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Abstract

What is the optimal policy regarding patents? To answer this question, we develop

a model of dynamic competition and incorporate this model into a tractable endogenous

growth model. Within this framework, patent laws function as an institutional means

to manipulate the degree of competitiveness in industries. Patents reward the creation

of novel technologies, which might increase the equilibrium stock of technologies. Still,

they slow down growth in process productivity in each technology, which is driven by

competition. Depending on the parametrization, the optimal policy might or might not

feature patent protection at all. However, when we calibrate the model with parameters

consistent with the empirical evidence, the model suggests that the optimal policy is

that patents should last approximately fifteen to twenty years.

“We believe in help for the underdog, but we want him to stay under.”

Cry, The Beloved Country, Alan Paton, 1948.



1 Introduction

Economists have yet to reach a consensus regarding the costs and benefits of the institution

of patents. Since Nordhaus [1969], economists have studied the economic consequences of

patents as a trade-off between the increase in innovation promoted by longer or more strictly

enforced patents versus the costs in terms of loss of economic efficiency due to the increase

in market power that is generated by patents. Some economists have argued that the current

state of the evidence shows that there is no reason for governments to grant patents for new

inventions (Boldrin and Levine [2013]), while others argue that this puzzle has not been solved

yet (Williams [2017] and Bryan and Williams [2021]). This paper represents a contribution

to this debate by studying patents in a general equilibrium framework that incorporates

endogenous growth with dynamic competition. Our conclusion is that patents provide an

important social role, and our calibration suggests that an optimal patent policy that equates

the marginal costs of less competition with the marginal benefits of increased incentives to

innovate might involve a slightly shorter patent duration than the current centuries-long

standard of 20 years.

We find that competition contributes to economic development through the channel of tech-

nological spillovers: if we model competition dynamically, firms learn from each other, which

increases the growth rate in total factor productivity of the industry when the government

grants a monopoly right to certain inventions (a patent) this provides an incentive for the

development of new varieties but reduces the growth rate of total factor productivity in the

monopolized industry.

We consider an economy where accumulated knowledge takes two forms: there is an endoge-

nously determined set of varieties available for production (it is an expanding variety growth

model), and the productivity of the firms in an industry for any given variety also grows over

time. We consider the simplest cases: when there is a monopolist and when there are two

firms in each sector.

Our contribution is twofold: first, we provide an endogenous growth model where we can

track the costs and benefits of patent policy. Second, our theoretical framework has shed light
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on another source of total factor productivity growth, which we call symbiotic competition

between firms.

Symbiotic competition occurs when there are knowledge spillovers. That is, the productivity

laggard can learn faster by imitating the productivity leader rather than learning by them-

selves, and when there are stochastic shocks to the firm’s productivity. These two factors

combined mean that shocks induce productivity laggards to often leapfrog the productivity

leader, and imitation then increases the growth rate of the technology of the former produc-

tivity leader. Therefore, the expected technology of the firms in the industry grows faster

than under a monopoly. Symbiotic competition formalizes the concept presented by Hayek

[1968] who argued that a major component in the social usefulness of competition is it en-

ables the discovery of novel knowledge that would not be possible to discover without it:

”is useful to recall that wherever we make use of competition, this can only be justified by

our not knowing the essential circumstances that determine the behavior of the competitors.

In sporting events, examinations, the awarding of government contracts, or the bestowal of

prizes for poems, not to mention science, it would be patently absurd to sponsor a contest if

we knew in advance who the winner would be. Therefore, as the title of this lecture suggests,

I wish now to consider competition systematically as a procedure for discovering facts which,

if the procedure did not exist, would remain unknown or at least would not be used.”

In addition, we argue that monopolies might not be able to replicate symbiotic competition

by simulating the effects of competition internally. The basic reason for this result is that

the growth in total factor productivity increases returns in the future, so if the monopolist

has a high enough discount rate, he will not choose to implement symbiotic competition. In

comparison, even perfectly myopic firms in competition generate the gains of symbiotic com-

petition. Therefore, competition induces impatient agents to generate productivity growth

investments that would only occur in a monopoly if the monopolist were patient.

We study an economy in the balanced growth path where the optimal patent policy maxi-

mizes the representative household’s utility. When implementing a patent policy, there are

significant trade-offs to be considered: increasing patent length increases the degree of market

power from a novel technology which provides incentives for its development, but an indus-
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try under monopoly suffers from two inefficiencies compared to a duopoly: the loss of the

beneficial effects of symbiotic competition and the increased deadweight loss from increased

market power. Our calibration suggests that the optimal policy features the enforcement of

patents lasting between 15 to 20 years, and this result is robust to substantial changes in the

parameters.

1.1 Related literature

Given the substantial literature in the area, it should be helpful to give a brief overview of the

works closely related to the present paper. Schumpeter [1980] was among the first economists

to focus on innovation in his theory of economic development. Schumpeter also recognized that

innovation does not mean only the invention of new technologies but the market introduction

of a technical or organizational novelty, not just its invention (Schumpeter [1980]). Arrow

[1962] made the systematic argument regarding how the accumulation of knowledge can be

incorporated into the theory of economic development in explicit models of learning-by-doing.

The model presented here is part of the literature on endogenous models of growth, heavily

influenced by models presented in Romer [1986], Lucas [1988], and Stokey [1988]. It departs

from these models by the incorporation of an explicit model of competition with technological

spillovers.

Maskin and Tirole [1988a,b] provided a foundational contribution to the formal analysis of

dynamic competition by introducing the solution concept of Markov Perfect Equilibrium. In

this paper, we study dynamic competition with learning-by-doing and extend the concept

present in papers such as Besanko et al. [2010, 2014, 2019] to environments with technological

spillovers. In our model, technological spillovers play a critical role in allowing markets to

approximate perfect competition. Other firms in a sector can learn the technology of the

technologically leading firm, allowing the sector to converge to perfect competition over time.

Aghion et al. [2005] study the relationship between competition and innovation. The difference

between the model they study and our model is that we incorporate two distinct notions of

innovation. We consider innovation in two dimensions: First, creating new products through
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the application of conscious effort for research and development. Second, the improvements of

technology through unexpected learning by operating in the market. The presence of learning

spillovers means that multiple firms can learn from each other, and technological improvement

inside an industry increases as the intensity of competition increases.

To incorporate the concept that previous experience allows a firm to improve its technology, as

in Besanko et al. [2010, 2014, 2019], the technology available to the firms depends on their own

experience in the industry. However, in the present paper, the firms can also learn from their

competitor’s productive activity (for example, reverse engineering). Therefore, learning-by-

doing in this model includes a technological spillover effect. A technological spillover implies

that equilibrium prices become more competitive the higher the degree of learning-externalizes

in the market.

In papers such as Boldrin and Levine [2013], it is argued that patent law, which is a form of

intellectual property law that is designed to grant a monopoly in the use of certain technologies

for a period of time, is ineffective in promoting innovation and growth. In this paper, we

aim to study the optimal design of intellectual property rights under a general theoretical

framework. According to our framework, the optimal patent policy agrees with Boldrin and

Levine [2013] if the learning spillovers are large enough so that expected productivity growth

under competition is very high enough relative to monopoly. In that case, the loss in total

factor productivity from grating monopoly rights to some firms becomes large enough so that

even at the corner solution of no patents, the costs of the monopoly’s market power exceed

the benefits of increased innovation in novel technologies produced by patents.
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2 The Model

The model below is a standard Dixit-Stiglitz economy in continuous time with endogenous

growth following Romer’s expanding variety model, that is, driven by a growing population

that invents new output varieties. However, we dispense with the typical assumption of

monopolistic competition, and instead assume that production in each variety takes place

subject to duopolistic competition with learning-by-doing and knowledge spillovers among

firms producing each variety. Thus, our description contains a detailed explanation of the

operation of competition for the intermediate input varieties.

