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Abstract

This text evaluates the empirical models of the Term Structure of Interest Rates, comparing the

resulting estimates regarding goodness-of-fit, robustness to outliers, and smoothness. In addition

to the descriptive statistics on these metrics, the Friedman test and the multiple comparison pro-

cedure were used to assess the statistical significance of differences among the models. Literature

usually considers nonparametric or spline models in addition to the parsimonious function mod-

els, derived from Nelson and Siegel (1987)’s seminal work. We expand this set of models by

considering LOESS and two Kernel regression specifications. For the evaluation, we used data

from Brazilian interest rate derivatives over 1313 working days. Considering the surveyed litera-

ture, applying LOESS and Kernel regression and the use of multiple comparison procedure in the

context of yield curve estimation are novel contributions.
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1 Introduction

The term structure of interest rates, which depicts the relationship between time to maturity and

the level of interest rates paid by a bond, is a fundamental concept with extensive applications in

finance and macroeconomics. Whether pricing fixed-income debt instruments or extracting insights

into inflation and activity level expectations embedded in the yield curve, the term structure plays a

pivotal role.

Most uses of the term structure depend on it being fully observable, which does not happen.

Therefore, estimating term structure using the available data points is necessary. The yield curve is

expected to exhibit smoothness as it transitions between known data points and extrapolates beyond

the last known maturity to estimate long-term interest rates. A yield curve estimate should ideally

exhibit key economic characteristics, including non-negativity of interest rates and an upper limit on

long-term rates.

The goal of this text is to compare various parametric and nonparametric techniques using re-

cent Brazilian data, akin to the approaches taken by Ioannides (2003) for British data and Nymand-

Andersen (2018) for European data. Previous studies for Brazil, such as those by Varga (2009) and

Caldeira (2011), are approximately a decade old. Brazil’s fiscal and monetary developments over

this decade suggest that an up-to-date evaluation may provide better guidance. Additionally, these

previous studies encompass different models than those examined here.

The estimation techniques are implemented using Brazilian data from January 2018 to April 2023.

This timeframe encompasses diverse economic scenarios that give rise to the various yield curve

forms reported in the literature. The comparison of these techniques considers their goodness-of-fit,

robustness to outliers, and smoothness. The choice of an estimation technique may vary depending

on the application’s specific requirements. For instance, derivatives pricing may necessitate capturing

even minor fluctuations in term structures, while macroeconomists may prefer a smoother curve,

primarily concerned with its overall shape.

Three interrelated concepts – yield-to-maturity, discount function, and forward rates – allow us to

describe the term structure. Since the data used in this text is already in a yield-to-maturity format,

this concept forms the foundation for all modelling exercises.

This text is structured into five sections. The following section presents spline and function-based

techniques, referring to their use in the yield curve estimation literature. It also presents the Kernel

regression and LOESS models, which, to our knowledge, have not been applied to yield curve esti-

mation so far. The third section introduces the criteria employed to compare the models, considering
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dimensions like in- and out-of-sample goodness-of-fit, robustness, and smoothness. Furthermore, it

presents formal tests to compare model performance. Section four reports the data employed and

outlines the estimation procedures for implementing the presented models. Section five unveils the

results, and the final section concludes this text.

2 Background and Related Literature

Estimating the yield curve entails interpolating between known maturities and extrapolating the yield

level beyond the final maturity. Since the seminal work of McCulloch (1971, 1975), the nonparamet-

ric approach has employed splines as a means to approximate the yield curve.1 Following a differ-

ent approach, a branch of parsimonious parametric models originated with the Nelson-Siegel model

(Nelson and Siegel, 1987). These parametric models have undergone further refinement, resulting in

occasionally more intricate specifications.

This section presents the statistical formulation of those models and the estimation strategies used

in their implementation. Furthermore, we also consider how nonparametric regression (kernel and

local regression) performs in the yield curve estimation. While nonparametric regression is not widely

used in this context, there is no reason for not considering these models since their goal is aligned

with the yield curve estimation.

2.1 Spline based models

A spline is a piecewise polynomial, a function formed by joining different – yet of a specific degree

– polynomials at fixed points of its domain, the knots.

The sequence of points ξ = {k0, k1, . . . , kK}, which partitions a given interval [a, b] ⊂ R into

subintervals is called a knots sequence (or a knot set), where a = k0 < k1 < . . . < kK = b. The points

k1, . . ., kK−1 are called interior knots, and the points k0 and kK boundary knots, (Hämmerlin and

Hoffman, 1991, p. 229-230). The spline corresponds to the polynomials fitted to the observations be-

tween two knots in each segment. And the smooth connection between different segments is ensured

by imposing on the polynomials certain differentiability conditions.

A first approach to model a nonlinear relationship can be to approximate it by a set of differ-

1It is worth noting that McCulloch originally estimated the discount curve, and depending on the dataset, it may be

more tractable to estimate either the discount or forward curves, with the yield-to-maturity curve subsequently derived

from these alternatives.
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ent linear relationships over different ranges of the independent variable. Hence, what is known as

piecewise linear regression. Firstly in an ad hoc manner, one can set breakpoints (knots), over the

predictor’s relevant range, positioning them where the function appears to change inclination. After

that, it is possible to define indicator functions from these knots.

Let say that over R+
0 one can identify that the yield curve increases from 0 to k1, changes its

inclination at k1 and flattens after k3. From the knots definition, it is possible to create the variables:

1[k1,k2[(m) and 1[k2,∞[(m). Then the following regression can be estimated:

yt(m) = β0 + β1m+ β2(m− k1)1[k1,k2[(m) + β3(m− k2)1[k2,∞[(m) + ϵt,m. (1)

A more direct approach to model a nonlinear relationship is to use a polynomial regression since

a high-degree polynomial can produce complex nonlinear relationships2.

According to Bolder and Gusba (2002, 3-4), considering N+1 distinct points {(x0, f(x0)), (x1, f(x1)),

. . ., (xN+1, f(xN+1))} and defining PN as the set of all polynomials of degree at most N, there is a

unique polynomial p ∈ PN such that p(xi) = f(xi). Thus one can fit N + 1 points uniquely with a

polynomial of degree N .

Such polynomial regression of degree N can be written as equation (2) and estimated by least

squares as an usual linear model, (James et al., 2021, p. 290):

yt(m) = β0 + β1m+ β2m
2 + β3m

3 + . . .+ βNm
N + ϵt,m. (2)

Determining the coefficients β by least squares depends on inverting the Vandermonde matrix,

which is plagued by numerical problems (Bolder and Gusba, 2002, p. 4-6; Howard, 2017, p. 97-99).

Besides the computational problems, a higher degree polynomial regression has other issues. For

example, although the curve will lie close to the sample points, it may fluctuate remarkably between

them, which is known as Runge’s phenomenon. Additionally, the curve can become too flexible and

assume unexpected forms near the independent variable (m) boundaries. For these reasons, usually,

one considers a polynomial of degree 3 or 4 at the maximum.

Approaching the term structure modelling problem from the discount curve perspective, McCul-

loch (1971, p.28-29) pointed out that because market participants give more weight to minor yield

differences in the near future than in the far future, the term structure will have a more complex form

at shorter maturities than at the long end. Thus, a low-degree polynomial will fit the data at longer

2This approach follows from the Weierstrass Approximation Theorem that states that for a given degree of error ϵ any

continuous function can be approximated by a polynomial with degree higher enough, Estep (2002, p. 509-510).
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maturities but will not conform with observations at shorter maturities. According to McCulloch,

only an "extremely high-order polynomial" would fit both the long and short ends.

