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Abstract

Two-component mixture models have proved to be a powerful tool for modeling
heterogeneity in several cluster analysis contexts. However, most methods based
on these models assume a constant behavior for the mixture weights, which can be
restrictive and unsuitable for some applications. In this paper, we relax this as-
sumption and allow the mixture weights to vary according to the index (e.g., time)
to make the model more adaptive to a broader range of data sets. We propose an
efficient MCMC algorithm to jointly estimate both component parameters and dy-
namic weights from their posterior samples. We evaluate the method’s performance
by running Monte Carlo simulation studies under different scenarios for the dynamic
weights. In addition, we apply the algorithm to a time series that records the level
reached by a river in southern Brazil. The Taquari River is a water body whose
frequent flood inundations have caused various damage to riverside communities.
Implementing a dynamic mixture model allows us to properly describe the flood
regimes for the areas most affected by these phenomena.

1 Introduction
In several data analysis problems, we want to cluster observations between two groups.
For instance, in many clinical studies, the goal is to classify patients according to disease
absent or present (see Hall and Zhou, 2003, Rindskopf and Rindskopf, 1986, Hui and
Zhou, 1998). In contamination problems found in astronomy investigations, on the other
hand, the aim is to separate the objects of interest, called members (e.g., stars), from
foreground/background objects contaminating the sample, known as contaminants (see
Walker et al., 2009). In genetics, studies based on microarray data are usually driven to
detecting differentially expressed genes under two conditions, e.g., “healthy tissue versus
diseased tissue” (see Bordes et al., 2006).

To address these scenarios of bimodal data sets, two-component mixture models have
shown to be excellent alternatives to cluster data observations within the group that
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better describes their features (Patra and Sen, 2016). In this context, the mixture model
with two components will assume that the sample of data observations y1, . . . , yn is, in
fact, the realization of a random variable Y that belongs to a population composed of
two subpopulations, known as mixture components. Thus, at each point t, t = 1, . . . , n,
Y is fitted according to some of the mixture components, dictated by a mixture weight
α.

This setting may be very restrictive to some data sets. For instance, in epidemiolog-
ical studies that evaluate the response to medications, the probability of classifying a
patient in the group of “disease present” must be allowed to vary across time so that the
longitudinal effect of the treatment can be properly measured. The same issue arises in
quality control problems, where the probability of the supervised system operating in
a failure-free regime is also not constant over time. In order to classify those features
properly, under a mixture model assumption, the mixture weight should be allowed to
vary according to the index (which could be time or location). In other words, it would
be appropriate for the mixture weight to present a dynamic behavior.

Assuming dynamic mixture weights for mixture models is an extension that has al-
ready been applied in different areas, from traffic flow applications (see Nagy et al., 2011)
to investigations in genetics (see Montoril et al., 2019; 2021). As discussed in Montoril
et al. (2021), this generalization is similar to the extension of Hidden Markov Mod-
els (HMM) into non-homogeneous Hidden Markov Models (NHMM), first described by
Hughes and Guttorp (1994). In both scenarios, one generalizes the model by considering
unobserved varying probabilities. In the case of mixture models, those dynamic proba-
bilities are the mixture weights, whereas, in HMM, they are the transition probabilities.
It is important to emphasize that, although connected, dynamic mixture weights and
transition probabilities are different things.

Considering a “non-homogeneous” structure for the mixture model implies that, be-
sides estimating the dynamic mixture weights, one also needs to estimate the component
parameters, and that increases the challenge. For instance, in Montoril et al. (2019),
from a frequentist approach, the authors rely on wavelets to perform the estimation of
the dynamic weights, where they transform the data in order to deal with a nonparamet-
ric heteroscedastic regression. Nonetheless, their procedure depends on assuming known
means and variances for the mixture components, which, in practice, may be unrealistic.

In this work, unlike the aforementioned paper, the leading motivation is to provide
a Bayesian approach that estimates not only the dynamic mixture weights but also the
component parameters of a two-component mixture model. To accomplish this goal, we
propose an efficient Gibbs sampling algorithm, which allows the distribution of the poste-
rior draws to be used for inference purposes. Regarding the dynamic mixture weights, we
use the data augmentation method by Albert and Chib (1993) and incorporate Bayesian
wavelet denoising techniques to estimate the dynamic behavior of the mixture weight.
We do this to exploit the good properties of wavelets in curves’ estimation.