2.1 Physical Environment

We consider an economy populated by a continuum of identical households with mass Nt > 0

at each moment in (continuous) time t ∈ [0,∞) that grows at an exogenously given rate

g > 0. Households consume output and supply labor. They discount future consumption

according to the common discount rate r > 0.

There is an homogeneous consumption good that is produced by final good producers from

different varieties of intermediate goods. There is a continuous set of varieties of intermediate

goods which is indexed by the interval [0, Bt] where Bt is the stock of blueprints available at

time t.

A household’s utility over consumption (also indexed by i) and labor is given by U(c, ℓ) =

c− v(ℓ), where v is a continuously differentiable, increasing strictly convex function (so v′ has

an inverse). Each household is endowed with one divisible unit of labor that can be allocated

between (i) research and development of blueprints for new intermediate product varieties,

and (ii) the production of output of existing varieties. Let et ∈ [0, 1] denote the fraction of

labor allocated to research and development, and 1− et the fraction dedicated to production.

New blueprints are produced by workers employed in research and development according to

the linear technology cetNt, for some c > 0. Blueprints become obsolete at rate δ > 0. Thus,

5



the stock of blueprints evolves according to

dBt

dt
= cetNt − δBt. (1)

Blueprints are patented. Patent law attributes the property of the blueprint to the household

that developed it. Patents last for a length of time T ∈ R+ ∪ {+∞} so an intermediate good

producer has to purchase the patent to produce the intermediate good before the expiration

date of the patent.

2.2 Intermediate good sector

Intermediate good varieties are produced one input, labor, according to the linear technology

yi = aiℓi, where yi denotes output of the ith variety, ℓi its labor input, and ai its marginal

product of labor.

At time t, for each variety i ∈ [0, Bt], there are potentially two firms which can produce the

variety. For the duration of patent policy, only one firm call it i1, the firm that purchased the

patent to use the blueprint operates as a monopolist, after the patent expires the competing

firm i2 enters the industry and competes in prices with the former monopolist. Let ai1, ai2

denote the technologies of these firms.

With Bertrand competition, the firm with lowest marginal cost prevails in each sector; the

market price equals the minimum of the opponent’s marginal cost and own monopoly price.

Let the marginal cost of a firm ij, j ∈ {1, 2} be γij . As two firms populate each sector so

market prices in the Markov perfect equilibrium (See the Appendix Section A for a detailed

discussion of why this is the equilibrium price.) are

pi =



γi1/α if αai2 < ai2 ≤ αai1 < ai1

γi2 if αai2 ≤ αai1 ≤ ai2 ≤ ai1

γi1 if αai1 ≤ αai2 ≤ ai1 ≤ ai2

γi2/α if αai1 < ai1 ≤ αai2 < ai2.

Suppose that ai2 = φai1 for every variety i, with φ ∈ [α, 1]. In this case, firm i1 is more
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productive, yet prices are set to equal i2’s higher marginal cost. But since these higher costs

are a constant fraction of the lower costs across sectors, allocative efficiency prevails.

We assume that each firm’s productivity is lognormal as follows:

zij = ln aij ∼ N(µj, σ
2
j ).

We make this assumption because, later, we will distinguish type i1 firms from type i2 firms.

2.2.1 Symbiotic Competition in the industry for an intermediate good variety

Consider an industry with two firms, 1 and 2, competing in continuous time. Firm i ∈ {1, 2}

has linear production technology that converts one unit of labor into Ait units of output at

time t ∈ [0,∞); let Zit = ln(Ait) denote the firm’s log productivity, with initial condition

Z10 ≥ Z20. Each firm i’s productivity is a stochastic process that satisfies

dZit =

 (µ+ θ)dt+ σdWit if Zit < Zjt and

µdt+ σdWit if Zit ≥ Zjt,
(2)

where j is the other firm in this industry and W1, W2 are independent Wiener processes.1

This model of productivity offers a simple way to understand the effect of spillovers on growth.

We think of a monopolist’s productivity growth following the law of motion

dZt = µdt+ σdWt.

Crucially, the duopoly model of (1) above has the drift in a firm’s productivity depend on

whether it leads or lags the other firm. A leading firm’s productivity grows exactly like a

monopolist’s would, with productivity growth due to learning by doing or research in process

innovations captured by the assumption that µ > 0. At the same time, the productivity of a

lagging firm grows at an even faster rate, due to technological or other knowledge spillovers

1The two-dimensional stochastic process of productivity above is characterized by having rank dependent

parameters, in this case each dimension’s drift. For references on rank dependent stochastic processes, see

bibliography.
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from the leading firm. This is captured by assuming that θ > 0. Eventually, the laggard

catches up and becomes the new leader, and any innovation by this leader is in turn absorbed

by the new laggard. As we will see, this yields overall growth beyond the leader’s rate.

The parameter θ captures how quickly firms catch up to their leaders when they lag. The

limit of θ → 0 can be interpreted as there being no spillovers, where firms grow through

innovations just as they would in case of monopoly. On the other hand, as θ → ∞, the

laggard firm’s productivity converges towards the leader’s arbitrarily quickly, until, in the

limit, each infinitesimal improvement is immediately absorbed by both firms.

This generalizes the learning models of Boldrin and Levine [2013] and Lucas and Moll [2014] by

acknowledging that technology absorption takes time. In their models, when two individuals

meet, whoever has lower productivity immediately learns, or absorbs, the technology of the

more productive individual and is henceforth able to produce at the higher rate. In our model,

however, an individual’s productivity can improve by at most θ per unit time.

In addition, unlike Lucas and Moll [2014], our model allows for the productivity of both

leader and laggard to be subject to variation during their interaction. This simple extension

generates rich economic dynamics. We interpret µ > 0 as a deterministic rate of learning by

doing and σ > 0 as a parameter describing how a firm’s productivity fluctuates randomly via

process innovation. However, σ > 0 together with θ > 0 opens the way for firms to outpace—

and thus learn from—each other. We refer to this virtuous cycle as symbiotic competition.

To begin to illustrate the effects of this virtuous cycle, Figure 1 below depicts sample paths

of (log) productivity for each firm in the dynamic duopoly above together with the path of

a monopolist. The blue path shows productivity growing at rate µ = 0.1 with σ = 0.2. The

red and yellow paths reflect the system in (1) with θ = 0.25. To facilitate comparison, the

innovations in Z1 are made identical to those in Z.

Three immediate observations may be drawn from Figure 1. First, there is significant catch-

up by the laggard firm to the leading firm. Secondly, productivity grows faster in duopoly

than in monopoly. Thirdly, duopolists’ productivity rates are usually close together, although

they do sometimes veer away. Thus, even if firms usually compete neck-and-neck, they enjoy
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Figure 1: Sample path of productivity—monopoly versus duopoly.

some periods of relative advantage on their competitors.

These observations are formalized below by studying the transition density of each firm’s

productivity. The productivity process (Z1, Z2) above is naturally decomposed into sum and

difference processes that submit to analysis more easily. Let us study them in turn.

Proposition 1. Average productivity X = 1
2
(Z1 + Z2) obeys the following law of motion:

dXt = (µ+ 1
2
θ)dt+ σdWxt

and Wxt =
1
2
(W1t+W2t) is a Wiener processes. Thus, average productivity in a duopoly grows

at rate µ+ 1
2
θ, in contrast to the growth rate of monopoly, µ.

