built using the implicit volatilities
calculated for the maximum, minimum and closing quotes within the same
day.

For the model’s risk free interest rate, the daily Selic rate provided by the



Central Bank via API was used.

4.2 Implied volatility

First, the daily implied volatilities were calculated for each option con-
tract traded on that day. A restriction was imposed for implied volatilities not
to assume negative values. In cases where this happened, the value of implied
volatility was replaced by zero.

Examples of implied volatilities calculated for call option contracts can
be seen in table A1 of the appendix and in table A2 for put option contracts.
For each option contract, the term to maturity was calculated on an annual
basis, and the moneyness, that is, the value of the exercise price divided by
the price of the underlying asset.

As there are large distortions in options with very short or very long terms,
only contracts with a minimum maturity of 3 days and a maximum of 63
days were considered in this work. This fact also occurs in relation to the
moneyness of the options, so only contracts with a minimum moneyness of
0.50 and a maximum of 1.50 will be considered.

4.3 Selection of parameters for the model

Shape constraints by themselves, when imposed on the model already
result in estimators that are typically more robust compared to a pure smooth-
ing, however, it is still important to test and evaluate which parameter for the
number of nodes makes the more efficient model. In addition, another param-
eter that we will test will be the size of the training dataset that we will use to
estimate the curves with greater precision and better quality in the data fit.

Table 1
Average errors per period - Calls

Period RMSE MAE AIC BIC

5 days 0.052205 0.032982 -119.3492 -110.745277
10 days 0.063512 0.03825 -231.751148 -218.178936
21 days 0.052966 0.033768 -124.516339 -114.546634
63 days 0.067962 0.047895 -235.763484 -221.234706

126 days 0.122034 0.094138 -146.435863 -130.784203
252 days 0.128492 0.098518 -218.124663 -199.714877

Note: Table shows the average RMSE, MAE, AIC and BIC calculated for 6 different models
using calls. Each model assume a different value for n, that is the quantity of previous days

utilized to estimate the curve for the following day. The values assumed by n are 5, 10, 21, 63,
126 and 252 days. The sample encompasses the period from 2010-01-04 to 2015-12-30.



We divided the period considered in the work into an in-sample period,
which encompasses a period from 2010-01-04 to 2015-12-30, and an out-of-
sample period which runs from 2016-01-04 to 2022-06-30. The in-sample
period will be used in order to determine the values of the model parameters
that minimize errors in the estimation and generate better quality of fit to the
model, while the out-of-sample sample will be used to estimate the curves
that will be used for the analysis of the results.

We will estimate a f̂ (t)(xi) for each maturity day, that is, for each t that
consists of a specific day in our sample, curves of the function will be esti-
mated regression at each maturity date. The tested models will have different
data sets for training, and there will be models with the implicit volatilities
calculated for the n days prior to t. For the in-sample sample, values for n,
i.e., the length of the period, will range from 5, 10, 21, 63, 126 to 252 days.
And so, it will be defined which value for the hyper parameter n generates the
model with the best results. For this analysis, we will set the number of nodes
to 5 for both calls and puts.

Table 2
Average errors per period - Puts

Period RMSE MAE AIC BIC

5 days 0.122819 0.098015 -56.039674 -45.800943
10 days 0.123624 0.09874 -55.766396 -45.529878
21 days 0.123546 0.098447 -58.13886 -47.712096
63 days 0.118931 0.092418 -98.562609 -85.42091

126 days 0.122034 0.094139 -146.436189 -130.784529
252 days 0.128492 0.098518 -218.125029 -199.715244

Note: Table shows the average RMSE, MAE, AIC and BIC calculated for 6 different models
using puts. Each model assumes a different value for n, that is the quantity of previous days

utilized to estimate the curve for the following day. The values assumed by n are 5, 10, 21, 63,
126 and 252 days. The sample encompasses the period from 2010-01-04 to 2015-06-30.