Wavelets are families of basis functions that can be used to represent other func-
tions, signals, and images as a series of successive approximations (Härdle et al., 2012,
Abramovich et al., 2000). In statistical applications, these mathematical tools have
been successfully used to solve problems in nonparametric regression (see Donoho and
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Johnstone, 1994, Cai and Brown, 1999); density estimation (see Donoho, 1993a, Donoho
et al., 1996, Hall and Patil, 1995); time series analysis (see, e.g., Morettin, 1996, Priestley,
1996, Percival and Walden, 1999); among many other areas. There is a vast literature
that provides a review of wavelets in statistics (see, e.g., Vidakovic, 1999, Ogden, 1997).

In this paper, wavelet bases are applied to enable the estimation of the dynamic mix-
ture weights. To review the mathematical background and the terminology associated
with the wavelet theory, in the following section, we provide a short introduction to
the wavelet basis functions; the discrete wavelet transform (DWT); and, the Bayesian
approach for denoising in a wavelet-based scenario. The remainder of the paper is orga-
nized as follows. In Section 3, we describe the dynamic mixture model considered in this
paper and give details related to the MCMC sampling scheme constructed to perform
the estimation. In Section 4, we present some numerical experiments. We first conduct
Monte Carlo simulations to evaluate the method in a controlled setting. Then, we apply
the MCMC algorithm to a river data set to identify periods when flood inundations
occurred.

2 Wavelets
In this work, we use the term wavelets to refer to a system of orthonormal basis functions
for L2([0, 1]) or L2(R). The bases are generated by dyadic translations and dilations of
the functions φ(·) and ψ(·), known, respectively, as the scaling and wavelet functions.
These systems of integer-translates and dilates are given by

φj0k(t) = 2j0/2φ(2j0t− k), k ∈ Z,

ψjk(t) = 2j/2ψ(2jt− k), j, k ∈ Z.

Thus, for any integer j0 and J , a periodic function f(t) ∈ L2([0, 1]) can be approxi-
mated in L2-sense as the projection onto a multiresolution space VJ :

f(t) =
2j0 −1∑
k=0

cj0kφj0k(t) +
J−1∑
j=j0

2j−1∑
k=0

djkψjk(t),

where cj0k’s are known as scaling coefficients and djk’s are called detail coefficients. The
former are associated with the coarsest resolution level in witch f(t) was decomposed,
j0. As a result, they capture the gross structure of f(t). The detail coefficients, on
the other hand, being linked to finer resolution levels, can capture local information
about f(t). Put simply, in moving from a coarser resolution level j to a finer j + 1, we
are increasing the resolution at which a function is approximated, thus the expansion
coefficients become more descriptive about the local features of f(t).

In practice, we access f(t) ∈ L2([0, 1]) through a grid of points in time or space
in which f is applied. Therefore, consider f = (f(1/n), f(2/n), . . . , f(n/n))T to be a
vector of samples of f(t) on an equispaced grid of n points, with n = 2J , for some
positive integer J . To obtain the scaling and detail coefficients that approximate f , we
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perform the discrete wavelet transform (DWT) of f . In matrix notation, the DWT of f
is

θ = W f , (1)

where θ = (c00, d00,d
T
1 , . . . ,d

T
J−1)T is a vector of size n, having both scaling and detail

coefficients dj = (dj0, dj1, . . . , dj2j−1)T , and W is the DWT matrix with (jk, i) entry
given by Wjk,i

√
n ≈ ψjk(i/n) = 2j/2ψ(2ji/n − k), k = 0, . . . , 2j − 1, j = 1, . . . , J − 1.

(Abramovich et al., 1998). By orthogonality, the multiplication W T θ recover the signal
f . This transformation from wavelet coefficients to fitted values is known as the inverse
discrete wavelet transform (IDWT).

One of the main advantages provided by the DWT is the sparse representation gen-
erally achieved. As shown by Donoho (1993b), wavelets are unconditional bases for a
range of function spaces, such as Hölder and Sobolev spaces, as well as spaces suitable
for representing functions of ‘bounded variation’. As an aside, it is also worth men-
tioning that using Mallat’s pyramid algorithm (Mallat, 1989), the DWT and IDWT are
performed requiring only O(n) operations, which makes them very efficient in terms of
computational speed and storage. These properties help to explain why wavelet bases
are excellent tools to address problems of data analysis. In the following section, we
present a brief review of handling the denoising problem within the wavelet domain,
emphasizing the Bayesian framework due to its central role in the estimation process of
this paper.

2.1 Bayesian wavelet denoising
Consider the nonparametric regression model

y = f + e, (2)

where y = (y1, . . . , yn)T is the vector of observed values, f = (f(1/n), . . . , f(n/n))T is
the function of interest applied to a grid of n equally spaced points, and e = (e1, . . . , en)T

is a vector of zero-mean random variables. For most applications, et’s are independent
and identically distributed normal random variables with zero mean and constant vari-
ance σ2. The goal of nonparametric regression is to recover the unknown function f
from the noisy observations y.