Proposition 1 states that average productivity follows a relatively simple arithmetic Brownian

motion. Therefore, its transition density into x at time t is given by

ft(x) = φt

(
x− x0 − (µ+ 1

2
θ)t

)
, where φt(z) =

1√
2πσ2t

exp
{
− 1

2σ2t
z2
}

is the PDF of a normal random variable with mean 0 and variance σ2t and x0 = X0 is the

initial value of X. Therefore, average productivity grows faster with knowledge spillovers

than without them by 1
2
θ. In this sense, knowledge spillovers increase productivity growth.
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Proposition 2. Firms’ productivity gap Y = 1
2
(Z1 − Z2) obeys the law of motion

dYt = −1
2
θsgn(Yt)dt+ σdWyt

and Wyt =
1
2
(W1t −W2t) is a Wiener process independent of Wxt. Thus, the productivity gap

between firms in a duopoly with knowledge spillovers drifts towards zero at rate 1
2
θ.

The productivity gap between firms describes the extent of competition in an industry. By

Proposition 6, this gap is a diffusion whose drift depends on its sign. If the difference in

productivity is positive, it tends to diminish, whereas if it’s negative it will tend to increase.

This is the “catch-up” effect due to spillovers, which leads firms to engage in “neck-and-neck”

competition more frequently than they would without spillovers (i.e., if θ were equal to 0).

It turns out that the productivity gap Y has a transition density that can also be written in

closed form, as the next result shows.

Lemma 1. The productivity gap Y has transition density

gt(y) = ĝt(y) + Ψt(|y|), where ĝt(y) =

 φt(y − y0 +
1
2
θt) if y > 0,

e−
θ
σ2 |y0|φt(y − y0 − 1

2
θt) if y ≤ 0,

φt is the normal PDF above, y0 = Y0 ≥ 0 is the initial value of Y ,

Ψt(|y|) =
θ

2σ2
e−

θ
σ2 |y|Φt(

1
2
θt− |y| − |y0|), and Φt(z) =

∫ z

−∞
φt(x)dx

is the normal CDF of φt. For y0 < 0, the density gt(y) is anti-symmetric about the origin.

Lemma 1 characterizes transition dynamics of the productivity gap. The gap’s probability

density has two components: a term corresponding to the direct tendency from y0 to y of

an arithmetic Brownian motion with drift −1
2
θ sgn(Y ), and a correction term for time spent

hovering around zero due to catch-up (also known as Y ’s local time around 0) before escaping

to y. (See the Appendix for a detailed discussion of these technicalities.)

To gain intuition for the dynamics of Y , it is useful to consider certain limits. As y0 → 0,

the density gt becomes symmetric, so it’s just as likely that either firm is the leader or the

laggard at every point in time. As t → ∞, the industry’s productivity gap has a stochastic
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steady state with a “double exponential” probability density g∞, as the next result shows.

This density describes the relative frequency of neck-and-neck competition in the long run,

as well as the time firms spend ahead of their competitors, hence earning significant profit.

Proposition 3. In the long run, firms’ productivity gap has probability density

g∞(y) = lim
t→∞

gt(y) =
θ

2σ2 e
− θ

σ2 |y|.

Thus, the relative time during which firm 1’s productivity lead exceeds y ≥ 0 equals 1
2
e−

θ
σ2 y.

This duration converges to 0 at rate θ
σ2 as y → ∞.

Together, average productivity X and the gap Y completely characterize firms’ productivity,

since Z1 = X + Y and Z2 = X − Y . Our next result shows that X and Y are independent,

therefore the transition density of (Z1, Z2) equals the product of those of X and Y above.

Proposition 4. The probability density function of (Z1, Z2) at time t is given by

ht(z1, z2) = ft(x)gt(y)

where x = 1
2
(z1 + z2) and y = 1

2
(z1 − z2).

Proposition 4 above delivers a closed form for the probability density function of firm pro-

ductivity when laggards tend to catch up to leaders. Figure 2 below illustrates what this

looks like for fixed y0 > 0 and t > 0. Firms’ average productivity traverses the fold in the

figure, whereas firms’ productivity gap proceeds perpendicularly. Interestingly, even though

the productivity gap is stationary, average productivity is not, so in the long run there can

be big differences in productivity across—but not within— industries.

2.3 Final goods sector

There is a continuum of measure one of producers of the final good which is consumed by the

population. The representative producer of the final good purchases the intermediate inputs

and combines them to produce the final good according to the following production function

F (xt) =

[∫ Bt

0

(xit)
αdi

]1/α
.
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Figure 2: Probability density of (Zj, Zk)

The producers maximize profits by choosing inputs. Thus, a final good producer seeks to

minimize production cost given a desired output level yt, therefore

min
xt

∫ Bt

0

pitxitdi

s.t. F (xt) ≥ yt.

where pit is the minimum price posted by the producers of intermediate input i (which is

the same for both producers in the Markov perfect equilibrium) and Bt > 0 is the measure

of intermediate input varieties in production. The price for the final consumption good is

normalized to 1, as it functions as the numeraire. Cost minimization implies that the demand

for each intermediate input xit as a function of its price pit and total quantity produced yt, it

satisfies

xit(pit) = yt/p
1/(1−α)
it . (3)

Let Lt be labor demand, labor demand is equal to

Lt =

∫ Bt

0

[xit(pit)/A
i
1t]di, (4)
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in equilibrium labor demand is equal to labor supply, for every period, thus, in equilibrium

Lt = Mt(1− et) and, therefore,

Mt(1− et) =

∫ Bt

0

[xit(pit)/A
i
1t]di. (5)

Given wages, the relative level of output of the intermediate good are determined by their

relative prices, which are given by

xit(pit) = x0t(p0t)(p0t/pit)
1/(1−α), (6)

substituting the right hand side of 6 in 5 and solving for x0t we have

x0t(p0t) = Mt(1− et)

∫ Bt

0

Ai
1t(pit/p0t)

1/(1−α)di (7)

In the Markov refined equilibrium the quantity purchased by the final good producer satisfies

3, substituting we have that x0t(p0t) can be written as

x0t(p0t) = Mt(1− et)

∫ Bt

0

Ai
1t(min{1/Ai

2t, 1/αA
i
1t}/min{1/A0

2t, 1/αA
0
1t})1/(1−α)di, (8)

which determines the output and therefore the prices and wages, allowing us to solve the

model. With 6 we have that output is determined by:

yt =

[∫ Bt

0

(x0t(p0t)(p0t/pit)
1/(1−α))αdi

]1/α
,

and wages are equal to the marginal product of labor divided by the markup level in each

sector.

2.4 Stationary Equilibrium

Our definition of equilibrium for this economy incorporates the notion that the distribution

of industry ages is stationary. To incorporate that notion the distribution of blueprint ages is

stationary if, at each point in time t, the distribution of blueprints by age F (a, t) is stationary

so F (a, t) = F (a, t′) for any two dates of blueprint ages t, t′ ≥ 0.
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Definition 1. Definition 6. An equilibrium is an allocation and prices such that for each

point in time t: (1) Each industry for variety j ∈ [0, Bt] is in Markov Refined Equilibrium.

(2) The choice of effort in development of new blueprints compared to supplying labor to the

market is optimal for the workers, and wages wt equal labor demand with labor supply. (3)

The distribution of blueprint ages is stationary.

One important property of this model is that all investment consists of blueprint production

effort. The capacity of the economy to produce investments is determined by two factors:

demand for innovation, which depends on the degree of market power in the industries that

produce intermediate goods and the size of the population.

As patents last for a period of length T , there is only one firm active in the industry for good

j from the time t when it has been patented to time t + T . After time t + T , the patent is

expired and after the patent expires we assume there are two firms supplying the market with

the same variety and competing in prices.

2.5 Balanced Growth Path

Definition 2. A balanced growth path equilibrium (BGPE) is an economy in stationary

equilibrium where output grows at a constant rate.