Similarly, the number of interior nodes k are analyzed to define the opti-
mal value of this parameter for the model, considering errors, as well as the
level of complexity of the model in the in-sample sample. For this analysis,
the number of periods n will be fixed at 63 days, both for call and put options.
The values of k will range from 1, 2, 3, 4, 5, 6, 7, 8, 9 to 10, that is, these
values will be tested for the number of nodes in the model.

As criteria for comparing the quality of the model’s fit for the different
proposed specifications, the ME, the RMSE, and the MAE will be calculated.



Additionally, the AIC and BIC will be calculated, as they are metrics that also
take into account the degree of complexity of the model, not just its errors.

We compared the values of these metrics for the set of models considered,
and the best model is the one with the lowest values for the AIC and BIC, that
is, the one that has the least loss of information relative to the true model. It
is worth mentioning that in this work the comparison between models will be
performed using identical samples.

For the absolute values, the RMSE and MAE error metrics will be con-
sidered, in order to verify whether the models actually present small errors,
that is, meaning that they have a good quality of fit to the data.

Table 3
Average errors by knots - Calls

Knots RMSE MAE AIC BIC

k=1 0.069285 0.04876 -240.00057 -235.157644
k=2 0.119724 0.093049 -103.580244 -97.009394
k=3 0.049992 0.031512 -102.186912 -94.769097
k=4 0.11905 0.092487 -100.396481 -89.445065
k=5 0.067962 0.047895 -235.763484 -221.234706
k=6 0.049272 0.03123 -96.728731 -83.747554
k=7 0.049115 0.031178 -94.819492 -79.983861
k=8 0.049007 0.031107 -93.048068 -76.335781
k=9 0.049075 0.031143 -90.974948 -72.387085
k=10 0.11904 0.092531 -89.210195 -65.042001

Note:Table shows the average RMSE, MAE, AIC and BIC calculated for 10 different models
using calls. Each model assumes a different value for k, that is the number of knots utilized to

estimate the curve. The values assumed by k are 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 knots. The
sample encompasses the period from 2010-01-04 to 2015-06-30.

Table 1 shows the average error values, as well as the AIC and BIC calcu-
lated for the call options in each period. As we can observe from the results
obtained, the number of periods that generates better results, considering both
the error values and the AIC and BIC values, would be n = 10 days, since it
presents lowest errors, at the same time that it is between the models with the
lowest AIC and BIC values.

In Table 1, displaying the results obtained for the put options, it can be
seen that the period that presents the most promising results taking into ac-
count all metrics would be n = 63 days, as it has the lowest values for errors,
as well as significantly low values for the AIC and BIC.

Observing the data showed in Table 3, which considers the metrics for



number of nodes for the call options, it can be seen that the model with the
best results would be k = 5, considering jointly the values for the error met-
rics, for the AIC and for the BIC. In the case of put options, in Table 4, the
values are very close, but when considering both types of metrics together, it
was concluded that k = 5 is the choice with the best results.

Thus, we can say that k = 5 for the number of nodes proved to be a robust
choice, as both the call options and the put options were the selected models.

Table 4
Average errors by knots - Puts

Period RMSE MAE AIC BIC

k=1 0.120172 0.0934 -105.096917 -100.71635
k=2 0.119724 0.093049 -103.580495 -97.009645
k=3 0.119262 0.09264 -102.128461 -93.367328
k=4 0.119049 0.092487 -100.396931 -89.445515
k=5 0.118931 0.092418 -98.562609 -85.42091
k=6 0.118843 0.09236 -96.680068 -81.348086
k=7 0.118777 0.092323 -94.765592 -77.243327
k=8 0.118843 0.092376 -92.922906 -73.191079
k=9 0.118985 0.092489 -91.120693 -69.162501

k=10 0.119009 0.092506 -89.271186 -65.102201
Note:Table shows the average RMSE, MAE, AIC and BIC calculated for 10 different models
using puts. Each model assumes a different value for k, that is the number of knots utilized to

estimate the curve. The values assumed by k are 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 knots. The
sample encompasses the period from 2010-01-04 to 2015-06-30.