Chambers et al. (1984) assumed that term structure in its yield-to-maturity form can be ex-

pressed as a polynomial yt(m) =
∑N

n=1 βt,nm
n−1, like equation (2) above. However, this au-

thors could not estimate this specification directly because he did not observe the interest rates

in the yield-to-maturity form. His problem was similar to McCulloch’s, his data originated from

coupon bond prices, and he needed to estimate discount functions for coupon payments. Consider-

ing continuously compounded interest rates, his assumption in terms of discount function becomes

dt(m) = e−yt(m)×m = e−
∑N

n=1 βt,nmn−1 . Then he estimated Pt =
∑T

t=1 cte
−

∑N
n=1 βt,n(T−t)n−1 , where

Pt and ct are the bond price and the coupon payment at moment t respectively, by nonlinear least

squares.

Chambers et al. consider polynomials from degree one to five and conclude that third or fourth-

degree polynomials explain much of the variation. Their residual analysis supports McCulloch’s

statement about the curve’s short-end complexity since they observe a lack of fit at shorter maturities.

Even though his data complicated their estimation procedure, if they had yield-to-maturity data, they

could have adopted a specification as equation (2) and used ordinary least squares.

The approaches presented above are special cases of the linear basis expansion. The basis corre-

sponds to the original predictors (the X matrix), whereas its expansion corresponds to transformations

of the original xi variables by the basis functions b1(.), b2(.), . . ., bK(.). These functions are known

and fixed and their use result in more predictors (i.e. the original X matrix augmented with new

columns created by the transformations).

For the linear interpolation, the basis function is the indicator function, bj(mi) = 1[kj ,kj+1[(mi),

while for the polynomial regression, the basis function corresponds to bj(mi) = mj
i . Using linear

basis expansions increases the dimensionality of the predictor’s matrix (X), producing a more flexible

regression model, (Berk, 2016, p. 42). Therefore, instead of fitting the model on the original predictors

one estimates a linear model of yi against b1(mi), b2(mi), . . ., bK(mi):

yi = β0 + β1b1(mi) + β2b2(mi) + β3b2(mi) + . . .+ βKbK(mi) + ϵi. (3)

Splines are constructed defining basis functions that represent the polynomial and the knots over

the predictor’s relevant range. A common choice for the basis functions is considering cubic splines

(i.e. a spline of degree 3 and order 4). As in linear interpolation, K knots divide the relevant predictor’s

range. Then, one can fit a polynomial function, as equation (4), using least squares for each data subset
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delimited by the knots:

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ϵi xi ∈ [kj, kj+1[. (4)

However, the cubic spline imposes some constraints on the polynomials to obtain a smooth func-

tion: continuity, and continuity of the first and second derivatives. Continuity means that the function

should assume the same value when approaching a knot from either side. The same should happen

when evaluating the first and second derivatives3.

One way of including those restrictions into equation (4) is to add to the basis of a cubic polyno-

mial (b1(m) = 1, b2(m) = m, b3(m) = m2, b4(m) = m3) a truncated power basis with a function for

each knot, (James et al., 2021, p. 297). The truncated power basis functions have the form:

(m− k)r+ ≡ [max{m− k, 0}]r r = 1, 2, 3, . . . or alternatively

b(mi, kj) = (m− k)r+ = (mi − kj)
r1>0(mi − kj) =

(mi − kj)
r if mi > kj

0 if mi ≤ kj

.

Considering the definition above, the cubic spline regression equation for K knots can be written

as:

yi = β0 + β1mi + β2m
2
i + β3m

3
i +

K∑
j=1

θj(m− k)r+ + ϵi (5)

= β0b1(X) + β1b2(X) + β2b3(X) + β3b4(X) +
K∑
j=1

θjb(mi, kj) + ϵi. (6)

Hence, a basis representing a cubic spline with three knots (ξ = {k1, k2, k3}, with k1 < k2 < k3)

would be composed of seven basis functions: b1(X) = 1, b2(X) = X , b3(X) = X2, b4(X) = X3,

bk1(X) = (m− k1)
3
+, bk2(X) = (m− k2)

3
+, bk3(X) = (m− k3)

3
+. Equation (5) can be estimated by

least squares. Considering K = 3, three knots divide the predictor’s range into four subsets.

Similarly to the polynomial regression, estimated values beyond the predictors’ boundaries may

behave unexpectedly. For instance, considering the yield curve, this behaviour could be a steep incli-

nation (positive or negative) after the final maturity observed. This lack of stability at the end of the

maturity range is corrected by imposing an additional constraint: linearity after the last observation.

When the model includes the linearity constraint (second derivative equals zero at the terminal points,

f ′′(x1) = f ′′(xN) = 0), it is called natural cubic spline. As pointed out by Boor (2001, 44), this

restriction is somewhat arbitrary and produces increased errors near the ends.
3There are some alternatives, for instance, the cubic Hermite and the cubic Bessel, whose constraint is continuity of

the first derivative, (Boor, 2001, 39-41).
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The works McCulloch (1971, 1975) pioneered the use of splines for estimating the discount curve

and, from this function, obtaining the yield curve and forward interest rates. While McCulloch (1971)

employed quadratic splines, McCulloch (1975) used natural cubic splines. Because the interest rates

considered in the term structure correspond to the zero-coupon bonds yield-to-maturity, and this kind

of bond is scarce in most maturities, McCulloch was initially concerned with extracting information

from coupon bonds, i.e. bonds that regularly pay interest before maturity, equivalent to that from zero-

coupon bonds. For that, he considered a coupon bond as a portfolio in which each coupon payment

is a zero-coupon bond. In this perspective, the discount function estimate was the key to disentangle

each synthetic zero-coupon bond from the original coupon bond price.

McCulloch (1971) expressed the problem of choosing the appropriate number of knots and their

positions regarding the bias-variance trade-off4 even though he did not use this terminology. McCul-

loch suggested that one should choose the number of knots to minimise the unbiased estimator of

the variance. However, because this is a computationally expensive method with more than one local

minimum, this author suggests determining the number of knots (K) as a function of the sample size

(n) considering the closest integer to K(n) = n1/2. Then the knots should be placed such that each

segment has a similar number of observations (i.e. rounding n/K(n)).

An essential feature of the methods discussed so far is that the quantity and position of the knots

are determined before the estimation. This is a characteristic of regression splines, and one can ei-

ther follow McCulloch’s rule or define the number and placement of the knots by comparing different

alternatives as a model selection problem. However, this is cumbersome due to many possible can-

didates, (Berk, 2016, 64-65). The number and position of knots directly influence the final estimate,

with smoothness being a function of the number of interior knots for the cubic splines. Smoothing

splines present an alternative approach that incorporates the determination of the knot set into the

estimation process. This can be achieved using the maximal set of knots and penalised regression.

To restate the problem, our objective is to achieve the best possible approximation of the underly-

ing unknown function yt(m) using a spline ft(m):

yt(mi) = ft(mi) + ϵt,i ϵt,i
iid∼ N(0, σ2).

However, including all data points as knots and simply minimising RSS =
∑N

i=1(yi − ft(mi))
2

will interpolate all data points, and ft(m) will not be smooth. Therefore, regularisation is necessary

4"If k is too low, we will not be able to fit the discount function closely when it takes on difficult shapes. If it is too

high, the discount function may conform too closely to outliers instead of being smooth. If k is as high as n, there will be

no way to estimate σ2.", McCulloch (1971, p. 31).
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to balance fit quality and smoothness. This can be done considering equation (7), in which λ ≥ 0 is a

tuning parameter

RSS(ft, λt) =
N∑
i=1

[yi − ft(mi)]
2 + λt

∫
[f ′′

t (mi)]
2
dt. (7)

While including a knot will improve the fit, reducing the first term on the right-hand side, it will

also increase the penalty term, the second term on the right-hand side. The penalty term is the sum of

the ft(.) second derivative at each data point and corresponds to a measure of the roughness of ft(.).