With that in mind, Donoho and Johnstone (1994) propose to transform the observa-
tions y to the wavelet domain, shrink the noisy wavelet coefficients or even equal them
to zero, based on some threshold rule, and then estimate f by applying the IDWT to
the regularized coefficients. This method is known in the literature as wavelet shinkage.
Therefore, let n be a power of two, n = 2J for some positive integer J . Then, we can
represent (2) in the wavelet domain as

d∗ = θ + ε, (3)

where d∗ = W y, θ = W f , and ε = W e, with W being the DWT matrix.
From a Bayesian perspective, the wavelet shrinkage technique consists in assigning a
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prior distribution to each wavelet coefficient of the unknown function. The idea is that,
by choosing a prior able to capture the sparseness associated with most wavelet decom-
positions, we can estimate θ, by imposing some Bayes rule on the resulting posterior
distribution of the wavelet coefficients. Then, applying the IDWT to the estimated θ
gives us an estimation of f .

One of the most appropriate prior choices for modeling wavelet coefficients are the spike
and slab priors. First consolidated within Bayesian variable selection methods (George
and McCulloch, 1993), these kinds of prior are a mixture between two components: one
that concentrates its mass at values close to zero or even in zero (Dirac delta) and another
whose mass is spread over a wide range of possible values for the unknown parameters.
Choosing this mixture as prior to the distribution of wavelet coefficients allows the first
component, known as spike, to capture the null wavelet coefficients, while the second
component, called slab, describes the coefficients associated with the unknown function.

A spike and slab prior frequently assigned to wavelet coefficients is the mixture between
a point mass at zero and a Gaussian distribution (see, e.g., Abramovich et al., 1998). In
this scenario, each detail wavelet coefficient is distributed following

πjN(0, υ2
j ) + (1− πj)δ0(θjk), (4)

k = 0, 1, . . . , 2j − 1, j = 0, 1, . . . , J − 1, with δ0 being a point mass at zero. The prior
specification is usually completed by assigning a diffuse prior to the scaling coefficient
at the coarsest level c00. Thus, the sample scaling coefficient obtained from the DWT
of the data estimates c00 (Abramovich et al., 1998).

Under the prior (4), the posterior distribution for each detail coefficient is also a
mixture between a Gaussian distribution and δ0, given by

θjk|d∗
jk ∼ πpostN

(
υ2

j

1 + υ2
j

d∗
jk,

υ2
j

1 + υ2
j

)
+ (1− πpost)δ0(θjk),

πpost =
πjgυ2

j
(d∗

jk)
πjgυ2

j
(d∗

jk) + (1− πj)ϕ(d∗
jk) ,

(5)

k = 0, 1, . . . , 2j−1, j = 0, 1, . . . , J−1, where ϕ denotes the standard normal density and
gυ2

j
denotes the convolution between the slab component in (4) (in this case N(0, υ2

j ))
and ϕ. Using γ to denote the slab density and ⋆ to denote the convolution operator, we
can write g = γ ⋆ ϕ. It should be stressed that, as shown by Abramovich et al. (1998),
using the posterior medians as the pointwise estimates of θ yields a thresholding rule.
In other words, we are able to equal the estimated noisy coefficients to zero.

In the Empirical Bayes thresholding method by Johnstone and Silverman (2005a;b),
the authors propose replacing the Gaussian component in (4) with heavy-tailed distribu-
tions, such as the Laplace density. This replacement intends to provide larger estimates
for the non-null coefficients than those obtained from Gaussian distributions. In this sce-
nario, considering the Laplace density as the slab component, the prior for each detail
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wavelet coefficient can be written as

πjγa(θjk) + (1− πj)δ0(θjk), (6)

k = 0, 1, . . . , 2j − 1, j = 0, 1, . . . , J − 1, where γa(x) denotes the Laplace density with
scale parameter a > 0, i.e.,

γa(x) = a

2 exp(−a|x|), x ∈ R. (7)

Johnstone and Silverman (2005a;b) thresholding method is called Empirical Bayes
because the hyperparameters πj and a are chosen empirically from the data, using a
marginal maximum likelihood approach. Thus, for each resolution level j of the wavelet
transform, the arguments πj and a that maximize the marginal log-likelihood are selected
and plugged back into the prior. Then, the estimation of θ is carried out with either
posterior medians, posterior means, or other estimators. Under these circumstances, the
posterior distribution is given by