Finally, after testing different models in the in-sample period, the fol-
lowing parameters were defined for call options: n = 10 days as the number
of days used to estimate the curves and k = 5 as the number of nodes on
each curve. As for the put options, the defined parameters are the following:
n = 63 days as the number of days used to estimate the curves and also k = 5
for the number of nodes in each curve. The other exogenous parameters of
the model will be selected according to (HACKSTADT, 2011), both for call
and put options: d1 = 1/10, d2 = 1/10, M = 1000 and N = 5000.

4.4 Construction of implied volatility surfaces

In this section, the implied volatility curves estimated using the proposed
model are presented, with the optimal parameters defined according to the
values found in the in-sample period. For each day t, implied volatility curves
are estimated for all the different maturities, forming an implied volatility
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Figure 1
Examples of curves by maturity on 2016-02-12 - Call options

Note: Figure provides examples randomly selected for the curves estimated on 2016-02-12. We
have call options curves for 3, 7, 10, 29, 38, 43 days to maturity. The curves present the implied

volatility as a function of the moneyness. The blue line corresponds to the estimated curve,
while the dotted red lines correspond to the 95% credible intervals. The parameters used are

n=10 and k=5.

surface on each given day t. Finally, the error metrics for these estimates will
be calculated, analyzing the quality of fit to the data by term to maturity.

The Bayesian method used to estimate the curves was done as follows: for
each set of parameters β and α produced in an iteration of the Gibbs sampler,
after Burn-in, the function estimator was computed to each value of x and
thus, we arrived at η

(t)
i . We used a total of 5000 iterations for each run of the

MCMC algorithm, with a burn-in of 500. Using the values of η
(t)
i , at each

value of x the prediction interval of 95% for the posterior density is estimated.
By the posterior joint distribution generated in the Bayesian model, it is

also possible to calculate credible intervals of 95% for the error vector, which
are represented as the red dotted lines in the graphs.

In Figure 1, there are examples of estimated call option curves for some
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Figure 2
Examples of curves by maturity on 2016-04-29 - Put options

Note: Figure provides examples randomly selected for the curves estimated on 2016-04-29. We
have put options curves for 3, 8, 19, 27, 41, 53 days to maturity. The curves present the implied

volatility as a function of the moneyness. The blue line corresponds to the estimated curve,
while the dotted red lines correspond to the 95% credible intervals. The parameters used are

n=10 and k=5.

specific maturities on the same day (2016-02-12). In Appendix B, all curves
estimated on that day were included. In blue is the estimated regression func-
tion and in red the calculated 95% credible intervals. Based on these results,
it can be seen that the narrowest intervals were generated in the intermedi-
ate maturities, showing that for these maturities there is a greater degree of
confidence in the estimated function.

In Figure 1, we show examples of estimated curves for put options for
some specific maturities on the same day (2016-04-29). Again, in appendix
B all estimated curves for that day can be found. In blue is the estimated re-
gression function and in red the calculated 95% credible intervals. Based on
these results, similarly to what happened with the call options, it is possible to
notice that the narrowest intervals were generated in the intermediate maturi-
ties, showing that for these maturities there is a greater degree of confidence



Figure 3
Example of estimated volatility surface on day 2016-02-12 - Call options

Note: Figure shows an example of implied volatility surface estimated on 2016-02-12 for call op-
tions. The method to construct the surface was the Delaunay Triangulation algorithm applied to
the curves estimated for each maturity. The x and y axis correspond to moneyness and maturity,
while the z axis is the implied volatility.

in the estimated function in relation to the shorter ones and the longer ones.
longer.

To construct the implied volatility surface, a set of points S was considered
where each point p of S is represented by a triple (x,y,z), where x, y encode
moneyness and maturity, respectively , and z is the implied volatility. The
algorithm used was Delaunay triangulation, which constructs the surface by
finding the nearest neighbor of each point. Basically, the algorithm works as
follows: for a set of points P in the plane, a triangulation DT(P) is formed
where no point in P is inside the circle formed by any triangle in DT(P). The
Delaunay Triangulation maximizes the smallest angle of all triangles in the
triangulation, that is, it tends to avoid triangles with very small interior angles.