As labor supply is constrained in reality (each individual is constrained to supplying less than

168 hours in a week), in the balanced growth path labor supply should not explode to infinity

as productivity increases, so we consider a class of utility functions that yields a constant

labor supply over time, this class of utility functions is given by

Ut(c, ℓ) = c−K ∗B
1−α
α

t ∗ v(ℓ)

where K > 0 is a constant and v is an increasing continuously differentiable convex function.

In this case, the disutility of work depends on the stock of blueprints in the same way as

the output of the final good (as a consumer might have more options for entertainment
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as technology develops, which means technology increases the opportunity cost of work in

proportion to the total factor productivity) and so technological progress does not change the

supply of labor in equilibrium.

Therefore, in the balanced growth path, as the population grows at a constant rate, the labor

supply and the stock of blueprints also grow at a constant rate, the distribution of firm ages is

constant and the growth rate of output per capita is constant as well. As blueprint depreciate

at the rate δ, the balanced growth path requires a constant growth rate gb in the output of

blueprints, so the stock of blueprints also grows at the rate gb. Population grows at a constant

rate gp, and production of blueprints is linear in the population, as feasible effort levels are

in [0, 1], to maintain a balanced growth path the growth rate in the effort level must be zero,

therefore the balanced growth path is characterized by a constant effort level e∗, which implies

that blueprint stock grows at the same rate as the population. Therefore, the growth rate in

balanced growth path is determined by the growth rate of population, g, and the distribution

of growth rates in productivity of the industries for each specific variety. Therefore the stock

of blueprints is of size B(t) = b(t)/(δ+ g) and the distribution of blueprints by age at time t,

is given by F (a, t′) = 1− exp(−(g + δ)(t− t′)).

From the previous section we know the expected growth rate of total factor productivity

of an industry under neck-and-neck competition is µ + (1/2)θ while the growth rate of an

industry where the leader is at a significant distance from the other firm (due to patents,

for example) is µ. The aggregate growth rate in the balanced growth path is therefore an

increasing function of rp, and it is also an increasing function of the proportion of industries

under neck-and-neck competition relative to the industries where the productivity leader is

at considerable distance of the other firm.

Proposition 5. There exists a balanced growth path equilibrium.

Proof. In a balanced growth path stationary equilibrium there is a constant effort level e∗,

with a stationary distribution of ages for product varieties, as the stock of blueprints grows

at a constant rate, as well as the population.

If the effort level e∗ is optimal in some period t, then consider a period t′ ̸= t, the distribution
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of varieties by age is the same, the population, and the stock of blueprints are in fixed

proportion. Thu, the labor share is the same and therefore e∗ is optimal choice of effort level

for period t′.

Thus, to prove that our balanced growth path equilibrium exists it suffices to show that there

exists an effort level e∗ that is optimal. To show that, suppose that the effort converges goes

to one, then the stock of blueprints increases while the labor supply converges to zero, as

the distribution of varieties by age is constant, which implies that labor share of output is

constant, therefore wages diverge to infinity. If the effort level converges to zero, the stock of

blueprints converges to zero and therefore wages fall to zero. Thus, the BGPE effort level is

lower than 1 and higher than 0. In an interior equilibrium, the effort level e∗ ∈ (0, 1) satisfies

the condition where the marginal cost of effort, given by the wage rate, is equal to the present

value of profits accrued by a new blueprint times the productivity of blueprint production

(given by the constant c). As wages and present value of profits vary continuously on the

stock of blueprints which is determined by the effort level, by the intermediate value theorem

there exists an effort level e∗ such that wages are equal to the present value of profits accrued

by a new blueprint times the productivity of blueprint production. Thus an BGPE exists. □

2.6 Intellectual property rights policy

Intellectual property policy in our framework implies that in the balanced growth path the

optimal policy is a patent length T ≥ 0 that maximizes the level of consumption: in the

balanced growth path the growth rate of the economy does not vary with the level of effort

employed in the production of varieties or with the level of competition across sectors. As in

the balanced growth path the distribution of industry ages is constant and therefore varying

the degree of competition across industries by changing T will vary the distribution of the

productivity parameters Z across industries, but as the age distribution is constant, there is

not growth in the average productivity parameter Z in the balanced growth path. Therefore,

the optimal patent policy only has to maximize the level of consumption in the balanced

growth path at a given date t.
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Consider an economy in balanced growth path at some date t, is it reasonable to think that

the optimal patent policy is to set T = 0 to maximize the benefits of competition? That is

the optimal policy if the degree of profits that can be obtained under competition are high

enough to yield an equilibrium level of effort for blueprint production under T = 0 that is not

too low as to negate the benefits of increased competition. Simulations of the model, however,

show that to obtain these high enough levels of profit under competition imply that firm’s

productivities should vary substantially to allow firms to obtain high profits under Bertrand

competition and the simulations shows that the shocks to the firm’s productivities that yield

levels of variation in productivity across firms are much higher than suggested by empirical

evidence. But our model suggests the possibility that optimal patent policy is for patents to

not exist at all under certain parameter values, thus formalizes the argument in Boldrin and

Levine [2013].
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3 Simulation

The impact of a more strict patent law on innovation and its effects on higher deadweight

losses due to market power and slower total factor productivity growth can be quantified

in this simulation. We consider a functional form for the representative household’s utility

function U(c, l) as follows

U(c, ℓ) = c−K ∗B
1−α
α

t ∗ ℓ2

where K > 0 is a constant. This functional form, which implicitly assigns a value for leisure

that is an increasing function of the stock of blueprints, implies that the labor supply is a

linear function of the labor share, which is constant in the balanced growth rate. Thus, labor

supply is constant in the balanced growth path and changes only when the parameters of the

model or the patent policy change the labor share of the economy.

Figure 3: Mean economy wide markups, weighted by sales.

We calibrate the parameters so that under status quo policy (patent law grants 20 years of

monopoly to inventors), the average economy-wide markup is between 1.5 to 1.6, the standard
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deviation of labor productivity across firms is 1/3, the discount rate is 4% per year, the firm’s

exit rate is 8% per year, and the expected growth rate of productivity of laggard firms is 2.5

times the rate of leaders.

Figure 4: The output of blueprints is strictly increasing on strictness of patent law.

The results of our calibration are that substantial production of novel technologies (”blueprints”)

exists in equilibrium even when patents do not exist (that is, the policy that sets the patent

duration to zero), and shifting from a policy of no patents to a policy where patents last 20

years increases the equilibrium production of blueprints by approximately two-thirds. Thus,

our model implies that patents promote technological innovation but are not strictly required

for a substantial innovative activity to exist (as argued by various authors such as Moser

[2013]). Thus, if monopolies had no social costs, the optimal patent law would be for patents

to last indefinitely.

While patents increase the incentives for innovation in novel blueprints, their effects are

substantial both in terms of increasing the average markups as well as decreasing the average

productivity of industries for existing blueprints.

In terms of output and utility, both the output and the representative household’s utility

approximately double from a regime of no patents to a regime of patents lasting 20 years.
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Figure 5: Utility of representative household varying the patent duration policy from 1 year

to 70 years, utility is maximized at the patent duration policy of 17 years.

Therefore, our model refutes the claim in Boldrin and Levine [2013] that patents do not play

an important social role. However, it does not conclude that our current policy of patents

lasting 20 years is optimal. Instead, the optimal policy appears to consist of a slightly shorter

patent duration, varying around 15 to 18 years.

The results of this calibration are robust to different specifications of the degree of knowledge

spillovers from the productivity leaders. The reason why the degree of spillovers does not

substantially change the optimal policy is that increasing θ decreases the durability of an

advantageous position which reduces the present value of profits and, therefore, the incen-

tives to produce new blueprints, decreasing welfare, but also it increases the intensity of the

productivity gains from symbiotic competition which increases total factor productivity and

therefore increases welfare. These two factors mostly cancel each other in our calibration.

