

PROPOSTA DE SISTEM ROBÓTICA INTEGRADO E SIMPLIFICADO PARA APLICAÇÃO NA AGRICULTURA

João Gabriel da Anunciação Calmon¹; Bruno Schettini Soares Pereira²

- ¹ Graduando em Engenharia Elétrica; Iniciação tecnológica; joao.anunciacao@fbest.org.br
- ² Departamento de Robótica, SENAI CIMATEC; Salvador-BA; bruno.pereira@fieb.org.br

RESUMO

Para realização de atividades agrícolas de poda e/ou colheita de forma autônoma, os manipuladores robóticos apresentam-se como um potencial solução para este desafio. Isso porque eles são capazes de realizar tanto tarefas pesadas e pesadas sob utilizando mesmo aparato tecnológico, como a poda e colheita respectivamente. No presente trabalho, foi desenvolvido um sistema de movimentação de um braço robótico para seguir pontos de interesse indicados por marcos fiduciais, em vista de emular posições-objetivo de manipuladores para seu uso em ambiente dinâmico, como o visto em atividades agrícola. Tal prova de conceito reforça a integração de sistemas robóticos com sensoriamento por imagem, o que traz uma maior versatilidade em soluções autônomas. Tal abordagem valida as etapas iniciais de tarefas de manipulação na agricultura. Resultados preliminares em ambiente simulado e real são apresentados, mostrando que a integração com um sistema de visão computacional e reconhecimento de padrões é possível para futuras fases da pesquisa.

PALAVRAS-CHAVE: Manipulação Robótica; Visão Computacional; Autonomia; Robótica agrícola.

1. INTRODUÇÃO

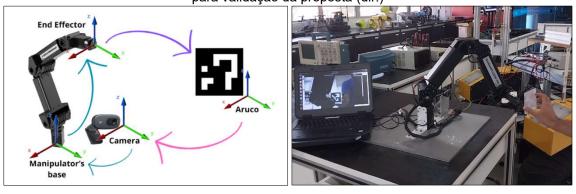
As atividades agrícolas podem ser realizadas em grandes lavouras, como é o caso das plantações de soja, trigo, milho e outros, ou, em ambientes restritos, como é o caso dos pomares e estufas. No primeiro caso, dada a amplitude de espaço, é possível empregar maquinário agrícola pesado, tais como tratores e caminhões, em oposição ao segundo, no qual tais máquinas não podem atuar e mesmo veículos de menor porte devem operar a uma certa distância das plantas, a fim de evitar danos ao sistema radicular de raízes, resultando na realização das atividades de forma majoritariamente manual. 1

Kim et al. $(2022)^2$ aponta uma busca crescente por soluções tecnológicas na agricultura tradicional, estimulada pelas crescentes preocupações com o declínio produtividade e a escassez de mão de obra neste setor, conforme mencionado também por Quiroz e Alférez (2020). Neste cenário, surge a demanda por soluções tecnológicas para estes problemas. No caso dos manipuladores robóticos, em especial, eles são capazes de realizar tarefas repetitivas e que exigem precisão de posicionamento. Além disso, a depender do tipo de controle empregado, podem trabalhar em tarefas com cargas pesadas, como é o caso da poda, ou ainda lidar com itens sensíveis e delicados, como são as frutas e verduras.

Neste contexto, o objetivo do presente projeto é desenvolver uma prova de conceito de uma solução de manipulação autônoma para atividades comuns no setor agrícola, como colheita de frutas ou vegetais, e poda de árvores e plantas em geral. Na próxima seção será apresentada a metodologia empregada no desenvolvimento do presente trabalho, seguida pelos resultados obtidos e discussões acerca destes e, então, serão feitas as considerações finais e sugestões para trabalhos futuros.

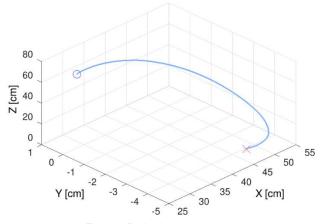
2. METODOLOGIA

Para o desenvolvimento do presente trabalho, avaliou-se através de uma análise de diferentes topologias de manipuladores e sensores perceptivos que o uso de câmeras coloridas com ferramentas de manipulação traz versatilidade e segurança ao atendimento de requisitos fundamentais de operações agrícolas. Com isso, o manipulador robótico *Open Manipulator Pro*⁴ foi utilizado como plataforma de experimentação associado a um sistema computacional e uma câmera USB de baixo custo, com vista a validar sistemas de reconhecimento de imagem. Por ser um dispositivo de código aberto e com seis graus de liberdade, oferece opções de customização e acesso às suas informações internas, o que possibilita um controle mais abrangente sobre seus atuadores e de sua posição-fim, além de permitir a integração com agentes externos, como câmeras estéreo e garras destinadas a operações de colheita ou corte de podas.


No âmbito do software, a implementação contou com o emprego do pacote Movelt⁵, um solucionador de trajetória projetado para manipuladores e integrado ao ROS (Sistema Operacional de Robôs)⁶, simplificando assim as questões de controle em sistemas não lineares e multivariáveis, fazendo com que o enfoque de desenvolvimento se concentrasse na posição das juntas e não na resolução das equações matemáticas em sim.