James et al. (2021, p. 302) point out that the minimisation of equation (7) results in a shrunken

version of the natural cubic spline. The tuning parameter λt adjusts the bias-variance trade-off. If

λt = 0, the penalty term will not affect the estimation, interpolating all points. On the other hand, a

high value for λt will result in an ordinary linear regression. Therefore smoothing splines replace the

knots’ set choice by the tuning parameter determination.

One way to determine λt using the data is to minimise the cross-validated RSS, James et al. (2021,

p. 302). This option can balance bias and variance on the final estimate, (Berk, 2016, p. 83-84).

Fisher et al. (1995) applied the smoothing splines technique to model the discount curve and

forward rate function, considering cubic B-spline basis. Furthermore, they considered generalised

cross-validation (GCV)5 to determine the appropriate tuning parameter. To evaluate the performance,

they proceeded with Monte Carlo simulations, simulating the term structure of the interest rates and

then interpolating the data with smoothing splines; secondly, they applied it to seven years of US

data. Trying to recover the "true" parameters from the simulated term structure the authors report

that the selection of λ by GCV resulted in the least biased and most accurate estimates. However,

when considering actual data this procedure was not so accurate but the estimates were coherent with

financial theory.

Bliss (1996) noticed that the Fisher et al. (1995) method tends to have a worse performance at the

short end. As highlighted before, the term structure usually has a more complex shape at the short

end. Furthermore, the short end tends to be more populated by data points than the long end.

Waggoner (1997) proposed a way to handle these characteristics within the smoothing splines

framework. Since the problem with the yield curve demands more flexibility at the short end than at

the long end, this author proposed a variable tuning parameter λ(m). Instead of selecting the tuning

5Cross-validation is a methodology that entails partitioning the given dataset into training and validation sets to assess

the model’s performance in an out-of-sample context, specifically regarding prediction error. Generalized cross-validation

approximates the "leave-one-out" cross-validation approach, furnishing a criterion to appraise model performance by

striking a balance between data fitting and model complexity.
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parameter by GCV, it follows an ad hoc step function of maturity that is small for shorter maturities

and large for long maturities. Because Waggoner was concerned with the US term structure, he

defined the steps at maturities associated with different bonds traded in that market (bills, notes, and

bonds). This specification is shown in equation (9); notice that maturity is measured in years in this

case:

RSS(f, λ) =
M∑
i=1

[yi − f(mi)]
2 + λ(m)

∫
[f ′′(m)]

2
dt (8)

λ(m) =


0.1 0 ≤ m ≤ 1

100 1 ≤ m ≤ 10

100.000 0 ≤ 10 ≤ m

. (9)

To evaluate his method, Waggoner (1997) sets his results against those obtained with McCulloch and

Fisher et al. techniques. He considered two measures of goodness-of-fit (weighted mean absolute

error and hit rate) and a smoothness measure. Considering in-sample goodness-of-fit, the variable

tuning parameter method at shorter maturities performed better than the regular smoothing splines

(Fisher et al. specification) and slightly better than McCulloch’s natural cubic spline. On the other

hand, Fisher et al. specification performed better at longer maturities.

Anderson and Sleath (2001) put forward a different specification for the variable smoothing spline.

Because these authors modelled the UK term structure, the tuning parameter definition in steps

adopted by Waggoner did not apply. British bond characteristics did not lead to a natural division

of the maturity range. These authors then considered a tuning parameter which varies continuously

with maturity.

2.2 Nonparametric regression models

Nonparametric regression occupies an intermediate position in the spectrum of modelling techniques,

situating itself between the spline models discussed in the previous section and parametric models.

The latter typically rely on specific formulae to describe the underlying data generating process. Like

spline models, nonparametric regression models hinge upon the critical balance between achieving a

good fit (minimising bias) and maintaining smoothness (reducing variance). As James et al. (2021,

p.304-306) pointed out, local regression is similar to splines but allows regions used in the estimation

to overlap. The choice of the bandwidth, or the span, used for smoothing is pivotal in this regard, as

it can lead to models that either connect all observations (overfitting the data) or converge towards
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linear regression. While the bandwidth may be set based on some prior knowledge about the data, it

can also be determined using cross-validation.

This subsection presents two conventional approaches to nonparametric regression: kernel regres-

sion and local regression. Although these methods have not seen widespread adoption in the yield

curve estimation literature, there is no intrinsic reason not to consider their application. Nonpara-

metric regression techniques are aptly described as smoothers because they aim to approximate an

unknown function using a smooth curve, aligning closely with the central objective of yield curve

estimation.

2.2.1 Kernel regression

In contrast to spline models that partition the domain and estimate a polynomial for each segment,

nonparametric regression employs a sliding window over the domain to estimate local trends. At each

point (x0) in the sample, i.e. for each window definition, it assigns different weights for the remainder

of observations (xi, i ̸= 0). These weights are determined by a weighting function known as the

kernel, Kλ(x0, xi).

The parameter λ defines the bandwidth around x0 considered in the estimates.6 It specifies how

local the estimates will be. Observations within the bandwidth will be weighted according to their

distance to x0, while observations outside the bandwidth will have a weight of zero.

The problem of yield curve estimation can be stated as a nonparametric regression model, such as

Y = g(m) + ϵ, where the pairs of interest and maturity (Yi, Mi) are random variables. Assuming g(.)

is a smooth function, which is appropriate for the yield curve, it can be nonparametrically estimated

using kernel methods. In this case g(m) would be obtained as the conditional mean of Y given

M = m:

g(m) = E(Y |M = m) =

∫
yfY |M=m(y)dy =

∫
yfM,Y (m, y)dy

fM(m)
. (10)

The problem amounts to the task of obtaining estimates for the joint probability density func-

tion, fM,Y (m, y), and the marginal probability density function of M , fM(m), all without making

any assumptions about their specific functional forms. Considering the empirical CDF, F̂n(m) =

6In addition to defining the bandwidth, a statistically appropriate kernel should exhibit the following characteristics: it

must be a nonnegative, bounded function that is normalised (with
∫
K(v)dv = 1), symmetric (K(v) = K(−v)), and its

use should not reduce a random variable to a constant (with
∫
v2K(v)dv = κ2 > 0), see Li and Racine (2007, p. 9).
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1
n

∑N
i=1 1mi<m(mi), these densities can be estimated as

f̂M(m) =
F̂n(m+ h)− F̂n(m− h)

2h
=

∑N
i=1 1[m−h,m+h](mi)

2hn
(11)

=
1

nh

N∑
i=1

1[m−h,m+h](mi)

2︸ ︷︷ ︸
(I)

. (12)

The term (I) in equation (12) functions as a kernel (uniform rectangular window). It sets the

bandwidth centred around the value m with a width of 2h and assigns a constant weight of 1/2 to all

observations within this bandwidth. However, an alternative approach involves using a kernel with

weights that gradually decrease as you move further from the centre. This approach leads to what

is known as the Nadaraya-Watson Kernel Regression, or Local Constant Kernel Estimation, (Li and

Racine, 2007, p. 60-64):

ĝ(m) =

∫
yfX,Y (x, y)dy

fX(x)
=

∑N
i=1 yiKλ

(
mi−m

λ

)∑N
i=1 Kλ

(
mi−m

λ

) . (13)

Several kernel functions can be employed with the Nadaraya-Watson estimator, including the

Epanechnikov (K(v) = 3
4
(1 − v2)) , Gaussian (K(v) = ϕ(v) = 1√

2π
e−

1
2
v2), and tricube (K(v) =

(1 − |v|3)3) kernels, among others. Both the definition of the bandwidth and the selection of the

kernel function have a significant impact on the outcomes of these estimates.