It is possible for the model to endorse the idea from Boldrin and Levine [2013] that abolishing

patents is a welfare-improving policy over our current patent policy of 20 years. To achieve

this result, we have to increase the knowledge spillovers to much higher levels than which are

suggested by the empirical evidence: the productivity growth rate of laggards needs to be
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Figure 6: Robustness of the results to changes in the patent policy, the optimal patent policy

is in the interval from 15 to 17 years varying θ from 50% lower than the calibration and

two-thirds higher than calibration.

approximately 8 to 10 times larger than the productivity leaders. These very high knowledge

spillovers produce increased TFP growth under competition such that the costs of a patent

policy lasting 20 years exceed the benefits.
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Figure 7: Technology spillovers have to be very high for a no-patent policy to be close to

optimal as in this case the productivity of laggard firms grows at 9 times the rate of leaders.

4 Endogeneizing the technology

We have assumed that when we have two firms in an industry, each firm’s productivity is

subject to independent stochastic shocks and that if one firm is lagging behind the other firm,

that firm can learn faster than the productivity leader. These two assumptions imply that

the expected average productivity of the firms in the duopolized industry grows at the rate

µ+θ/2, but if the industry is monopolized, the expected productivity of the monopolist grows

only at the rate µ, which is strictly lower.

However, profits would increase if production costs decreased due to improved productivity.

Thus, it would be rational for the monopolist to emulate the evolution of technology under

duopoly that allows a faster rate of productivity growth. Therefore, consider the case where

the monopolist can do so by hiring an additional manager to run a part of his company as a

separate division, which means his firm runs as two division in ”pseudo-competition” where

one unit learns from the other as if they were a duopoly. The monopolist uses the maximum
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the the technology of the two divisions to produce the output and, to replicate the technology

of the symbiotic competition in our environment, he commits to using the additional division

forever after starting it.

In this situation, the expected growth of productivity of the monopolist is the same as the

expected growth in productivity of the industry under duopoly: expected productivity will

grow at the rate µ. The gain in expected profits from having two divisions instead of one

is then given by the gain in productivity over time: Let Πm,t′

jt be the profits at time t if

the monopolist has two divisions instead of one, which the second division being created in

time t′ ≤ t. Clearly, if t = t′, then Πm,t′

jt = Πm
jt , as the gain in productivity from symbiotic

competition between the two division only accrues over time.

Let time t be the time when the second division is created, then expected profits at time ∆

after t are Et[Π
m,2
jt+∆] which satisfy

Et[Π
m,2
jt+∆] = yt(

wt

α
)−λ(1− α) exp(λzjt +∆(µ+ θ/2)).

The expected profits of the monopolist without the additional division are

Et[Π
m
jt+∆] = yt(

wt

α
)−λ(1− α) exp(λzjt +∆µ).

Let Gt(∆) be the gain in expected profits of our monopolist after a length of time ∆ from

starting the additional division at time t, Gt(∆) is given by

Gt(∆) = Et[Π
m,2
jt+∆]− Et[Π

m
jt+∆] (9)

= yt(
wt

α
)−λ(1− α)(exp(λzjt +∆(µ+ θ/2))− exp(λzjt +∆µ)) (10)

= yt(
wt

α
)−λ(1− α) exp(λzjt +∆µ)[exp(∆θ/2)− 1]. (11)

Let us assume, however, that the monopolist, however, cannot set up this additional division

for free: he has to hire a manager to run this division and let Cjt be the flow cost the
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monopolist has to pay to the manager to manage his additional division in industry for variety

j at period t. This cost represents the opportunity cost to keep the manager from exiting

the firm and setting up his own firm in the industry, competing with the former monopolist.

This opportunity cost means that we are assuming that the monopolist has all the bargaining

power and makes a take-it-or leave it offer to the manager: the manager will accept managing

the division for a value Cjt if and only if Cjt is equal or higher than the expected flow profits

of one firm under duopoly conditional on the assumption that the average technology of the

two firms in the industry under duopoly is the same as the technology the monopolist has at

the time t, which is the maximum of the productivity parameters of the two divisions.

Thus, the monopolist’s decision problem to set up the additional division, given our assump-

tion the monopolist is committed after he decides to do so, is solved if the expected present

value of the costs of setting the additional division are lower than the present value of the

increase in expected profit flow.

Proposition 6. There exists a discount rate r > 0 such that for all discount rates higher

than r the monopolist does not replicate symbiotic competition in its present profit maximizing

equilibrium.

Proof. The monopolist will choose to internally replicate symbiotic competition if and only if

∫ ∞

0

exp(−r∆) [Gt(∆)− Et[Cj,t+∆]] d∆ > 0.

Note that as Cj,t+∆ is the expected profit flow the monopolist expects that the manager obtains

if he runs his own firm as one of the firms under a duopoly in time t+∆, this expected profit

is always strictly positive and it grows according to the growth in productivity of the sector in

duopoly (which grows at the expected rate µ+ θ/2, the same as the expected growth rate of

productivity under monopoly with two divisions) and according to the growth of the economy

(as described by the parameter yt).

Therefore, Cj,t+∆ > 0 for every ∆ ≥ 0 while Gt(∆) converges to zero as ∆ converges to zero.

Thus, there exists a time interval [0,∆], with ∆ ∈ (0,∞), such that the monopolist expects
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negative profits by hiring the manager. Note that ∆ > 0 cannot be infinity: as ∆ diverges to

infinity, the faster rate of productivity increase implies that the increase in monopoly profits

from shifting to the two division-system a relative increase in profits that is infinitely many

times higher than under single division-system. Since profits under monopoly are higher than

profits under duopoly given the same industry-average technology, therefore the increase in

expected monopoly profits of a shift from one division to two divisions becomes higher than

profits under competition for ∆ > 0 large enough. Therefore, profits are lower than the costs

of manager from [0,∆] and higher than the costs of the manager during the period [∆,∞).

Thus, if the discount rate r > 0 is high enough the monopolist never finds it profit maximizing

to replicate the effects of symbiotic competition under duopoly. □

This result implies that competition allows the benefits of patience to be replicated by myopic

agents: if firms are perfectly patient they have natural incentives to value the future benefits

of faster technological progress, when they are not patient the value of these benefits is heavily

discounted, and so firms do not take them into consideration. Competition, however, induces

the faster technological growth that occurs under a patient monopolist even if the firms are

perfectly myopic.

5 Concluding Remarks

In this paper, we have developed a theoretical framework to study the interaction of com-

petition with economic development to analyze the macroeconomic consequences of patent

policy. As it is broadly understood, patents provide an incentive for innovation in providing

monopoly rights for novel technologies, but our analysis also provides a framework to esti-

mate the costs of these monopolies along two dimensions: first, by suppressing competition,

monopolies reduce the speed of improvement in productivity for existing technologies and

second, the increased market power of monopolists creates deadweight losses by lowering the

quantity supplied in the market relative to the optimal level.

Our framework shows that learning spillovers across firms are a major factor in driving eco-

nomic development: when firms compete neck-and-neck, learning spillovers drive the produc-
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tivity frontier and enable faster growth than in industries that are monopolized by a single

firm. This analysis shows that the benefits of competitive markets are not only allocative

efficiency in a static sense but also dynamic: competition produces a sustained increase in

total factor productivity growth.

While under certain assumptions our model can endorse the claim of some economists that

shifting from our current patent system to a policy of no-patents would be welfare improving,

calibration of the model according to the evidence provided by empirical studies suggests that

the optimal patent policy is between 15 and 20 years and this result is robust to substan-

tial changes in the parameters. Therefore we conclude that patent policy as it is currently

practiced is likely superior to the abolition of patents.
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Appendix

A Industry equilibrium

We study price competition between two firms. As we will see, it is without loss of generality

to assume that only two firms operate in the industry as the goods are perfect substitutes.