θjk|djk ∼ πpostf1(θjk|djk) + (1− πpost)δ0(θjk),

πpost =
πjga(d∗

jk)
πjga(d∗

jk) + (1− πj)ϕ(d∗
jk) ,

(8)

k = 0, 1, . . . , 2j − 1, j = 0, 1, . . . , J − 1, with f1(θjk|djk) being the non-null mixture
component and ga = γa ⋆ ϕ. It can be shown that f1(θjk|djk) is a mixture of two
truncated normal distributions. Define fTN(x|µ, σ, α, β) to be the density of a truncated
normal distribution with location parameter µ, scale parameter σ, minimum value α and
maximum value β. Then, with a slight abuse of notation, we can write f1(θjk|djk) as

f1(θjk|djk) = η × fTN

(
θjk

∣∣∣∣djk

σj
− a, 1, 0,+∞

)

+ (1− η)× fTN

(
θjk

∣∣∣∣djk

σj
+ a, 1,−∞, 0

)
,

(9)

where

η =
exp (−adjk

σj
)Φ(djk

σj
− a)

exp (adjk

σj
)Φ̃(djk

σj
+ a) + exp (−adjk

σj
)Φ(djk

σj
− a)

,

with Φ denoting the standard normal cumulative function, and Φ̃ = 1− Φ.
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3 The model
Let y1, . . . yn be a random sample from the dynamic Gaussian mixture model

yt = (1− zt)x1t + ztx2t,

xkt|µk, τ
2
k ∼ N(µk, τ

−2
k ), k = 1, 2,

zt|αt ∼ Bern(αt), t = 1, . . . , n,
(10)

where zt’s are allocation variables that indicate to which mixture component the ob-
servations yt’s belong to. The zt have a Bernoulli distribution with parameter αt, the
mixture weight that has a dynamic behavior. In (10), the component parameters µk

and τ2
k , k = 1, 2, and the dynamic mixture weights αt, t = 1, . . . , n, are parameters to

be estimated.
Following Albert and Chib (1993), we introduce a data augmentation approach by

associating an auxiliary variable lt to each allocation variable zt. In the original work,
lt = xT

t θ + et and et ∼ N(0, 1), where xt is a vector of n known covariates and θ is
a vector of n unknown parameters. In greater detail, zt = 1, if lt > 0, and zt = 0,
otherwise. However, unlike in Albert and Chib (1993), where the design matrix X in
the probit regression corresponds to the covariates related to αt, in this paper, X = W T ,
where W is the DWT matrix. Thus, for every t = 1, . . . , n, we have

lt = xT
t θ + et,

et ∼ N(0, 1),
(11)

where xt corresponds to the t-th column of matrix W and θ = (c00, d00,d
T
1 , . . . ,d

T
J−1)T

is the vector of wavelet coefficients, such that n = 2J . Therefore, the dynamic mixture
weight αt, which is the probability of success of zt, is given by the binary regression
model,

αt = Φ(xT
t θ),

where Φ is the standard Gaussian cumulative function.

3.1 Bayesian estimation
In this paper, the estimation of both component parameters and dynamic mixture
weights is performed through a Gibbs sampling algorithm. By giving conjugate prior dis-
tributions to the parameters, we sample from their full conditional posterior distributions
and make inferences about the parameter values (e.g., point and credible estimates). In
this section, we first present the full conditional posterior distributions from which we
draw the parameters of (10). Then, we detail the MCMC algorithm built to perform
the sampling.

In (10), since we are mostly interested in the estimation of the mixture weights, we
assume that the sample y = (y1, . . . , yn)T is a time series whose dependence structure
is determined by the dynamic behavior of αt’s. In this setting, given the component
parameters and the dynamic mixture weights, the observations yt’s are conditionally
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independent, and we have p(y|µ, τ 2, z) = ∏n
t=1 p(yt|zt,µ, τ

2). Thus, the complete-data
likelihood function p(y|µ, τ 2, z) is given by

2∏
k=1

(
τ2

k

2π

)Tk/2

exp

−τ2
k

2
∑

t:zt=k−1
(yt − µk)2

,
where Tk = #{t : zt = k − 1, t = 1, 2, ..., n} and sk = ∑

t:zt=k−1
yt for k = 1, 2. For the

complete-data Bayesian estimation of µ = (µ1, µ2)T and τ 2 = (τ2
1 , τ

2
2 )T , p(y|µ, τ 2, z) is

combined with prior distributions to obtain the posteriors. A common issue that arises
in the Bayesian estimation of mixture models is the invariance of the mixture likelihood
function under the relabelling of the mixture components, known as label switching. To
address this problem in our approach, we adopt the simple constraint µ1 < µ2 and
reorder the pairs (µk, τ

2
k ) according to this restriction in the MCMC sampling scheme.