2.2.2 Local regression (LOESS)

The Nadaraya-Watson kernel estimator exhibits bias at the boundaries. Moreover, estimates may

be biased at interior points when the observations are not uniformly distributed across the domain.

The bandwidth is notably asymmetric at the boundaries, leading to bias. At interior points, the bias

arises from the disproportionate entry and exit of observations within the bandwidth. One approach

to mitigate this bias is to locally fit a linear regression instead of relying on a local average.

The LOcally WEighted Scatterplot Smoothing (Lowess), also referred to as LOcal regrESSion

(LOESS), was introduced by Cleveland (1979) as a technique for smoothing scatterplots. This method

involves the local estimation of a polynomial regression (linear, quadratic, or cubic) for each data

point in the sample. Unlike kernel regression, which uses a fixed distance (λ) to define the bandwidth,

LOESS considers a fixed proportion of points to compute local regressions (i.e. the bandwidth may

change its size for each observation). The span (s = k/n) determines which points will be used in

each step, and weights are assigned based on a kernel function. The span serves to balance the trade-

off between bias and variance in a manner akin to how the number of knots operates in regression

splines or how the smoothing parameter functions in smoothing splines, (Berk, 2016, p. 89).
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Considering a linear specification, the LOESS implementation would follow algorithm below.

Local regression algorithm

• For each mi following i = 1, . . . , N

1. Select s = (k/n)% of the sample, which corresponds to the mj points which are nearest to mi.

2. Assign a weight K(mi,mj) to each of these points such that the nearest point has the higher weight,

while the farthest has weight zero. Assign weight zero to points outside the subsample.

3. Estimate a weighted least squares regression considering the weights assigned in step 2:

min
β0,β1

N∑
j=1

K(mi,mj)(yj − β0 − β1xj)
2

4. Get the estimate: m̂i = β̂0 + β̂1xi.

2.3 Nelson-Siegel family models

The polynomial regression discussed previously seeks to model the entire maturity domain using a

single function. However, obtaining a satisfactory fit with polynomial regression often requires a

highly complex model. This complexity can be computationally expensive to estimate and may entail

undesirable properties. In contrast, spline models, while adept at providing a good data fit, entail

estimating a series of regressions across the domain. These models yield parameter sets that are not

easily summarised or interpreted in economic terms.

This section introduces a family of models, beginning with the specification by Nelson and Siegel

(1987), designed to represent the term structure of interest rates with a parsimonious function in terms

of parameters. These models can effectively depict various yield curve shapes. Furthermore, they al-

low for a direct association of a small number of parameters with underlying economic features,

facilitating the interpretation of their behaviour. These features have contributed to the widespread

popularity of these models among central banks worldwide. According to a survey by BIS (2005),

most central banks utilise Nelson-Siegel’s or Svensson’s specifications. Additionally, a more recent

account by Nymand-Andersen (2018) notes that the European Central Bank also employs these spec-

ifications.
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2.3.1 The Nelson-Siegel model

The model proposed by Nelson and Siegel (1987) is rooted in the expectation theory of the term

structure of interest rates. This theory motivates the exploration of functions that could serve as

solutions to differential and difference equations, generating various yield curve shapes. Thus, these

authors introduced a function, presented in Equation (14), which comprises a constant term and a

Laguerre function, which is characterised by a polynomial multiplied by an exponential decay term,

as follows7:

yt(m) = β0,t + β1,t

(
1− e−m/λt

m/λt

)
+ β2,t

(
1− e−m/λt

m/λt

− e−m/λt

)
+ ϵm,t. (14)

In Equation (14), three factors (β0,t, β1,t, β2,t) and their factor loadings (the exponential decay

terms) contribute to the model’s formulation. The factors and loadings in this equation play distinct

roles in shaping the yield curve. Specifically:

• Factor β0,t is associated with the long-run interest rate and controls the overall level of the

function.

• Factor β1,t is linked to the short-run interest rate and governs the function’s inclination. The

factor loading makes it most influential when m = 0, decaying monotonically afterwards.

• Factor β2,t shapes medium-term interest rates and controls the curvature of the function. The

exponential decay parameter (λt) determines the maturity at which it exerts the most influence.

The parameter λt regulates the decay speed for the factor loadings (for β1,t and β2,t). It’s important

to note that λt is not scale-free, and its value depends on how maturity is measured (e.g., days, months,

or years).

According to Nelson and Siegel (1987, p. 475), the theoretical motivation suggests considering

different decay parameters for short- and medium-term factors. However, their analysis argues that

including a second decay factor in Equation (14) results in over-parametrisation without substantial

gains in model fit.

Treating λt as an unknown parameter alongside the factors (βs) implies that Equation (14) is

nonlinear, necessitating estimation through nonlinear least squares. Nelson and Siegel (1987) recom-

mends exploring a grid of λt values and employing ordinary least squares to determine the factors.

The optimal λt value is then chosen based on the best-fitting estimate among those in the grid.
7The specification presented in Equation (14) refers to the yield-to-maturity TSIR representation; it is possible to

obtain equivalent specifications for the other forms.
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In their original analysis, Nelson and Siegel (1987, p. 480) observed that despite their specifi-

cation yielding a good fit across various samples, the resulting fitted curve generated non-random

residuals displaying dependence on maturity. Consequently, they opted not to investigate the statis-

tical significance of coefficient estimates. Subsequent literature has similarly overlooked this aspect,

concentrating primarily on evaluating the model’s fit.

Estimating Nelson-Siegel parameters using nonlinear or ordinary least squares methods presents

several challenges, as highlighted by Gilli et al. (2010). Two primary issues emerge: the collinearity

problem and the optimisation problem. The former is attributed to the calculation of factor loadings,

and the latter is inherent in the nature of the optimisation problem.

Specifically, when applying the factor loadings formulae, numerous combinations of maturities

and decay parameter values (λt) can lead to pronounced collinearity among the loading factors. While

the correlation of factor loadings does not directly influence the fit of the linear regression model, it

does impact parameter estimates. As emphasized by Greene (2003, p. 56-57), the effects of multi-

collinearity include minor fluctuations in the data leading to substantial variations in the estimates,

individual coefficients potentially having high standard errors (resulting in low significance) even

when all coefficients are jointly significant, and the possibility of coefficient estimates exhibiting an

inverted signal concerning the underlying theory, coupled with inaccuracies in their magnitude.

The instability in parameter estimates poses a significant challenge when attempting to align these

estimates with economic concepts. For instance, associating the short-run interest with the sum of

two coefficients, expressed as y(0) = β1,t + β2,t, becomes problematic in the presence of inaccurate

estimates. Furthermore, in the context of the dynamic Nelson-Siegel model proposed by Diebold and

Li, it seems improbable for substantial variations to occur across consecutive days in the sample, such

as β1,t+1 differing significantly from β1,t.

Despite the acknowledged collinearity problem, literature suggests that estimating Equation 14

using OLS, i.e., by fixing λt = λ, results in more stable trajectories for the coefficients over time.

To address the collinearity problem, Annaert et al. (2013) introduced a three-step estimation pro-

cedure. This approach involves determining the decay factor through a grid search. In cases where the

resulting loading factors exhibit high correlation, the authors employ a ridge regression approach to fit

Equation 14. By employing this procedure, they observed more stable time paths for the coefficients

across the days in their sample.

The optimisation problem manifests itself when estimating all parameters through nonlinear least

squares. Minimising the sum of squared residuals using Equation 14 proves to be an ill-conditioned

14
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problem – it lacks convexity, and the surface of the sum of squared residuals exhibits multiple local

minima. Furthermore, the optimisation needs to account for constraints on the parameters in order

that the estimates maintain economic meaning. While it is possible to achieve a good fit with NLS,

the instability of parameter estimates persists in this scenario as well.