In Figure 3, the surface for call options on 2016-02-12 was built. And in
Figure 4, there is the volatility surface for put options on 2016-04-29. It can
be seen that, in both curves, the implied volatility assumes higher values at the
extreme points of the curve, that is, at the points where the options contracts
are out-of-the-money (OTM) or in-the-money (ITM). Figure 4 displays the
estimated volatility surface for put options on 2016-04-29.

In general, on the surfaces analyzed, put options even show higher values



Figure 4
Example of estimated volatility surface on day 2016-04-29 - Put options

Note: Figure shows an example of implied volatility surface estimated on 2016-04-29 for put op-
tions. The method to construct the surface was the Delaunay Triangulation algorithm applied to
the curves estimated for each maturity. The x and y axis correspond to moneyness and maturity,
while the z axis is the implied volatility.

for implicit volatilities, which can be explained by the aversion to downside
risk being greater among market participants. Another factor that may possi-
bly influence is the fact that downward shocks are usually more intense than
upward movements and, therefore, put options are imbued with a higher risk
premium than call options, reflecting in volatilities higher implied charges for
these contracts.

Another important point to be noted is that the curves become less and
less convex as the maturities become longer, that is, the shorter maturities
have more pronounced curvatures, while the long ones become flatter.

This is a common and expected pattern to find on implied volatility sur-
faces, as the volatility smile becomes more prominent as option contracts
approach expiration, while it is smaller for longer expiry dates. This effect
can be visualized both in the curves for call options and for put options.

In this work, curves were estimated for each day in the sample, but it
would be unfeasible to analyze surface by surface the entire out-of-sample
period, which has 1607 days. Thus, to analyze the period as a whole, the
aggregated data of the estimated surfaces will be used.

Table 5 shows the average error metrics calculated considering all sur-



faces estimated for the call options. The errors were discriminated according
to the maturity of each curve. In the table, it is possible to notice, in general,
that the biggest errors are concentrated in the shorter and longer maturities,
that is, they occur in the initial and final portions of the surface. The region
of intermediate maturities is where the best estimates for implied volatilities
are obtained. It is noteworthy that these results are consistent with what was
observed in the regressions, through the estimated credible intervals.

Table 5
Fit Measures by Maturity - Call options

ME RMSE MAE Maturity
1 -0.00029578 0.04959469 0.03408946 0.01190476
2 -0.00019231 0.05942243 0.03583769 0.01587302
3 -0.00032002 0.04851704 0.03726949 0.01984127
4 -0.00029510 0.05790880 0.03804669 0.02380952
5 -0.00017984 0.06905411 0.04320385 0.02777778
6 -0.00022597 0.06898533 0.04256784 0.03174603
7 -0.00008615 0.02998500 0.02335438 0.06746032
8 -0.00006069 0.04209598 0.03359188 0.07142857
9 -0.00013128 0.05255464 0.03811689 0.07539683

10 -0.00013922 0.05360920 0.04351660 0.07936508
11 -0.00000438 0.05884527 0.03978898 0.08333333
12 -0.00006945 0.05588821 0.03872878 0.08730159
13 0.00027295 0.03378409 0.02271625 0.09126984
14 0.00016483 0.05930876 0.02970889 0.09523810
15 0.00000458 0.04993858 0.02978554 0.09920635
16 0.00016410 0.04191529 0.02369235 0.10317460
17 -0.00006764 0.03393187 0.02389310 0.16666667
18 0.00008035 0.09284850 0.06058907 0.17063492
19 -0.00013294 0.03963977 0.03380105 0.17460317
20 0.00017265 0.09067822 0.04790037 0.17857143
21 -0.00060011 0.04749486 0.03441645 0.18253968
22 0.00024507 0.04864295 0.04233694 0.18650794
23 0.00003121 0.02694296 0.02366308 0.19047619
24 -0.00012803 0.01978534 0.01612023 0.19444444
25 -0.00017289 0.02848108 0.01889085 0.19841270
26 -0.00010706 0.01771308 0.01374104 0.20238095
27 0.00000971 0.07667624 0.06080340 0.25396825

Note:Table presents the average ME, RMSE and MAE calculated by maturity for call options,
using n=10 and k=5. The sample encompasses a period from 2016-01-04 to 2022-06-30.