Following the usual practice of assigning independent prior distributions to the compo-
nent parameters (see Escobar and West, 1995, Richardson and Green, 2002), we assume
p(µ, τ 2

k ) = p(µ1)p(τ2
1 )p(µ2)p(τ2

2 ) and place the following priors on µk and τ2
k , k = 1, 2,

µk ∼ N(b0k, B0k), (12)
τ2

k ∼ Γ(c0k, C0k). (13)

For the sake of simplicity, hereafter we denote by [. . . ] the set of all remaining variables
to be considered for the posterior in use. Hence, under the conjugate priors (12) and
(13), one obtains the conditional posterior distributions for µk and τ2

k ,

µk|[. . . ] ∼ N(bk, Bk), (14)
τ2

k |[. . . ] ∼ Γ(ck, Ck), (15)

where

Bk = (B−1
0k + τ2

kTk)−1,

bk = Bk(τ2
k sk +B−1

0k b0k),
Ck = C0k +

∑
t:zt=k−1

(yt − µk)2

2 ,

ck = c0k + Tk

2 .

It is worth stressing that assuming the mixture weights to have a dynamic behavior does
not interfere with the full conditional posteriors of the component parameters, because
they are calculated as in the case of the ordinary (static) mixture model.

Given the observations y, the component parameters µ, τ 2 and α = (α1, . . . , αn)T ,
the zt’s are conditionally independent and p(zt = 1|y,µ, τ 2,α) ∝ αtfN (yt|µ2, τ

−2
2 ).

Thus, one can easily show that, for each t = 1, . . . , n, the full conditional posterior of zt
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is given by

zt|[. . . ] ∼ Bern(βt),

βt = αtfN (yt|µ2, τ
−2
2 )

αtfN (yt|µ2, τ
−2
2 ) + (1− αt)fN (yt|µ1, τ

−2
1 )

.
(16)

The latent variables introduced in (11) are unknown. However, given the vector of
wavelet coefficients θ and the allocation data z = (z1, . . . , zn)T , we can use the structure
of the MCMC algorithm to draw l1, . . . , ln from their posterior distribution, which is

lt|[. . . ] ∼ N(xT
t θ, 1) truncated at left by 0 if zt = 1,

lt|[. . . ] ∼ N(xT
t θ, 1) truncated at right by 0 if zt = 0.

(17)

For the vector of parameters θ, Albert and Chib (1993) derived the posterior distri-
bution of θ given z and l under diffuse and Gaussian priors. In this work, on the other
hand, θ is a vector of wavelet coefficients. As a result, we need a sparsity inducing prior
able to address the noise et in (11). Thus, following the discussion in Section 2.1, we
suggest using spike and slab priors for the components of vector θ. In this scenario, we
assume that the entries of θ are mutually independent. For t = 2j+k+1, k = 0, . . . , 2j−1
and j = 0, . . . , J − 1, this kind of prior can be specified as

θt ∼ (1− πj)δ0(·) + πjγ(·), (18)

where we consider γ to be either the Gaussian distribution or the Laplace distribution as
presented in (4) and in (6), respectively. Following Abramovich et al. (1998), the prior
specification is completed by assigning a diffuse prior on the scaling coefficient at the
coarsest level c00, in the first entry of vector θ.

Under (18), the posterior distribution of θt is given by

θt|[. . . ] ∼ (1− πpost)δ0(θt) + πpostf1(θt|wT
t l),

πpost = πjg(wT
t l)

πjg(wT
t l) + (1− πj)ϕ(wT

t l)
,

(19)

where wt is a column-vector corresponding to the t-th row of matrix W , f1(θt|wT
t l) is

the posterior non-null mixture component and g is the convolution between γ and the
standard normal distribution ϕ, g = γ ⋆ ϕ.

Regarding the hyperparameters of the spike and slab priors, that is, the sparsity pa-
rameter πj and the variance υ2

j (Gaussian component) or the scale parameter a (Laplace
component), we follow the approach in Johnstone and Silverman (2005a;b) and estimate
them jointly by maximizing the marginal log likelihood function, which is given by

2j+1∑
i=1+2j

log{(1− πj)ϕ(wT
i l) + πjg(wT

i l)}.
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These values are then used in (19) to sample the vector θ in the MCMC procedure,
which is detailed in Algorithm 1.

Algorithm 1 Gibbs sampling algorithm - Data augmentation
1: Choose number of iterations N .
2: Specify initial values for µ(0), τ 2(0)

, z(0) = (z(0)
1 , . . . , z

(0)
n )T and α(0).