The optimisation problem results in many works reporting numerical difficulties when imple-

menting NLS for the Nelson-Siegel estimation. The approaches to handle these problems encompass

using a global and a local search algorithm (Bolder and Stréliski, 1999), the use of a genetic algorithm

for the optimisation (Franklin Jr. et al., 2012), the use of a heuristic for the optimisation (Gilli et al.,

2010, 2019), and strategies for defining the initial guesses and constraints (Wahlstrøm et al., 2022).

The following specifications share the same estimation difficulties, enhanced by more parameters.

2.3.2 The Bliss model

According to Bliss (1996, p. 11-12), the over-parametrisation identified by Nelson and Siegel in

equation (14) was due to the inclusion of relatively short-maturity bonds (US Treasury bills) in their

sample. Bliss addressed this issue by considering bonds with longer maturities, thereby mitigating

the over-parametrisation previously observed. Notably, Bliss achieved superior results using a model

featuring five parameters – specifically, incorporating two distinct decay parameters – as opposed to

the original specification.

While Bliss termed this modified approach the "extended Nelson-Siegel method", it has been

alternatively referred to as the Bliss model or Bliss specification in other contexts. The formulation is

illustrated in equation (15),

yt(m) = β0,t + β1,t

(
1− e−m/λ1,t

m/λ1,t

)
+ β2,t

(
1− e−m/λ2,t

m/λ2,t

− e−m/λ2,t

)
+ ϵm,t. (15)

Bliss estimated the above equation through nonlinear constrained optimisation. The constraints

were stated in relation to the discount function, with the aim of ensuring non-negative forward rates

and a positive discount rate in both the short and long ranges.8

2.3.3 The Svensson model

Studying a particularly turbulent period on Swedish economy, Svensson (1994) noticed that the Nel-

son and Siegel (1987) specification was not capable of capturing the yield curve shape in his data.

8dt(m) ≥ dt(m+ 1) ⇒ e−ỹt(m)×me−ỹt(m+1)×(m+1)∀m ≤ mmax, and y(mmin) ≥ 0, y(∞) ≥ 0.
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Therefore, he proposed a specification – equation (16) – with a second medium-term factor, with a

specific decay parameter. His intent was to model a second "hump" on the yield curve,

yt(m) = β0,t + β1,t

(
1− e−m/λ1,t

m/λ1,t

)
+ β2,t

(
1− e−m/λ1,t

m/λ1,t

− e−m/λ1,t

)
+

β3,t

(
1− e−m/λ2,t

m/λ2,t

− e−m/λ2,t

)
+ ϵm,t. (16)

2.3.4 The Five-factors model

A further specification in the Nelson-Siegel family considered in this text is the Five-factors model.

Two variants of the five-factor models were proposed in different contexts, Björk and Christensen

(1999) investigated what parametric representations of the forward rate curves would be consis-

tent with arbitrage-free interest rate models.9 In particular, they were concerned with Heath et al.

(1992) no-arbitrage formulation. Noting that the Nelson-Siegel specification is inconsistent with the

arbitrage-free assumption, they developed a variant with five factors which is consistent with the

Heath–Jarrow–Morton model.

To increase the flexibility and fit of the Nelson-Siegel family, Rezende (2011) and Rezende and

Ferreira (2013) proposed a specification with two short-term components and two medium-term com-

ponents that decay accordingly to different parameters. While both variants have five factors, they dif-

fer slightly in how maturity influences the factor loading on the fifth factor. For the model assessment

exercise, we consider only the Rezende and Ferreira specification:

yt(m) = β0,t + β1,t

(
1− e−m/λ1,t

m/λ1,t

)
+ β2,t

(
1− e−m/λ2,t

m/λ2,t

)
+

β3,t

(
1− e−m/λ1,t

m/λ1,t

− e−m/λ1,t

)
+ β4,t

(
1− e−m/λ2,t

m/λ2,t

− e−m/λ2,t

)
+ ϵm,t. (17)

3 Data and estimation

The ideal source of information for the term structure of interest rates is government bonds’ prices

(or rates) with various maturities, given their status as the closest option to a risk-free asset with high

liquidity. However, time series data for the government bonds’ secondary market are available through
9An arbitrage opportunity arises when a positive pay-off is guaranteed with no net investment required. An illustrative

example is borrowing money at a rate b and simultaneously lending it at a rate c, where c > b, all without incurring opera-

tional costs, (Dybvig and Ross, 1989). An arbitrage-free interest rate model imposes some constraints in the mathematical

representation of the term structure in order that the behaviour of the instantaneous forward rate curves offers no arbitrage

opportunities.
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proprietary databases. For example, Anbima provides free data on the transactions of the last five

working days. 10 For more extended periods, the data is exclusively available through subscription.

As a result, most empirical studies on the Brazilian term structure of interest rates turn to data

from One-day Interbank Deposit Futures ("DI1")11 contracts provided by B312. These data represent

the daily average of one-day interest rate futures contracts, expressed as a percentage rate per annum

compounded daily based on a 252-day year. Due to the specific settlement characteristics of these

futures contracts, they are often considered close to being risk-free and exhibit significant liquidity.

Notably, the interest rates specified in DI1 contracts correspond to spot rates (Berger, 2015, p. 71-72),

making them suitable for estimating the term structure of interest rates in its yield-to-maturity form.

Each working day, B3 releases two to five versions of its Price Report, documenting all transac-

tions during that day. Historical data from the Price Report is available in XML files, which were

downloaded from 2 January 2018 (the oldest report available) to 22 April 2023, using the R pack-

age RSelenium. This timeframe encompasses 1313 working days, as calculated by the R package

bizdays, using the calendar "Brazil/ANBIMA."

For each day, we considered the last Price Report release, except for 4 April 2021, where the

last released XML file was corrupted. For this day, we utilised the second-last file. The XML files

were parsed using R’s XML package, extracting information solely about DI1 transactions. Typically,

a day has 37 or 38 records, each corresponding to a different DI1 maturity. Even though there are

some variables related to DI1 transactions each day we used two key pieces of information: the date

when the contract is due ("data de referência") as maturity, and the adjusted rate ("taxa ajuste") as

the interest rate level. During the analysis it was detected that data from 2 December 2022 had its

first maturity equal to "-1" and the correspondent yield equal to "NA". We excluded only this pair

maturity-yield from this day data.

3.1 Estimation procedures

All estimates and plots were performed using the R software. The functions, algorithms, and their

options used in the estimation of the different models are documented below:

• Polynomial Regression: this model was implemented using the lm() and poly() functions.

A rule of thumb was adopted to determine the polynomial degree, employing degree 4 for a

10Ambima - taxas de títulos públicos.
11Among others, that is the case of Fraletti (2004), Caldeira (2011), Franklin Jr. et al. (2012), and Caldeira et al. (2016).
12B3 - Histórico / Boletins Diarios / Pesquisa por Pregão.
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normal curve and degree 9 for inverted or humped curves.

• McCulloch Cubic Splines: the knots were defined according "McCulloch’s rule" using the

quantile function on each day’s maturity vector. Then the natural cubic splines basis was

generated using function ns() from the splines package. Finally the splines were estimated

using the lm() function.

• Smoothing Splines: this model was implemented using the ss() function from the npreg

package, (Helwig, 2022). The smoothing parameter was defined by generalised cross-validation.

• Kernel Regression: this model was implemented using the npreg() function from the np

package, using the local constant option to obtain the Nadaraya-Watson estimator. We con-

sidered one specification with a fixed bandwidth (0.3) and other with the bandwidth defined

by cross-validation, for the latter we allowed the process of optimising the cross-validation

function to restart twice from different (random) initial points.