In Table 6 are the fit measures calculated for all estimated surfaces of the



put options. In the case of put options, the highest errors are mostly concen-
trated in the shortest expiry dates, however, in general, the pattern found in
call options is repeated, with intermediate maturities showing smaller errors.
Such results are in line with what was seen in the regression credible intervals.

Table 6
Fit Measures by Maturity - Put options

ME RMSE MAE Maturity
1 -0.000008 0.276572 0.195396 0.011905
2 -0.000204 0.251432 0.182027 0.015873
3 0.000333 0.290231 0.223977 0.019841
4 -0.000059 0.200795 0.149301 0.023810
5 -0.000088 0.161452 0.125182 0.027778
6 0.000024 0.194903 0.148540 0.031746
7 0.000097 0.250040 0.183533 0.035714
8 0.000073 0.122411 0.095864 0.039683
9 0.000004 0.129246 0.090720 0.043651

10 0.000056 0.157789 0.111927 0.047619
11 -0.000017 0.099822 0.074453 0.051587
12 0.000135 0.165126 0.107631 0.055556
13 -0.000007 0.091990 0.067100 0.059524
14 0.000051 0.096774 0.067579 0.063492
15 0.000068 0.109930 0.076456 0.067460
16 -0.000011 0.118498 0.090706 0.071429
17 -0.000005 0.103198 0.085422 0.075397
18 -0.000061 0.138264 0.100970 0.079365
19 0.000103 0.099218 0.078693 0.083333
20 0.000061 0.108247 0.086854 0.087302
21 0.000094 0.130126 0.106181 0.091270
22 -0.000014 0.131674 0.100771 0.095238
23 0.000079 0.104110 0.079705 0.099206
24 -0.000039 0.101306 0.083401 0.103175
25 -0.000090 0.103731 0.081645 0.107143
26 -0.000001 0.137527 0.100907 0.111111
27 0.000031 0.073661 0.055950 0.115079

Note:Table presents the average ME, RMSE and MAE calculated by maturity for put options,
using n=63 and k=5. The sample encompasses a period from 2016-01-04 to 2022-06-30.

A possible hypothesis for this is that intermediate options contracts are
the most traded and, therefore, have the highest number of points available
to form the curve, making the estimates more accurate. In addition, because
they have greater liquidity, they generate market prices with less distortions.



A second possible hypothesis is that shorter and longer maturities con-
centrate more risk than intermediate ones. The short ones because they suffer
more abrupt and intense oscillations, while the long ones have a higher level
of uncertainty regarding the possible price trajectories of the underlying as-
set. This causes greater ranges of implied volatility levels, with more hetero-
geneous prices, as well as greater oscillation, culminating in more dispersed
values in relation to the estimated curves, which in turn generates a model
with greater errors.

Another relevant point to highlight is that, in general, errors, when con-
sidering all metrics, were higher in put options than in call options. This
pattern repeats itself for the aggregated data, as seen earlier when analyzing
the surfaces separately. Again, the explanation may be related to the liquid-
ity of these contracts, since call options are more liquid than put options in
general and, therefore, have a greater number of points available for building
the curve, forming more accurate estimates, as well as presenting prices with
lower distortions given the greater volume of business.

Another possible hypothesis, which has already been raised for the case of
individual surfaces, is the fact that downward shocks in the stock market are
more intense and, consequently, cause greater volatility and greater variation
in volatility levels, thus causing put options have greater dispersion in the
implied volatilities of the different contracts.

Finally, when analyzing the results as a whole, it can be seen that the
model was efficient and estimated both the curves and the surfaces as ex-
pected. Absolute errors had low values, although for some maturities and
strike prices they showed non-negligible values. Such problems result from
the non-verification, in practice, of an important assumption made by the
BSM model, which is the no-existence of arbitrage.