3: for i← 1 to N do
4: Sample µ(i)

1 ∼ p(µ1|[. . . ]). ▷ See (14)
5: Sample τ2

1
(i) ∼ p(τ2

1 |[. . . ]). ▷ See (15)
6: Sample µ(i)

2 ∼ p(µ2|[. . . ]). ▷ See (14)
7: Sample τ2

2
(i) ∼ p(τ2

2 |[. . . ]). ▷ See (15)
8: if µ2 < µ1 then
9: Permute the labeling of pairs (µ(i)

k , τ2
k

(i)).
10: end if
11: Sample z(i)

t ∼ p(zt|[. . . ]), for t = 1, . . . , n. ▷ See (16)
12: Sample l(i)t ∼ p(lt|[. . . ]), for t = 1, . . . , n. ▷ See (17)
13: Select υ2

j / a and πj by marginal maximum likelihood.
14: Sample θ(i)

t ∼ p(θt|[. . . ]), for t = 1, . . . , n. ▷ See (19)
15: Calculate α(i) = Φ(W T θ). ▷ W is the matrix form of the DWT.
16: end for

As discussed in Section 2.1, using (18) as prior for θt allows the posterior medians to
act like thresholding rules, equating to zero noisy coefficients. Because of this, we elect
the absolute loss as the Bayes rule estimator for the numerical experiments performed
using the MCMC method described in Algorithm 1.

4 Numerical Experiments
In this section, we illustrate the estimation process discussed in the former sections by
conducting Monte Carlo experiments and applying it to a river quota data set to identify
flood regimes. In both studies, we implement Algorithm 1 running 6,000 iterations,
discarding the first 1,000 as burn-in and performing thinning every 5 draws. We consider
the following independent priors for the component parameters: µ1 ∼ N(q1, s

2), τ2
1 ∼

Γ(0.01, 0.01), µ2 ∼ N(q3, s
2), and τ2

2 ∼ Γ(0.01, 0.01), where q1 and q3 are the first
and third quartiles, respectively, of the observed data and s2 is the sample variance.
The purpose of using the data statistics is to reduce subjectivity, and, by adopting the
quartiles, to segregate the data into two groups.

Concerning the wavelet bases used to perform the transforms, we use the coiflet basis
with six vanishing moments. It is important to highlight that, according to other sim-
ulated studies, using other Daubechies wavelet bases provides similar results to those
achieved by this specific coiflet basis. We do not present these supplementary analyses
due to space limitations.
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4.1 Monte Carlo simulations
In our simulated investigations, we generate the artificial data sets by mixing two nor-
mally distributed samples of size 1,024, as defined in (10). In this case, we set the
following values for the component parameters: µ1 = 0, µ2 = 2, τ2

1 = 4 and τ2
2 = 4.

Concerning the dynamic mixture weights, we employ three different curves for αt: sinu-
soidal, blocks, and bumps, with the first being defined as αt = 0.4 cos(2π(t+ π)) + 0.5,
and the last two being rescaled test functions introduced by Donoho and Johnstone
(1994).

For all three behaviors of αt, we run 1,000 Monte Carlo replicates. Additionally, we
regard both spike and slab priors, discussed in Section 2.1, for the distribution of the
wavelet coefficients, namely: the spike and slab prior with Gaussian slab (SSG), and the
spike and slab prior with Laplace slab (SSL). Hereafter, we use the acronyms, SSG and
SSL, to refer to these priors.

As mentioned in Section 3.1, the point estimates are the medians of the MCMC
chains for each Monte Carlo replicate. To appraise the performance of the estimation as
a whole, we calculate the average of these point estimates and their 95% HPD intervals.
The results for the component parameters are presented in Table 1 and Table 2. It
is worth noting that the method, under both priors, performs satisfactorily, with some
estimates even coinciding with the parameter values, which, in turn, are encompassed
by the HPD intervals in every αt’s scenario.

Regarding the dynamic mixture weights, Figure 1 shows the results. For the sinusoidal
scenario, we see that the method, considering both SSG and SSL priors, succeeds in
mimicking the curve’s shapes. Although the bumps and blocks functions are less smooth
than the sinusoidal, the method still can satisfactorily estimate their curves. In fact, for
the bumps, the point estimates not only follow the sharp shape of the function but also
captures the null values correctly. For the blocks scenario, the estimates properly mimic
the discontinuity regions and the HPD intervals succeed at encompassing the entire
curve.

Table 1: Averages of the point estimates (95% HPD credible intervals) for the compo-
nent parameters µ1, τ

2
1 , µ2 and τ2

2 , based on 1,000 replications of data sets,
considering the SSG prior to θ.