When costs are asymmetric, in standard Nash Equilibrium of a static competition model

there is a continuum of equilibrium in the model, as stated in Lemma below:

Lemma 2. Consider the case where a1i > a1i, then the equilibrium in a static price competi-

tion game (Bertrand competition) is given by the set of price pairs {(p, p) : p ∈ [γi1 , γi2 ]}.

Proof. Without loss of generality normalize wage in period t to 1. To see that both firms

posting p∗ ∈ [1/A1t, 1/A2t] is an equilibrium note that: if both firms post p∗ the firm 1, with

better technology, thus lower cost, has profits p− 1/A1t ≥ 0, it does not find advantageous to

increase prices and earn zero profits or to lower prices and earn lower profits. The firm with

higher costs makes zero profits, raising prices means it will earn zero profits, lowering prices

means it will earn negative profits.

To see that set exhausts all possible equilibrium, note that any other pair of prices besides

the set (p∗, p∗) where p∗ ∈ [1/A1t, 1/A2t], is not consistent with equilibrium: the firm with

better technology never finds it optimal to post a price strictly lower than the price posted

by the firm with less advanced technology. Thus, all equilibrium involve both firms posting

the same price, unless one firms posts a price lower than the marginal cost of both firms.

Then the best response by the other firm is to post any higher price. The firm making a loss

will not find it advantageous to post that price. Thus, equilibrium involves both firms posting

a price equal or higher than the marginal cost of the lowest cost firm. In addition, it is not

an equilibrium for both firms to post a price higher than the marginal cost of the higher cost

firm: in that situation the higher cost firm has an incentive to deviate. Thus, the set of all

equilibria is for both firms to post p∗ ∈ [1/A1t, 1/A2t]. □
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The existence of a continuum of different profit levels that can be supported as a static Nash

Equilibrium is an issue for the dynamic analysis of competition. It means that continuation

values are undefined even in Markov Perfect Equilibrium, which implies that the equilibrium

of the model is not uniquely determined. To restrict the set of equilibrium prices a reasonable

strategy for refinement, we consider the assumption that firms have captive customers, that is,

that there is a probability that some final goods producers do not have access to the competing

firm and therefore are willing to purchase from that specific supplier at any posted price. This

assumption is common in models of endogenous equilibrium price dispersion such as Butters

Butters [1977], Varian Varian [1980], and Burdett and Judd Burdett and Judd [1983]. Several

recent papers use the concept of captive buyers (in the sense of buyers who only have access to

a single seller), for example Burdett and Menzio Burdett and Menzio [2018] (their calibration

of the model according to the empirical evidence also implied that the fraction of captive

customers should be circa 8%). Suppose that a fraction of final goods producer ϵ ∈ (0, 1/2)

are captive of each firm which means that this fraction of final goods producers only have

access to that firm when purchasing the intermediate input. Then, the Nash Equilibrium for

the static competition game is unique and given by a randomized strategy described by a

cumulative distribution function Fe, as e approximates 0 then the distribution of prices Fe

converges in probability to min{1/A1t, 1/A2t}. Thus, in the dynamic environment we study we

use the notion of Markov Perfect Equilibrium augmented with captive customer refinement,

in what we call Markov Refined Equilibrium, which yields an unique dynamic equilibrium

that allows us to have a unique solution when we study the effects of technological spillovers.

Our solution concept is a Markov perfect equilibrium that is the limit of a sequence of e-

equilibrium as e ↓ 0, where firm’s price posting strategies take into consideration a probability

ϵ > 0 that customers are captive (that is, they do not have the competing firm in their

consideration set). The proposition below shows that with Markov perfect equilibrium we

reduce the number of equilibria to one:

Proposition 7. The Markov perfect equilibrium is unique, with equilibrium price for variety
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j given by

pj =



γi1/α if αai2 < ai2 ≤ αai1 < ai1

γi2 if αai2 ≤ αai1 ≤ ai2 ≤ ai1

γi1 if αai1 ≤ αai2 ≤ ai1 ≤ ai2

γi2/α if αai1 < ai1 ≤ αai2 < ai2 .

Proof. Consider a firm i ∈ {i1, i2}. With the probability

ϵ > 0

of the customer being captive a firm’s profits take the form

Πi(p,X t) =


pj − γi if pi < p−ior pj = p−j and Xjt > X−j,t

(1/2 + ϵ/2)(pj − 1/Xjt) if pj = p−j and Xjt = X−j,t

ϵ(pj − 1/Xjt) if pj > p−jor pj = p−j and Xjt < X−j,t

.

Equilibrium in mixed strategies in period T has the following structure: Without loss of

generality assume X1T > X2T . The unique Nash equilibrium in period T consists of a pair of

cumulative distribution functions (F1, F2) both with support [p, 1], where 1 is the monopoly

price and p is the lower bound of the support.

The lower bound satisfies the following equal profit condition

p− 1/X2T = ϵ(1− 1/X2T ).

The mixed strategy F−j satisfies the following equal profit condition

p[ϵ+ (1− ϵ)F−j(p)] = p− 1/XjT ,

which implies that to maintain the equal profit condition on the support of F1, the cumulative

distribution function F2 has an atom at 1, as expected profits from posting p are p− 1/XjT

which are higher than ϵ(1− 1/X2T ). As ϵ ↓ 0, the lower bound of the support p converges to

1/X2T and for j ∈ {1, 2}, Fj(p) converges to 1 for any p > 1/X2T . Thus for both firms the

equilibrium distribution of prices converges in probability to 1/X2T . □

29



B Computation of Profits

Assuming that firms engage in price competition within an industry, prices will equal the

minimum of the more productive firm’s monopoly price and the less productive firm’s marginal

cost. Together with Proposition 7, the Dixit-Stiglitz framework gives tractable expressions for

expected future prices and profits. In this section of the Appendix we derive these expressions.

B.1 Flow Profits

A monopolist’s profit is given by

Πm
it = ytp

−1/(1−α)
t (pt − wt/ait) = yt

(
wt

αait

)−1/(1−α) [(
wt

αait

)
− wt

ait

]
= yt

(
wt

αait

)−α/(1−α)

(1− α)

= yt

(wt

α

)−λ

(1− α)eλzit ,

where λ = α/(1−α) and ait = ezit . Here, yt and wt correspond to aggregate variables, namely

aggregated output and wages.

Proposition 8. Consider a monopolist whose log productivity Z obeys dZt = µdt + σdWt,

where W is a Wiener process. The monopolist’s profit at time t is given by

E[Πm
it ] = yt

(wt

α

)−λ

(1− α)E[eλzt ]

= yt

(wt

α

)−λ

(1− α)eλ[x0+
1
2
(λ+µ)t].

If yt = y and wt = w are constant over time, the normalized present value of profit equals∫ ∞

0

re−rtE[Πm
it ]dt = y

(w
α

)−λ

(1− α)

∫ ∞

0

re−rteλ[x0+
1
2
(λσ2+2µ)t]dt

= y
(w
α

)−λ

(1− α)
reλx0

r − µ− 1
2
λσ2

assuming, of course, that the denominator is positive: r > µ+ 1
2
λσ2.

This simple result, which follows from Lemma 6 below, establishes the present value of profit

for a monopolist whose productivity grows at rate µ. This serves as a benchmark for duopoly

profit, which we study next.
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A duopolist’s profit depends on both its own and its competitors’ productivity, since duopoly

prices satisfy pt = min{wt/(αait), wt/ajt} when ait ≥ ajt. If pt = wt/(αait), the duopololist’s

productivity advantage is big enough to warrant monopoly price and profit. If not, pt = wt/ajt,

and firm i earns

Πd
it = ytp

−1/(1−α)
t (pt − wt/ait) = yt

(
wt

ajt

)−1/(1−α) [
wt

ajt
− wt

ait

]
= yt

(
wt

ajt

)−1/(1−α) [
wt

ajt
− wt

ait

]
= yt

(
wt

ajt

)−α/(1−α) [
1− ajt

ait

]
= ytw

−λ
t

[
eλzjt − e(λ+1)zjt−zit

]
.