• Local regression - LOESS: this model was implemented using the LOESS() function from

the stats package with a span fixed in 0.2.

• Nelson Siegel model: this model was implemented in two ways, firstly fixing λt = 368 follow-

ing Diebold and Li and estimating the model by OLS. Secondly, the model was implemented

using nonlinear least squares with the function nloptr from the package with the same name

(Ypma et al., 2022), utilising the "Improved Stochastic Ranking Evolution Strategy" algorithm

for optimisation and a convergence criterion of 10−6 limited to 15,000 iterations. This algorithm

was chosen because it allows inequality restrictions on the parameter values, two restrictions

were imposed β0,t > 0 and β0,t+β1,t > 0. The initial guesses were made according Wahlstrøm

et al. (2022) recommendation: β0,t equal the average yield from the three shorter maturities,

β1,t equal first maturity yield minus the average yield from the three shorter maturities , β3,t

equal zero, and λt equal 368.

• Bliss, Svensson, and the Five-factor models: these models were implemented using the non-

linear Nelson-Siegel approach, employing the nloptr function with the "Improved Stochastic

Ranking Evolution Strategy" algorithm. The primary distinction lies in the expansion of the

initial guesses vector. For the Svensson specification an additional restriction was included in

the optimisation: λ2,t > λ1,t. For the Five-factor model, we allowed 30,000 iterations, while

the others were limited to 15,000 iterations.
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4 Methodology

To compare estimates from the models presented in the previous section, it is indispensable to define

metrics that enable the evaluation of various dimensions by which a yield curve estimate can be

assessed. Relevant literature13 consistently considers dimensions such as flexibility (goodness-of-fit),

robustness (stability to outliers), and smoothness.

When evaluating goodness-of-fit, the aim is to measure how well the underlying method fits each

data point in the sample. This assessment can be conducted using metrics such as Mean Squared

Error (MSE) or Mean Absolute Error (MAE):

MSE =

∑M
i=m1

(yi − ŷi)
2

M
MAE =

∑M
i=m1

|yi − ŷi|
M

. (18)

However, as most estimation procedures presented hinge on minimising the sum of square er-

rors (SSE), a straightforward comparison of metrics like the MSE would inherently favour more

parametrised models over their more parsimonious counterparts. In the context of yield curve es-

timation, relying solely on this metric in the full sample would not accurately portray the actual

performance of the models, (Bliss, 1996). Moreover, the yield curve’s short end is typically more

populated (with more bonds or derivative contracts) than the long-range, and usually, it has a more

complex form. Thus, considering a single fit metric for the whole maturity range could be mislead-

ing. A model with an average performance over all maturities could be levelled with others which

systematically perform poorly at a specific range.

To overcome these difficulties, we consider a training set (or in-sample set) and a validation set

(or out-of-sample set) for each day in the sample. A typical working day has around 38 data points;

we classify these points into three groups according to maturity: maturities up to one year, maturities

above one year and below three years, and maturities over three years. For each of these groups, we

randomly select two data points, ensuring that the validation set comprises six observations (roughly

15% of all observations in that day), consisting of two observations from each group. The only

restriction in this process was that the shortest and the longest maturities on a given day should be in

the training set.

All models are estimated for each day in the sample, utilising their respective training sets. Sub-

sequently, the performance of in-sample estimates is evaluated by assessing how well they fit in- and

out-of-sample data using MSE and MAE. This evaluation considers both the entire maturity range

13Noteworthy works, including Bliss (1996), Seppälä and Viertiö (1996), Anderson and Sleath (2001), and Nymand-

Andersen (2018), explore these dimensions, albeit with some differences in the specific measures employed.
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and its divisions. Figure 1a illustrates this process with synthetic data: the blue dots represent the

in-sample data used to estimate the dashed line, while the red dots represent the out-of-sample data.

In-sample performance is gauged by comparing the distance between the blue dots and the dashed

line, whereas out-of-sample performance is evaluated by comparing the distance between the red dots

and the dashed line.

Figure 1: An illustration of goodness-of-fit and robustness assessment procedures.
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(b) Estimation after a disturbance

Note: Synthetic data used for illustration. Source: Elaborated by the author.

The robustness evaluation aims to assess how the estimates respond to a disturbance in the interest

rates of a specific maturity. In essence, it seeks to understand how the estimates behave in the presence

of outliers or measurement errors. To conduct the robustness evaluation, a hypothetical data set

is constructed for each day. In this set, a randomly selected maturity (excluding the first and the

last) has its interest rate disturbed by an increase or decrease of 2%. Subsequently, each model is

estimated using the data with the disturbance, and the estimated curve is used to calculate the MSE and

MAE, considering the original data while excluding the disturbed point. An ill-conditioned14 model

would exhibit a significant increase in these measures, indicating that the disturbance has affected the

estimates across multiple maturities. Figure 1b illustrates this process with synthetic data. The third

14"A mathematical problem is called well-conditioned provided that small changes in the data leads only to small

changes in the (exact) solution. If this is not the case, we call. the problem ill- conditioned.", Hämmerlin and Hoffman

(1991, p. 20-21)
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maturity was selected in this case, and its interest rate level was reduced by 2%. Subsequently, the

model was estimated considering both the red and blue dots. The resulting dashed line represents the

estimated curve, and goodness-of-fit measurements were calculated using the grey and blue dots.

Smoothness is a valued quality for two crucial reasons. Firstly, many applications relying on yield

curve estimates depend on their differentiability; consequently, an estimate with kinks at numerous

maturities would be of limited utility. Secondly, an excessively rough estimate may suggest overfitting

of the data, potentially impairing its interpolation ability. Ramsay and Silverman (2005, p. 84) point

out that a way to quantify the notion "roughness" of a function is to consider the integrated squared

second derivative of that function

R(yt) =

∫ M

m1

[D2y(s)]2 ds. (19)

The roughness measure in equation (19) was adopted by Adams and Deventer (1994, p. 54) and

Varga (2009, p. 381) in the context of comparing smoothness of the yield curve estimates.15 Seppälä

and Viertiö (1996, p. 21) argue that since we have more information at the short end than at the

long end and expect a more complex behaviour at the short end (McCulloch, 1971), the fact that the

roughness measure in equation (19) equally penalises changes in yield curve’s slope in any maturity is

not appropriate. Thus, these authors propose a modified roughness measure which weights the slope

changes by maturity

R2(yt) =

∫ M

m1

[s×D2y(s)]2 ds. (20)

Given the increasing weight of second derivatives at longer maturities, R2(.) also helps to detect

changes in the yield curve steepness after the last observed maturity. In other words, it helps evaluate

whether the models’ extrapolation ability aligns with the underlying economic reasoning.

Alternatively, Waggoner (1997) considers a different modification considering the average rough-

ness instead of the total roughness. When comparing different models this modification makes sense

once one is considering different maturity ranges for different models, that is, roughness will not be

inflated by a longer maturity range,

R3(yt) =
1

M −m1

∫ M

m1

[D2y(s)]2 ds. (21)

We employ these three roughness metrics by computing them daily for each model across a ma-

turity span of 0 to 3800 working days (approximately 15 years). This range, reflective of the average
15Nymand-Andersen (2018) adopted a different approach to evaluate smoothness, this author used the spread between

the n-period rate and the m-period (st(n,m) = yt(n)− yt(m)) as an indicator. This approach is not used in this text.
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most extended maturity observed daily, facilitates the evaluation of the models’ extrapolation charac-

teristics.