Analyzing the market data, it is possible to note that at those points where
the estimation presented more significant errors, based on the values found,
there were, even if on a small scale, arbitrage opportunities. In order to re-
solve these incurrences, prices with low liquidity were discarded, as well as
the most extreme values, both for exercise prices and for maturity periods.

Although these opportunities are short-lived, they are enough to create
momentary distortions in prices and, consequently, in the implied volatility
of some contracts. However, it is worth mentioning that these situations are
increasingly rare, and have been decreasing as the sample has advanced to
more recent periods. Which certainly indicates that the markets have become
increasingly efficient, mainly due to the introduction of electronic trading,
increased liquidity and trading volume and the more regular and continuous
performance of market makers.



5. Conclusion

The advantages of using a Bayesian method for estimation is that it makes
it possible to perform a statistical inference based on the observed sample,
without the need of asymptotic properties and permitting to obtain a full
characterization of the posterior distribution of the estimated quantities. This
property is useful for this specific study, since the variance of the vector of
regression coefficients with shape restrictions would not be easily obtained
through a frequentist paradigm, since the imposition of restrictions alters the
property of estimators, as discussed by example by (Gourieroux and Mon-
fort, 2010). As the shape restrictions are imposing the no-arbitrage restric-
tions, we obtain full posterior inference under no-arbitrage conditions, and
thus constructing flexible non-parametric estimators respecting the necessary
financial assumptions needed for derivative pricing.

Another positive point was that it was possible to generate, from the same
drawings of the posterior distribution, probability intervals for the regression
function. In Bayesian statistics, a posterior probability interval is called a
credible interval, This made it easier to look at the uncertainty level of the
estimated curves in the model.

Finally, it is worth mentioning that the model presented good fit results, in
a way that it would be possible to use it for future studies, as well as to expand
the scope of the theme addressed in this work. A possible application of the
model would be to use the estimated implied volatility surfaces as an input in
the BSM model formula, replacing the historical volatility that is commonly
used and thus be able to calculate options prices one day ahead of the date on
which the implied volatilities were estimated.

From there, it would be possible to compare the results obtained with the
classic pricing models mentioned in this work (BSM, binomial and Heston),
verifying if there is a reduction in measurement errors and in which situations
this occurs (For longer or longer maturities short, for OTM, ATM or ITM op-
tions). The idea, in general, is to verify whether the proposed model produces
smaller pricing errors compared to the other models, confirming that the op-
tions market, through implied volatility, would be a good proxy for measuring
the volatility to be used to price options.
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A. Additional tables and figures

This appendix contains some additional tables and figures. Examples of
implied volatilities calculated for call and put option contracts, respectively,
can be seen in tables A1 and A2. Figures A1 and A2 include all implicit
volatility curves for call options estimated for 2016-02-12. Figures A3 to A7
include all the implied volatility curves for put options estimated for 2016-
04-29.

Table A1
Implied volatilities - Call options

Date Contract Maturity Time to Maturity Moneyness Implied Vol
1 2010-01-04 PETRA28 2010-01-18 0.04 0.76 0.93
2 2010-01-04 PETRA32 2010-01-18 0.04 0.84 0.55
3 2010-01-04 PETRC50 2010-03-15 0.19 1.34 0.29
4 2010-01-04 PETRC50 2010-03-15 0.19 1.35 0.30
5 2010-01-04 PETRC50 2010-03-15 0.19 1.34 0.29
6 2010-01-04 PETRC48 2010-03-15 0.19 1.29 0.29
7 2010-01-04 PETRC48 2010-03-15 0.19 1.30 0.30
8 2010-01-04 PETRC48 2010-03-15 0.19 1.29 0.29
9 2010-01-04 PETRC46 2010-03-15 0.19 1.23 0.29