αt’s curve µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
Sinusoidal 0.00 (-0.04;0.06) 4.00 (3.58;4.65) 2.00 (1.95;2.04) 4.00 (3.40;4.59)
Bumps 0.00 (-0.04;0.02) 4.01 (3.59;4.38) 1.90 (1.60;2.15) 3.62 (1.06;6.45)
Blocks 0.00 (-0.04;0.06) 4.06 (3.41;4.71) 2.00 (1.95;2.06) 4.00 (3.50;4.63)

4.2 Taquari quota data set
Part of the Taquari-Antas Hydrographic Basin (TAHB) in the state of Rio Grande do
Sul (south of Brazil), the Taquari River is located in the upper domain of the Baixo
Taquari-Antas Valley, a region that has been affected by an increasing number of ex-
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Table 2: Averages of the point estimates (95% HPD credible intervals) for the compo-
nent parameters µ1, τ

2
1 , µ2 and τ2

2 , based on 1,000 replications of data sets,
considering the SSL prior to θ.

αt’s curve µ1 = 0 τ2
1 = 4 µ2 = 2 τ2

2 = 4
Sinusoidal 0.00 (-0.05;0.05) 4.05 (3.50;4.62) 2.00 (1.95;2.04) 3.99 (3.49;4.50)
Bumps 0.00 (-0.04;0.03) 3.96 (3.34;4.53) 1.89 (1.43;2.22) 3.66 (0.71;6.56)
Blocks 0.02 (-0.15;0.05) 3.91 (3.40;5.60) 1.95 (1.28;2.07) 3.85 (0.82;4.76)

treme rainfall events in recent decades (Tognoli et al., 2021). As a result, on many
occasions, the rain excess is not drained efficiently and floods riverside regions. This
phenomenon is aggravated in urban areas, where the human occupation of floodplains
and the soil impermeability contribute to reducing the infiltration capacity and over-
loading the drainage system, leading to flood inundations (Kurek, 2016).

As reported by Oliveira et al. (2018), Encantado is one of the cities adjacent to the
course of the Taquari River most susceptible to fluvial inundations. The geomorpholog-
ical and topographical characteristics of Encantado’s land favor the water accumulation
and restrict its drainage (Oliveira et al., 2018). Furthermore, the urbanization of areas
with high flood vulnerability in this municipality contributes to intensifying the occur-
rence of flood inundations (Kurek, 2016).

Because of these circumstances, we propose implementing Algorithm 1 to a time series
of Taquari’s river quota to estimate the probability of an inundation regime in Encan-
tado’s urban areas. A river quota is the height of the water body, conventionally mea-
sured in centimeters (cm), on a given region of the riverbank. The data set corresponds
to the records of Encantado´s fluviometric station identified by the code 86720000. The
monthly time series of this station comes from the Hidroweb system, an integrated plat-
form of the National Water Resources Management System (SINGREH) available at
https://www.snirh.gov.br/hidroweb/serieshistoricas. Figure 2 shows a map of
Encantado, highlighting the station used in this study.

To validate the estimated probabilities, we use a report from the Brazilian Geological
Survey (CPRM) (Peixoto and Lamberty, 2019) that records the months when floods
occurred in Encantado. Therefore, we can see if the estimates of the mixture weight
properly describe the flood regimes, no inundation and inundation, for each month. It
is worth highlighting that since inundations can last for a couple of days or even more,
there are no records of the specific days when these events took place, only the months.
Because of that, and considering that the model is a mixture of two Gaussian distri-
butions, we use the monthly average of the Taquari quota to estimate the probability
associated with flood inundations. The period analyzed was from May 2004 to December
2014, consisting of 128 observations. Figure 3 presents this data set.

Table 3 shows the point estimates for the component parameters that describe each
flood regime. Note that the results provided by the method under the SSG prior are
similar to those achieved by it assigning the SSL prior to the distribution of wavelet
coefficients. Concerning the dynamic mixture weights, Figure 4 shows the estimates
considering both priors for θ. By analyzing the results, we see that using the SSL prior

12
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Figure 1: Estimates of the αt’s provided by SSG prior (right); and SSL prior (left).
The curves assigned to αt are, respectively: the sinusoidal (top), the bumps
(middle), and the blocks (bottom). The full lines correspond to the αt’s curve,
the dashed lines correspond to the average of the pointwise estimates and the
shaded areas correspond to the 95% HPD intervals.

allows estimating higher peaks for the probabilities related to inundation periods than
using the SSG prior. In fact, under a Bayes classifier, if the method employs the SSG
prior, it can detect neither the months when flood episodes were reported nor change
points ({t : αt = 0.5}).

In summary, the method provides results consistent with the data on flood inundations

13



51.89 51.88 51.87 51.86 51.85 51.84
Longitude (°)

29.26

29.25

29.24

29.23

29.22

La
tit

ud
e 

(°
)

© OpenStreetMap contributors

Station (ANA)
Taquari-Antas Hydrographic Basin (TAHB)

Encantado

Ta
qu

ar
i R

ive
r

Figure 2: Location map of the fluviometric station in the city of Encantado. In the
upper-right corner, the Taquari Antas Hydrographic Basin in Rio Grande do
Sul state, south of Brazil.

in Encantado available in other works and reports (see Peixoto and Lamberty, 2019,
Tognoli et al., 2021). In addition, choosing the Laplace density in the spike and slab
prior tends to provide dynamic weight estimates more capable of detecting floods.