4.1 Two formal tests

Although the metrics presented above offer ways to compare estimates from different models, deter-

mining the best model in one of these dimensions from the repeated daily measures requires clarifi-

cation. Descriptive statistics, such as the out-of-sample MAE averaged over the days, provide insight

into each model’s performance. However, relying solely on these measures can be tricky since noth-

ing can be said about the statistical significance of the differences. To overcome this challenge, we

adopt the approach introduced by Koning et al. (2005) to compare the forecast performance of sev-

eral models applied to many time series. Although our focus is on interpolation accuracy instead of

forecasting accuracy, we face a similar problem of comparing different models’ performance.

On each day in the sample, model performance can be ranked according some of the metrics

(MAE or smoothness’ R, for instance). The Friedman test is a nonparametric test which provides a

way to evaluate whether different rankings are equal (H0), i.e. they correspond to an ordering of i.i.d.

random variables for each day, against the alternative hypothesis that the rankings are indeed different

(HA), i.e. each day the ranking is an ordering of independent random variables that indeed differ in

location. To compare K models evaluated (ranked) over D days, under H0 we have the test statistic S:

S =
12D

K(K + 1)

K∑
k=1

(
R̄k −

K + 1

2

)2

∼
D→∞

χ2
K−1. (22)

Where R̄k =
∑D

d=1 Rk,d

D
is the average rank position of model k on all days in the sample, and Rk,d is

the rank position of model k on day d.

The Friedman test is an overall test, and the rejection of H0 in the Friedman test indicates that

one of the rankings is different from the others. However, it does not provide a means to directly

compare the models’ performance, i.e., to evaluate whether one model is systematically superior

to another. Hollander et al. (2014, p. 316-321) present a generalisation of the Friedman test, the

Wilcoxon–Nemenyi–McDonald–Thompson test, which allows multiple pairwise comparisons.

Let τk be the effect of model k on the underlying random variable that determines its position in

the ranking on a given day. The WNMT test considers a series of null hypotheses H0,k1,k2 : τk1 =

τk2 , where k1 = 1, 2, . . . , K and k2 = 1, 2, . . . , K|k2 ̸= k1, against the corresponding alternative

hypotheses HA,k1,k2 : τk1 ̸= τk2 where k1 ̸= k2. The pairs of H0 and HA correspond to the possible
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combinations among the models under analysis. Then, each H0 is rejected if and only if

|R̄k1 − R̄k2| ≥ rα,K,D, (23)

where the critical value, rα,K,D, is set to make the experimentwise error rate equal to α (Hollan-

der et al., 2014, p. 316; Koning et al., 2005, p. 399). Thus, the rα,K,D is the largest constant such

that PH0

(
(maxR̄k)− (minR̄k) ≥ rα,K,D

)
≤ α, and the large-sample approximation (large D in the

present case) for equation (23) gives

rα,K,D ≈ qα,K

√
K(K + 1)

12D
,

where qα,K is the upper α percentile of the range of K independent N(0, 1) variables.16

To implement the multiple comparison tests, we follow Koning et al. (2005) once again, who used

plots to present the results compactly. In next section, for each model k, an interval is drawn with

length rα,K,D and centred at R̄k. If the intervals for two models do not overlap, H0 – indicating that

both models perform equally in ranking terms – is rejected.

A line is drawn at the upper boundary of the interval of the best model (i.e. that with the lowest

average ranking for a given metric). That will be the lowest upper boundary among the models

analysed and this reference line corresponds to "the unconstrained multiple-comparison procedure

with the best, deducted from all pairwise comparisons", (Hsu, 1996, as cited in Koning et al.,2005,

p. 400). Therefore, all models with confidence interval above the reference line perform significantly

worse than the best model.

To our knowledge, multiple comparison tests have not been used before in evaluating yield curve

models. The closest related work is Varga (2009, p. 385-387), which applied the Friedman test pair-

wise to evaluate yield curve models regarding absolute error performance.

5 Empirical results and discussion

We estimated 11 different specifications for each day over the sample period from 2 January 2018

to 22 April 2023. Each specification was estimated at least three times daily: in-sample estimate,

full-sample estimate, and disturbed sample estimate. Here, we compare the models’ performance

according to the metrics explained before and test whether the performances of the models are statis-

tically different.

16qα,K can be obtained in R using the function cRangeNor() from the package NSM3.
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5.1 Goodness-of-fit analysis

In this subsection, we analyse the goodness-of-fit of all models. Starting with descriptive statistics,

Table 1 presents the average MAE for the days in the sample, illustrating the in-sample and out-of-

sample fit and how each model adapts to different maturity ranges. Similarly, Table 2 shows the

average MSE.

From these averages, nonparametric and local regression models systematically fit better than the

parametric specifications. On average, the smoothing spline has the best in-sample fit. However,

considering out-of-sample performance, the LOESS outperforms even the smoothing spline on all

different ranges considered.

Both Kernel regression specifications fit the out-of-sample data poorly, especially at the short

range. Considering the Nelson-Siegel family, the baseline Nelson-Siegel specification estimated by

OLS has the worst performance when estimated with all maturities and on the short-range sub-sample.

The other variants have very similar performance according to the descriptive statistics.

When assessing long-range performance, several models demonstrate a comparable fit. McCul-

loch’s Splines, Smoothing Splines, and LOESS exhibit similar performance in terms of MAE or MSE.

Similarly, within the Nelson-Siegel family, the models exhibit comparable results.

Even though the descriptive statistics provide some insight into the models’ relative performance,

it is challenging to establish whether one systematically outperforms the others. For this kind of

evaluation, firstly, we perform a Friedman rank test, considering the daily MAE rankings. Results

shown in Table 3 confirm that the models have different performances. Then, we implement the

multiple comparison procedure on Figures 2 and 3.

From Figure 2a, it is possible to conclude that the smoothing splines model has the best in-sample

performance considering the whole maturity range. However, according to Figure 2b, the smoothing

splines and the LOESS are not statistically different in fitting out-of-sample data. Likewise, consider-

ing the fit at the short range (Figures 2c and 2d), both models are not statistically different but fit the

data systematically better than the alternatives.

Again, for the Medium Range, the smoothing splines model has the best in-sample performance,

but the smoothing splines and the LOESS are not statistically different in fitting out-of-sample data

(Figures 3a and 3b). Finally, for the Long Range data, the smoothing splines model has the best in-

sample performance once more. However, considering out-of-sample fit, the McCulloch Cubic Spline

is not statistically different from the smoothing splines, and the latter is not statistically different from

the LOESS, (Figures 3c and 3d).
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Table 3: Friedman rank sum test - Models ranked by MAE

Specification Friedman chi-squared S df p-value

Full Sample 9382.04 10 < 2.2e-16

In-sample 8777.95 10 < 2.2e-16

Out-of-sample 7791.03 10 < 2.2e-16

In-sample (Short range) 8005.15 10 < 2.2e-16

Out-of-sample (Short range) 6243.95 10 < 2.2e-16

In-sample (Medium range) 8023.11 10 < 2.2e-16

Out-of-sample (Medium range) 6075.48 10 < 2.2e-16

In-sample (Long range) 10330.40 10 < 2.2e-16

Out-of-sample (Long range) 6829.72 10 < 2.2e-16

Sample with perturbed data 5306.14 10 < 2.2e-16

The key takeaway from the multiple comparison procedures is that smoothing splines and the

LOESS are not statistically different for out-of-sample interpolation.

One further analysis can be made about the goodness-of-fit by evaluating how the metrics evolve

across the sample. Figures 4 and 5 plot the daily MAE for all models under analysis. All models

experience a performance deterioration between mid-2021 and mid-2022. This decline is attributed

to the change in the shape of the Yield Curve. Figure 6 provides a glimpse of the Yield Curve

dynamics, indicating that the period of increased MAE for all models corresponds to humped yield

curves – indicating a term structure where the medium range has the highest interest levels.