10 2010-01-04 PETRC46 2010-03-15 0.19 1.24 0.28
11 2010-01-04 PETRC46 2010-03-15 0.19 1.23 0.27
12 2010-01-04 PETRC44 2010-03-15 0.19 1.17 0.29
13 2010-01-04 PETRC44 2010-03-15 0.19 1.19 0.29
14 2010-01-04 PETRC44 2010-03-15 0.19 1.17 0.28
15 2010-01-04 PETRA34 2010-01-18 0.04 0.90 0.31
16 2010-01-04 PETRA34 2010-01-18 0.04 0.91 0.33
17 2010-01-04 PETRA36 2010-01-18 0.04 0.96 0.27
18 2010-01-04 PETRA36 2010-01-18 0.04 0.97 0.29
19 2010-01-04 PETRA36 2010-01-18 0.04 0.96 0.25
20 2010-01-04 PETRA38 2010-01-18 0.04 1.00 0.26
21 2010-01-04 PETRA38 2010-01-18 0.04 1.02 0.29
22 2010-01-04 PETRA38 2010-01-18 0.04 1.00 0.25
23 2010-01-04 PETRA39 2010-01-18 0.04 1.04 0.30
24 2010-01-04 PETRA39 2010-01-18 0.04 1.05 0.27
25 2010-01-04 PETRA39 2010-01-18 0.04 1.04 0.30
26 2010-01-04 PETRA40 2010-01-18 0.04 1.06 0.27
27 2010-01-04 PETRA40 2010-01-18 0.04 1.07 0.28
28 2010-01-04 PETRA40 2010-01-18 0.04 1.06 0.26
29 2010-01-04 PETRA42 2010-01-18 0.04 1.11 0.31
30 2010-01-04 PETRA42 2010-01-18 0.04 1.12 0.31
31 2010-01-04 PETRA42 2010-01-18 0.04 1.11 0.29
32 2010-01-04 PETRA44 2010-01-18 0.04 1.17 0.38
33 2010-01-04 PETRA44 2010-01-18 0.04 1.19 0.37
34 2010-01-04 PETRA44 2010-01-18 0.04 1.17 0.34
35 2010-01-04 PETRA46 2010-01-18 0.04 1.23 0.47

Note:Table presents some examples of implied volatilities calculated for call options on
2010-01-04.



Table A2
Implied volatilities - Put options

Date Contract Maturity Time to Maturity Moneyness Implied Vol
1 2010-01-04 PETRM34 2010-01-18 0.04 0.90 0.40
2 2010-01-04 PETRM34 2010-01-18 0.04 0.91 0.37
3 2010-01-04 PETRM34 2010-01-18 0.04 0.90 0.40
4 2010-01-04 PETRM36 2010-01-18 0.04 0.96 0.34
5 2010-01-04 PETRM36 2010-01-18 0.04 0.97 0.27
6 2010-01-04 PETRM36 2010-01-18 0.04 0.96 0.32
7 2010-01-04 PETRM38 2010-01-18 0.04 1.01 0.37
8 2010-01-04 PETRM38 2010-01-18 0.04 1.03 0.17
9 2010-01-04 PETRM38 2010-01-18 0.04 1.01 0.29

10 2010-01-04 PETRM40 2010-01-18 0.04 1.07 0.50
11 2010-01-04 PETRM40 2010-01-18 0.04 1.07 0.32
12 2010-01-04 PETRN36 2010-02-08 0.10 0.96 0.32
13 2010-01-04 PETRN36 2010-02-08 0.10 0.97 0.29
14 2010-01-04 PETRN36 2010-02-08 0.10 0.96 0.32
15 2010-01-04 PETRN37 2010-02-08 0.10 0.98 0.32
16 2010-01-04 PETRN37 2010-02-08 0.10 1.00 0.27
17 2010-01-04 PETRN37 2010-02-08 0.10 0.98 0.32
18 2010-01-05 PETRN38 2010-02-08 0.10 1.01 0.37
19 2010-01-05 PETRN38 2010-02-08 0.10 1.03 0.22
20 2010-01-05 PETRN38 2010-02-08 0.10 1.02 0.29
21 2010-01-05 PETRN36 2010-02-08 0.10 0.96 0.33
22 2010-01-05 PETRN36 2010-02-08 0.10 0.97 0.26
23 2010-01-05 PETRN36 2010-02-08 0.10 0.97 0.30
24 2010-01-05 PETRM40 2010-01-18 0.04 1.06 0.47
25 2010-01-05 PETRM38 2010-01-18 0.04 1.01 0.38
26 2010-01-05 PETRM38 2010-01-18 0.04 1.03 0.16
27 2010-01-05 PETRM38 2010-01-18 0.04 1.02 0.29
28 2010-01-05 PETRM36 2010-01-18 0.04 0.95 0.37
29 2010-01-05 PETRM36 2010-01-18 0.04 0.97 0.23
30 2010-01-05 PETRM36 2010-01-18 0.04 0.96 0.33
31 2010-01-06 PETRP43 2010-04-19 0.28 1.14 0.35
32 2010-01-06 PETRP43 2010-04-19 0.28 1.16 0.27
33 2010-01-06 PETRP43 2010-04-19 0.28 1.14 0.35
34 2010-01-06 PETRP37 2010-04-19 0.28 0.97 0.33
35 2010-01-06 PETRP37 2010-04-19 0.28 0.99 0.30