Table 3: Medians (95% HPD credible intervals) for the component parameters µ1, τ
2
1 , µ2

and τ2
2 of the Taquari quota data set, based on the MCMC samples.

Parameters SSG prior SSL prior
µ1 227.07 (210.09; 242.89) 220.60 (206.25; 236.28)
τ2

1 2.30e-4 (1.54e-4; 3.15e-4) 2.58e-4 (1.77e-4; 3.45e-4)
µ2 405.01 (316.38; 483.35) 400.20 (355.72; 439.54)
τ2

2 1.14e-4 (2.56e-5; 3.42e-4) 1.04e-4 (3.65e-5; 1.85e-4)

5 Conclusion
This paper presents an approach to identify regime switches in bimodal data sets. We
use a two-component mixture model whose mixture weight varies according to some
index, like time. This adaptation makes the model more flexible and adaptive to a
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Figure 3: Monthly average of Taquari’s river quota (cm) from May 2004 to December
2014.
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Figure 4: Estimates of the αt’s of the Taquari quota data provided by SSG prior (right);
and SSL prior (left). The full (black) lines correspond to the point estimates
(medians) and the dashed (blue) lines mark the months when flood inundations
were reported by Peixoto and Lamberty (2019).

broader range of clustering and classification problems. Furthermore, we use wavelet
bases to estimate the dynamic behavior of the mixture weight due to their excellent
properties when it comes to curves’ estimation. However, unlike other approaches in
the literature that also rely on wavelets (see Montoril et al., 2019), here we consider a
Bayesian framework and propose estimating the dynamic weights and the component
parameters jointly through an efficient Gibbs sampling algorithm.

We analyze the performance of this MCMC algorithm by conducting Monte Carlo
experiments and illustrate the approach with an application to a river quota data set.
Results from the simulations show that the method provides good estimates for the
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component parameters and the dynamic weights even when the function behind αt’s
behavior is rougher. Additionally, the estimation performance using SSG prior is similar
to the performance achieved when SSL prior is employed. The same does not apply to
the results obtained in the river quota data set. For this application, we notice that
implementing the method under the SSG prior to the wavelet coefficients yields smaller
values for the probabilities associated with inundations occurrence than the estimates
provided by using the SSL prior. This is likely because the Gaussian distribution does
not have heavy tails, unlike the Laplace distribution.

References
Abramovich, F., Bailey, T. C., and Sapatinas, T. (2000). Wavelet analysis and its statis-

tical applications. Journal of the Royal Statistical Society: Series D (The Statistician),
49(1):1–29.

Abramovich, F., Sapatinas, T., and Silverman, B. W. (1998). Wavelet thresholding via
a bayesian approach. Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 60(4):725–749.

Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous
response data. Journal of the American Statistical Association, 88(422):669–679.

Bordes, L., Delmas, C., and Vandekerkhove, P. (2006). Semiparametric estimation of a
two-component mixture model where one component is known. Scandinavian Journal
of Statistics, 33(4):733–752.

Cai, T. and Brown, L. D. (1999). Wavelet estimation for samples with random uniform
design. Statistics & Probability Letters, 42(3):313–321.

Donoho, D. L. (1993a). Nonlinear wavelet methods for recovery of signals, densities,
and spectra from indirect and noisy data. In In Proceedings of Symposia in Applied
Mathematics, pages 173–205. American Mathematical Society.

Donoho, D. L. (1993b). Unconditional bases are optimal bases for data compression and
for statistical estimation. Applied and Computational Harmonic Analysis, 1(1):100–
115.

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1996). Density
estimation by wavelet thresholding. The Annals of Statistics, 24(2):508–539.

Donoho, D. L. and Johnstone, J. M. (1994). Ideal spatial adaptation by wavelet shrink-
age. Biometrika, 81(3):425–455.

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using
mixtures. Journal of the American Statistical Association, 90(430):577–588.

16



George, E. I. and McCulloch, R. E. (1993). Variable selection via gibbs sampling. Journal
of the American Statistical Association, 88(423):881–889.

Hall, P. and Patil, P. (1995). Formulae for mean integrated squared error of nonlinear
wavelet-based density estimators. The Annals of Statistics, 23(3):905–928.

Hall, P. and Zhou, X.-H. (2003). Nonparametric estimation of component distributions
in a multivariate mixture. The Annals of Statistics, 31(1):201–224.
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