5.2 Robustness analysis

This section analyses how the model fit changes when one outlier is introduced to the sample. Table

4 presents the MAE and MSE average values considering the models estimated using the original and

modified data (with a disturbance in a random maturity each day).

The table shows that all models experience a deterioration in their fit, as measured by MAE and

MSE. However, the Smoothing Splines model and the LOESS still have the best average fit, even

in the presence of an outlier. The Kernel regression specifications show the largest worsening in the

fit metrics (in absolute terms). On the other hand, the Nelson-Siegel family models are remarkably

robust to outliers.
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Figure 2: Multiple Comparison Procedure for Goodness-of-Fit - Models Ranked by MAE (Overall

and Short Range)
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(d) Out-of-Sample Short Range

Source: Elaborated by the author.

The Friedman test statistic in Table 3 indicates significant differences among the models in both

the original sample and the sample with disturbance. The multiple comparison test in Figure 7 re-

veals that, except for the Kernel regression specifications, the average rankings of the models remain
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Figure 3: Multiple Comparison Procedure for Goodness-of-Fit - Models Ranked by MAE (Medium

Range and Long Range)
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(b) Out-of-sample Medium Range
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(d) Out-of-Sample Long Range

Source: Elaborated by the author.

unchanged with the introduction of the outlier, and the smoothing spline maintains the best-fit rank in

both settings.
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Figure 4: In-sample and Out-of-sample Accuracy Across Sample Days (1 of 2)
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Panels: (a) McCulloch Natural Cubic Spline. (b) Smoothing Splines. (c) LOESS. (d)

Polynomial Regression. (e) Kernel Regression (Fixed bandwidth). (f) Kernel Regression

(Bandwidth by CV). (g) Nelson-Siegel (NLS). (h) Nelson-Siegel (OLS). (i) Bliss.

5.3 Smoothness analysis

This section analyses how smooth the models’ estimates are according to the three roughness metrics

presented previously. Table 5 provides the average metrics considering all days in the sample.

Considering R, Polynomial, Svensson, and LOESS specifications present the lower roughness.
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Figure 5: In-sample and Out-of-sample Accuracy Across Sample Days (2 of 2)
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Figure 6: The Yield Curve Evolution: January 2018 - April 2023

Source: Elaborated by the author.

Analysing the average R3 indicates that the Polynomial and the Kernel regression with fixed band-

width are the smoother estimates. However, all models present low values for R and R3, making it

hard to tell differences from the averages.

Regarding R2, a different pattern emerges; the Nelson-Siegel family correspond to the smoother

estimates. Conversely, the cubic spline’s performance is inferior. This discrepancy arises due to

the metric’s weighting that penalises steepness at higher maturities. A high R2 suggests that the

yield curve estimate curvature changes substantially for the smoothing splines after the last observed
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Table 4: Assessing Model Robustness: MAE and MSE in Original and Perturbed Sets

Modelo
MAE MSE

Original data Perturbed data Original data Perturbed data

Polynomial Regression 0.120535 0.145309 0.034326 0.041096

McCulloch CS 0.022069 0.087315 0.001165 0.018092

Smoothing Spline 0.003673 0.067968 0.000146 0.079302

Kernel Regression (fixed bdw) 0.085938 0.113314 0.031320 0.043631

Kernel Regression (cv bdw) 0.046772 0.148206 0.015330 0.066718

LOESS 0.008231 0.076976 0.000204 0.052546

Nelson-Siegel (NLS) 0.114567 0.132499 0.024878 0.029479

Nelson-Siegel (OLS) 0.154595 0.161646 0.044970 0.044966

Bliss 0.109715 0.130170 0.023354 0.029164

Svensson 0.110072 0.132498 0.022748 0.029438

Five-factors 0.093842 0.121020 0.018988 0.026120

Figure 7: Multiple Comparison Procedure for Robustness - Models Ranked by MAE
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Source: Elaborated by the author.
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maturity. In other words, a high R2 for the smoothing spline indicates poor extrapolation after the last

observation.

Table 5: Assessing Model Smoothness: Three Roughness Measures

Model R R2 R3

Polynomial Regression 8.563060E-08 6.874353E-01 2.253437E-11

McCulloch CS 3.882038E-07 1.925056E-02 1.021589E-10

Smoothing Spline 3.093370E-03 3.942163E+04 8.140449E-07

Kernel Regression (fixed bdw) 1.347686E-07 2.775508E-01 3.546542E-11

Kernel Regression (cv bdw) 2.406275E-06 1.534375E+01 6.332302E-10

LOESS 7.055688E-06 5.557780E-01 1.856760E-09

Nelson-Siegel (NLS) 1.408724E-06 1.241196E-02 3.707169E-10

Nelson-Siegel (OLS) 1.407544E-06 1.244910E-02 3.704063E-10

Bliss 1.536130E-06 1.224638E-02 4.042447E-10

Svensson 7.260830E-07 1.164079E-02 1.910745E-10

Five-factors 5.578462E-07 1.195935E-02 1.468016E-10

Ranking the models according the smoothness metrics and applying the Friedman tests indicates

that models’ performance in terms of roughness are indeed different.17

Figure 8 shows the multiple comparison procedure. Estimates within the Nelson-Siegel family

are not statistically different in any setting. Considering the rank by R, the Nelson-Siegel family

and the Polynomial regression systematically have the lowest roughness in the sample. Considering

R2, the Nelson-Siegel family is unchallenged, while the rankings given by R3 show the Polynomial

regression with the fewest rough estimates.

6 Conclusion

This text provides a comprehensive evaluation of empirical models of the Term Structure of Interest

Rates. Literature usually considers nonparametric or spline models in addition to the parsimonious

function models, derived from Nelson and Siegel (1987)’s seminal work.

17The Friedman statistics are: 5915.6, when the models are ranked by R; 10228, when the models are ranked by R2;

and 10823, when the models are ranked by R3. In all cases with 10 degrees of freedom and a p-value smaller than 2.2e−16.
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Figure 8: Multiple Comparison Procedure for Smoothness - Models Ranked by R, R2, R3
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Source: Elaborated by the author.

We analysed the two main spline specifications applied to yield curve estimation, McCulloch’s

Natural Cubic Spline and Smoothing Splines, and four specifications from the Nelson-Siegel family

considering possible estimation methods for the baseline Nelson-Siegel model. As well that, we

considered two Kernel regression specifications and the LOESS for estimating the Yield curve. This
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addition is a relevant contribution since the surveyed literature has ignored these options so far.

Using data from Brazilian interest rate derivatives over 1313 days, we compared model perfor-

mance, evaluating them according to goodness-of-fit (in-sample and out-of-sample), robustness to

outliers, and smoothness metrics. Besides the descriptive statistics on these metrics, the Friedman

test and the multiple comparison procedure were used to assess the statistical significance of differ-

ences among the models. It’s worth noting that the application of the multiple comparison procedure

in the context of yield curve estimation appears to be a novel contribution.

As stated in the introduction, different applications of yield curve estimates may prefer some

characteristics over others. The Smoothing Spline consistently has the best fit in-sample but is out-

performed by the LOESS out-of-sample on all different maturity ranges. Among the Nelson-Siegel

family models, the more parametrised versions have no clear advantage in terms of goodness-of-fit.

However, the baseline model estimated by OLS under-performs the others. The robustness analysis

shows that outliers mainly harm the Kernel regression estimates. At the same time, the Smoothing

Spline and the LOESS are robust and have the best fit even in the presence of outliers. Finally, the

smoothness analysis favours the parametric models. It also suggests that the smoothing spline is the

worst option for extrapolating the yield for longer maturities.
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