3. RESULTADOS E DISCUSSÃO

Sistemas multiagentes, isto é, compostos por diferentes atuadores e sensores possuem um desafio adicional ao relacionar as informações espaciais destes com referência a um ponto fixo do robô, como por exemplo seu centro de massa ou sua base. Tal informação é necessária para estimar posicionamento de câmeras e atuadores no espaço de trabalho e que as missões sejam realizadas com a precisão necessária. Para isso, é comum que posições de interesse sejam dadas em *frames* diferentes, sendo relacionados com sua base via transformações homogêneas.


Figura 1: Representação das transformações entre manipulador, câmera e aruco(esq.) e setup de testes para validação da proposta (dir.)

Fonte: Próprio autor, 2023

Um aruco é definido como "um marcador sintético quadrado composto por uma borda preta larga e uma matriz binária interna que determina seu identificador (id)" (OPENCV, 2023)⁷, como pode ser observado na figura 1. Utilizando uma câmera monocular e algoritmos de visão computacional é possível estimar sua pose no espaço. Estes marcadores foram utilizados para simplificar o sistema de visão computacional, já que sua detecção é mais simples do que o reconhecimento de frutas e/ou pontos de poda, de forma que os esforços iniciais pudessem ser focados no sistema de movimentação e, posteriormente, após validá-lo, os marcadores fossem substituídos pelo referido sistema de visão. Vale destacar que a posição do aruco é uma estimativa e, portanto, haverá um erro entre a distância real e a considerada pelo algoritmo. Tais erros podem ser diminuídos com câmeras de maior qualidade e com metodologias mais rigorosas de calibração e posicionamento.

Figura 2: Plotagem da trajetória do *end-effector* do manipulador (linha azul), partindo da posição inicial (círculo azul), até a posição estimida do aruxo ('x' vermelho)

Fonte: Próprio autor, 2023

A Figura 1 representa as transformações entre os principais elementos do sistema, bem como os seus respectivos frames de referência. Começando pela câmera, ela é utilizada para identificar o aruco e estimar sua pose no espaço. Essa informação, todavia, se encontra relativa ao frame da câmera e é

necessário realizar uma transformação para a base do manipulador. Em seguida, ao longo do corpo do manipulador há inúmeras transformações entre cada junta sucessiva até chegar ao end-effector (omitidas na imagem por uma questão de simplicidade). Por fim, a posição e orientação do aruco se encontram no mesmo frame do end-effector do manipulador e pode ser utilizada para a movimentação propriamente dita.

Através da Figura 2 (esquerda) é possível observar a trajetória descrita pelo *end-effector* do manipulador partindo do seu ponto inicial, marcado pelo círculo azul, até a posição estimada do aruco através do algoritimo de visão, marcada por um 'x' vermelho. A Figure 2 (direita) representa o teste proposto para validação do conceito apresentado. Ao analisar a caminho percorrido, é evidente que não se trata de uma reta ao invés disso, foi realizado curvilíneo. Isso pode ser atribuído ao fato de que o problema de otimização resolvido pelo otimizador não trata da movimentação de um ponto livre no espaço, antes, leva em conta a cinemática do manipulador como um todo, incluindo cada uma das suas juntas.

4. CONSIDERAÇÕES FINAIS

Este trabalho apresentou como os braços robóticos se constituem como uma tecnologia versátil para inúmeras atividades de manejo, principalmente aplicadas na problemática agrícola. Além disso, foi mostrado como a utilização de pacotes auxiliares pode simplificar o controle em sistemas não lineares, bem como a necessidade e importância das transformações homogêneas para relacionar informações espaciais em sistemas multiagentes com diferentes atuadores e sensores. Assim, uma solução de aproximação de pontos de interesse, marcados por arucos, com o manipulador robótico *Open Manipulator Pro* foi apresentada.

Trabalhos futuros podem estudar em mais detalhes a trajetória planeja pelo solucionador e a ação efetivamente executada pelo sistema, bem como realizar a implementação de um sistema de visão computacional capaz de identificar pontos de interesse para poda e/ou colheita em conjunto com sistema de planejamento de trajetória e movimentação já implementado, possibilitando a realização de tarefas autonomamente.

5. REFERÊNCIAS

- ¹MOLAEI, Faezeh; GHATREHSAMANI, Shirin. Kinematic-based multi-objective design optimization of a grapevine pruning robotic manipulator. AgriEngineering, v. 4, n. 3, p. 606-625, 2022.
- ² KIM, JoonYoung, et al. Tomato harvesting robotic system based on Deep-ToMaToS: Deep learning network using transformation loss for 6D pose estimation of maturity classified tomatoes with side-stem. Computers and Electronics in Agriculture, 2022, 201: 107300.
- ³ QUIROZ, Ignacio A.; ALFÉREZ, Germán H. Image recognition of Legacy blueberries in a Chilean smart farm through deep learning. Computers and Electronics in Agriculture, v. 168, p. 105044, 2020.
- ⁴ ROBOTICS GIT. open_manipulator_p. GitHub. 2020. Disponível em:https://github.com/ROBOTIS-GIT/open-manipulator-p. Acesso em: 2 Dez. 2022.
- ⁵MOVEIT. Movelt 2 Humble Release. Disponível em: https://moveit.ros.org/moveit/ros/humble/2022/06/02/Movelt-Humble-Release.html. Acesso em: 08 Mar. 2024.
- ⁶ROS. ROS Noetic Ninjemys. Disponível em: https://wiki.ros.org/noetic. Acesso em: 08 Mar. 2024.
- ⁷OPENCV. Detection of ARUCO Markers. Disponível em: <docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html>. Acesso em: 16 Nov. 2023.