A firm’s flow profit is either Πd
it or Π

m
it depending on whether pt = wt/(αait) or wt/ajt, that

is, the monopoly price or i’s competitor’s marginal cost.

From the point of view of time 0, a firm’s expected profit will vary with the productivity of

both firms. We calculate this expected profit next. Without loss, consider firm 1’s profit. Of

course, for firm 1 to produce, it must be the case that z1t ≥ z2t. Moreover, if z1t ≤ z2t− ln(α),

the prevailing market price will be firm 2’s marginal cost, whereas if z1t > z2t − ln(α) then

the price will equal firm 1’s monopoly level.

Therefore, firm 1’s expected profit flow, E[Π1t], satisfies

E[Π1t] = E[Πd
it, z1 + lnα ≤ z2 ≤ z1] + E[Πm

it , z1 + lnα ≥ z2], (*)

where E[R,A] = E[R1A] and each of the terms on the right hand side have a closed form.

To find this closed form, we rely on two preliminary results that derive closed-form expressions

for the Laplace transforms of X and Y , respectively. Let γ = µ+ 1
2
θ and

Ft(λ) =

∫ ∞

−∞
eλxft(x)dx.

Lemma 3. The Laplace transform of X, denoted by Ft(λ), satisfies

Ft(λ) = eλ[x0+
1
2
(λσ2+2γ)t].
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Proof. Completing the square yields

λx− 1

2σ2t
[(x− x0)− γt]2 = − 1

2σ2t

[
(x− x0)

2 − 2(x− x0)γt+ (γt)2 − 2λxσ2t
]

= − 1

2σ2t

[
(x− x0)

2 − 2(x− x0)(γ + λσ2)t+ (γt)2 − 2λx0σ
2t
]

= − 1

2σ2t

[
(x− x0)

2 − 2(x− x0)(γ + λσ2)t+ ((γ + λσ2)t)2 − 2λx0σ
2t− λ2σ4t2 − 2λσ2γt2

]
= − 1

2σ2t

[
(x− x0)− (γ + λσ2)t

]2
+ λx0 +

1
2
λ2σ2t+ λγt

= − 1

2σ2t

[
(x− x0)− (γ + λσ2)t

]2
+ λ[x0 +

1
2
(λσ2 + 2γ)t]

Therefore, plugging this identity into the Laplace transform above gives∫ ∞

−∞
eλxft(x)dx =

1√
2πσ2t

∫ ∞

−∞
eλxe−

1
2σ2t

[(x−x0)−γt]2dx

=
1√

2πσ2t

∫ ∞

−∞
eλ[x0+

1
2
(λσ2+2γ)t]e−

1
2σ2t

[(x−x0)−(γ+λσ2)t]2dx

= eλ[x0+
1
2
(λσ2+2γ)t],

since 1√
2πσ2t

∫∞
−∞ e−

1
2σ2t

[(x−x0)−(γ+λσ2)t]2dx = 1. □

B.2 Present Value Profit

Let V (X, Y ) be firm 1’s present value profit when the average productivity equals X and the

productivity gap equals Y . Bertrand competition implies three regimes for firm 1: when it

sets a monopoly price, when it charges firm 2’s marginal cost, and when it is priced out by

firm 2. Formally, flow profit is given by

Π1t =


Πm

1t if Y > ȳ,

Πd
1t if 0 < Y < ȳ,

Π0
1t if Y < 0,

where ȳ = −1
2
lnα and Π0

1t = 0.

Our goal is to compute V , which, formally, is given by

Vt = V (Xt, Yt) = Et

[∫ ∞

t

e−ρ(τ−t)Π1τdτ

]
.
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Lemma 4. V (Xt, Yt) = F (Xt)G(Yt) is multiplicatively separable, with

F (Xt) = yw−λeλXt and G(Yt) = Et

[∫ ∞

t

e−β(τ−t)g(Yτ )dτ

]
for some parameters y and w, where β = ρ− λγ − 1

2
λ2σ2 and g is defined as

g(Y ) =


gm(Y ) = (1− α)αλeλY if Y > ȳ,

gd(Y ) = e−λY − e−(λ+2)Y if 0 < Y < ȳ,

g0(Y ) = 0 if Y < 0.

Proof. First, flow profit Π1t is clearly separable. To see this, let f(X) = yw−λeλX , where y

and w are general equilibrium objects to be found later. By definition, Π1t = f(Xt)g(Yt),

and, since Xτ and Yτ are independent,

V (Xt, Yt) = Et

[∫ ∞

t

e−ρ(τ−t)Π1τdτ

]
= Et

[∫ ∞

t

e−ρ(τ−t)f(Xτ )g(Yτ )dτ

]
=

∫ ∞

t

e−ρ(τ−t)Et[f(Xτ )g(Yτ )]dτ

=

∫ ∞

t

e−ρ(τ−t)Et[f(Xτ )]Et[g(Yτ )]dτ

= yw−λ

∫ ∞

t

e−ρ(τ−t)Et[e
λXτ ]Et[g(Yτ )]dτ

By Lemma 6,

Et[e
λXτ ] = eλ[Xt+

1
2
(λσ2+2γ)(τ−t)],

therefore

V (Xt, Yt) = yw−λeλXt

∫ ∞

t

e−β(τ−t)Et[g(Yτ )]dτ,

where β = ρ− 1
2
λ(λσ2 + 2γ) = ρ− λγ − 1

2
λ2σ2. □

We will now solve for G(Yt) from the above lemma and its proof. There are three regimes for

firm 1, as before: when it sets a monopoly price, when it charges firm 2’s marginal cost, and

when it is priced out by firm 2. Formally,

G(Y ) =


Gm(Y ) if Y > ȳ,

Gd(Y ) if 0 < Y < ȳ,

G0(Y ) if Y < 0,
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We will now derive each part of G by solving its corresponding Fokker-Planck equation, and

then glue them together via value matching and smooth pasting. Define the following roots:

κ1 = (−δ +
√

δ2 + 2σ2β)/σ2 > 0 and κ2 = −(δ +
√
δ2 + 2σ2β)/σ2 < 0.

Lemma 5. The function G0(Y ) satisfies βG0 = δG′
0 +

1
2
σ2G′′

0 and G0(Y ) → 0 as Y → −∞

if and only if G0(Y ) = A0e
κ1Y for some A0 ∈ R.

Proof. The argument here is a standard derivation of the unique solution of the ODE above.

Clearly, βA0e
εY = δκ1A0e

εY + 1
2
σ2ε2A0e

εY implies β = δε+ 1
2
σ2ε2, which holds for ε = κ1, κ2.

Therefore, G0(Y ) = A0e
κ1Y + B0e

κ2Y , but the limiting condition G0(Y ) → 0 as Y → −∞

implies that B0 = 0, which gives the solution G0(Y ) = A0e
κ1Y for some A0. □

Lemma 6. Let −κ1 < ω < −κ2. The function H(Y ) satisfies

βH = CeωY − δH ′ + 1
2
σ2H ′′

if and only if

H(Y ) = Ae−κ1Y +Be−κ2Y +DeωY

for some coefficients A and B, where D = C/(β + δω − 1
2
σ2ω2).

Proof. The linear ODE above has a unique solution given boundary conditions. Assume that

−κ1 < ω < −κ2. Guessing a form AeεY +DeωY implies that

r(AeεY +DeωY ) = CeωY − δ(εAeεY + ωDeωY ) + 1
2
σ2(ε2AeεY + ω2DeωY ).