Note:Table presents some examples of implied volatilities calculated for put options on
2010-01-04.
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Figure A1
Call options by maturity - 2016-02-12

Note: Figure provides graphs for the curves estimated on 02/12/2016 by maturities from 3 to 29
days for call options.



Estimating implied volatility surfaces using Bayesian splines
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Figure A2
Call options by maturity - 2016-02-12

Note: Figure provides graphs for the curves estimated on 02/12/2016 by maturities from 30 to
50 days for call options.
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Figure A3
Put options by maturity - 2016-04-29

Note: Figure provides graphs for the curves estimated on 04/29/2016 by maturities from 3 to 14
days for put options.



Estimating implied volatility surfaces using Bayesian splines
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Figure A4
Put options by maturity - 2016-04-29

Note: Figure provides graphs for the curves estimated on 04/29/2016 by maturities from 15 to
26 days for put options.

5



0.6 1.0 1.4

0.
6

1.
0

1.
4

1.
8

Moneyness

Im
pl

ie
d 

V
ol

27  days

0.6 1.0 1.4

0.
6

1.
0

1.
4

Moneyness

Im
pl

ie
d 

V
ol

28  days

0.6 1.0 1.4

1.
0

1.
5

2.
0

Moneyness

Im
pl

ie
d 

V
ol

29  days

0.6 1.0 1.4

1.
0

2.
0

Moneyness

Im
pl

ie
d 

V
ol

30  days

0.6 1.0 1.4

0.
5

1.
5

2.
5

Moneyness

Im
pl

ie
d 

V
ol

31  days

0.6 0.8 1.0 1.2 1.4

0.
5

1.
0

1.
5

2.
0

Moneyness

Im
pl

ie
d 

V
ol

32  days

0.6 1.0 1.4

0.
6

1.
0

1.
4

1.
8

Moneyness

Im
pl

ie
d 

V
ol

33  days

0.6 0.8 1.0 1.2 1.4

0.
6

1.
0

1.
4

Moneyness

Im
pl

ie
d 

V
ol

34  days

0.6 1.0 1.4

0.
5

1.
0

1.
5

2.
0

Moneyness

Im
pl

ie
d 

V
ol

35  days

0.6 0.8 1.0 1.2 1.4

0.
4

0.
8

1.
2

Moneyness
Im

pl
ie

d 
V

ol

36  days

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

Moneyness

Im
pl

ie
d 

V
ol

37  days

0.6 0.8 1.0 1.2 1.4

0.
4

0.
8

1.
2

1.
6

Moneyness

Im
pl

ie
d 

V
ol

38  days

Figure A5
Put options by maturity - 2016-04-29

Note: Figure provides graphs for the curves estimated on 04/29/2016 by maturities from 27 to
38 days for put options.
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Figure A6
Put options by maturity - 2016-04-29

Note: Figure provides graphs for the curves estimated on 04/29/2016 by maturities from 39 to
50 days for put options.
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Figure A7
Put options by maturity - 2016-04-29

Note: Figure provides graphs for the curves estimated on 04/29/2016 by maturities from 51 to
62 days for put options.
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