Matching coefficients multiplying eεY and eωY implies that (i) r = −δε + 1
2
σ2ε2, with roots

ε = −κ1,−κ2, and (ii) D = C/(r + δω − 1
2
σ2ω2). Therefore,

H(Y ) = Ae−κ1Y +Be−κ2Y +DeωY

for some coefficients A and B to be determined by boundary conditions, as claimed. □

We seek Gk for k ∈ {m, d} satisfying the ODE in Lemma 9 above such that

βGm = gm − δG′
m + 1

2
σ2G′′

m and βGd = gd − δG′
d +

1
2
σ2G′′

d,

where gm and gd are defined in Lemma 7 above.
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Applying Lemma 9, we obtain the following general solution for Gm:

Gm(Y ) = Ame
−κ1Y +Bme

−κ2Y +Dme
λY .

The coefficient Dm, found by substitution and coefficient matching in the ODE above, equals

Dm =
(1− α)αλ

β + λδ − 1
2
λ2σ2

.

For this to make sense as a present discounted value, we need β + λδ − 1
2
λ2σ2 > 0. Since

β = ρ−λγ− 1
2
λ2σ2, we require ρ > λµ+λ2σ2 for Dm to be interpreted as a present value. The

coefficients Am and Bm reflect changes in the value associated with switching from regime m

to regime d. However, as Y → ∞, a switch from m to d becomes arbitrarily far away in time,

with present value asymptotically negligible. As such the value must converge to Dme
λY . This

implies that Bm = 0, since otherwise Bme
−κ2Y would explode as Y → ∞ because κ2 < 0.

We now turn to Gd. Again by Lemma 9,

Gd(Y ) = Ade
−κ1Y +Bde

−κ2Y + Cde
−λY −Dde

−(λ+2)Y ,

where

Cd =
1

β − λδ − 1
2
λ2σ2

and Dd =
1

β − (λ+ 2)δ − 1
2
(λ+ 2)2σ2

.

Again, for these present value coefficients to be well defined, we require β > λδ + 1
2
λ2σ2 and

β > (λ + 2)δ + 1
2
(λ + 2)2σ2. Of course, the latter implies the former, which in turn implies

the restriction for Dm above. We have thus established the following result.

Lemma 7. If β > (λ+ 2)δ + 1
2
(λ+ 2)2σ2 then G satisfies

G(Y ) =


Ame

−κ1Y +Dme
λY if Y > ȳ,

Ade
−κ1Y +Bde

−κ2Y + Cde
−λY −Dde

−(λ+2)Y if 0 < Y < ȳ,

A0e
κ1Y if Y < 0,

for some A0, Ad, Bd, Am to be determined below, with Cd, Dd and Dm defined above.

Our last task is to find the coefficients A0, Ad, Bd and Am. These are found by connecting

Gm, Gd and G0 via smooth pasting and value matching:

Gm(ȳ) = Gd(ȳ), Gd(0) = G0(0),

G′
m(ȳ) = G′

d(ȳ), G′
d(0) = G′

0(0).

These are four equations in four unknowns.
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Proposition 9. Let β > (λ+ 2)δ + 1
2
(λ+ 2)2σ2 and define the following constants:

R1 = Cd −Dd,

R2 =
(κ1 + λ+ 2)Dd − (κ1 + λ)Cd

2κ1

,

R3 = e(κ1−λ)ȳCd − e(κ1−λ−2)ȳDd − e(κ1+λ)ȳDm,

R4 = (λ+ 2)e−(λ+2)ȳDd − λe−λȳCd − λeλȳDm.

The coefficients of the previous lemma are equal to

A0 = R1 +R2 −
κ1e

−κ1ȳR3 +R4

2κ1e−κ2ȳ
,

Ad = R2 −
1

2

(
1 +

κ2

κ1

)
κ1e

−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ
,

Am = R2 −
1

2

(
1 +

κ2

κ1

)
κ1e

−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ
+R3 +

κ1R3 + eκ1ȳR4

(κ2 − κ1)
, and

Bd =
κ1e

−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ
.

This completes the definition of firm 1’s present value profit. Firm 2’s present value profit is

obtained by antisymmetry about Y = 0: if G̃ is the corresponding G-function for firm 2 then

G̃(Y ) = G(−Y ).

Proof. By the previous lemmas,

G0(Y ) = A0e
κ1Y ,

Gd(Y ) = Ade
−κ1Y +Bde

−κ2Y + Cde
−λY −Dde

−(λ+2)Y , and

Gm(Y ) = Ame
−κ1Y +Dme

λY .

Plugging in the value matching and smooth pasting conditions gives

A0 = Ad +Bd + Cd −Dd,

κ1A0 = −κ1Ad − κ2Bd − λCd + (λ+ 2)Dd,

Ame
−κ1ȳ +Dme

λȳ = Ade
−κ1ȳ +Bde

−κ2ȳ + Cde
−λȳ −Dde

−(λ+2)ȳ,

−κ1Ame
−κ1ȳ + λDme

λȳ = −κ1Ade
−κ1ȳ − κ2Bde

−κ2ȳ − λCde
−λȳ + (λ+ 2)Dde

−(λ+2)ȳ.
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We now solve these four linear equations in four unknowns. Define the following constants:

R1 = Cd −Dd,

R2 =
(κ1 + λ+ 2)Dd − (κ1 + λ)Cd

2κ1

,

R3 = e(κ1−λ)ȳCd − e(κ1−λ−2)ȳDd − e(κ1+λ)ȳDm,

R4 = (λ+ 2)e−(λ+2)ȳDd − λe−λȳCd − λeλȳDm.

Symbolic arithmetic yields

A0 = Ad +Bd +R1,

Ad = R2 −
1

2

(
1 +

κ2

κ1

)
Bd,

Am = Ad + e(κ1−κ2)ȳBd +R3,

Bd =
κ1e

−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ
.

Therefore,

Ad = R2 −
1

2

(
1 +

κ2

κ1

)
κ1e

−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ
.

This implies that

A0 = R1 +R2 −
1

2

(
1 +

κ2

κ1

)
κ1e

−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ
+

κ1e
−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ

= R1 +R2 −
1

2

(
κ2

κ1

− 1

)
κ1e

−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ

= R1 +R2 −
κ1e

−κ1ȳR3 +R4

2κ1e−κ2ȳ
.

Finally,

Am = R2 −
1

2

(
1 +

κ2

κ1

)
κ1e

−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ
+R3 + e(κ1−κ2)ȳ

κ1e
−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ

= R2 −
1

2

(
1 +

κ2

κ1

)
κ1e

−κ1ȳR3 +R4

(κ2 − κ1)e−κ2ȳ
+R3 +

κ1R3 + eκ1ȳR4

(κ2 − κ1)
.

This completes the proof. □
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C Proofs

C.1 Proof of Proposition 1

[insert proof]

C.2 Proof of Proposition 2

[insert proof]

C.3 Proof of Lemma 1

We will show that X and Y are distributed independently, as the rest of the Lemma follows

by direct calculation. Indeed, clearly W+ and W− are uncorrelated:

E[(W+
t −W+

s )(W−
t −W−

s )] = 1
4
E[(Wjt +Wkt −Wjs −Wks)(Wjt −Wkt −Wjs +Wks)]

= E[(Wjt −Wjs + (Wkt −Wks))(Wjt −Wjs − (Wkt −Wks))]

= E[(Wjt −Wjs)
2]− E[(Wkt −Wks)

2] = 0.

Independence now follows by joint normality of Wj and Wk.

C.4 Proof of Proposition 3

[insert proof]

C.5 Proof of Proposition 4

[insert proof]
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