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Abstract

Understanding productivity differences between countries is one of the central prob-
lems of Economic Science, given its influence on living standards. Simultaneously,
environmental issues have become more relevant due to the need to mitigate greenhouse
gas emissions and combat global warming, requiring the integration of economic de-
velopment and environmental preservation. This article aims to incorporate pollutant
emissions into the investigation of resource misallocation, evaluating potential output
gains and variations in pollutants emitted when production factors are efficiently allo-
cated. Based on the financial information of publicly traded Brazilian companies and air
pollution data, the methodology of Hsieh and Klenow (2009) is extended to incorporate
pollutant emissions. It is observed that the degree of misallocation in 2022 is at the
same level as in 2010, however, there has been an improvement in efficient allocation
in recent years, with potential output gains, after the equalization of firms’ marginal
products, decreasing from 181% to 71% between 2015 and 2022. In the evaluation of
pollutant emissions, with the elimination of misallocation, it was found that, in 2022,
not only would there be output gains of 30%, but the amount of pollutants per product
would also decrease by 31%.
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1 Introduction

Seeking to understand the productivity differences between countries, and their causes, is one
of the fundamental issues in Economic Science, given the consensus in development literature
that these differences are key determinants of disparities in living standards among countries
(Restuccia and Rogerson, 2017).

Environmental concerns have received considerable attention in society, generating
particular interest among policymakers. In this context, as we confront challenges such as
the imperative reduction of greenhouse gas emissions, adaptation to climate change and
mitigation of global warming, it is essential to understand how resource allocation and the
pursuit of productivity can impact the environment.

There is an extensive literature that employs Data Envelopment Analysis (DEA) to
integrate environmental aspects into the calculation of Total Factor Productivity (TFP),
nevertheless, this integration is conducted in a non-parametric manner, i.e., without using
the classical production functions of economic theory. Recently, several studies have used the
method developed in Hsieh and Klenow (2009) to examine inefficient resource allocation in
specific sectors, such as extractive industries and notably the electric power sector. However,
such studies do not take into account pollutant emissions, which could affect the conclusion
that efficient allocation of capital and labor would be ideal for society, as such "efficient"
allocation could lead to increased pollution. In Acemoglu et al. (2010), the authors reach a
similar conclusion, showing that there exists a laissez-faire equilibrium, decentralized and
without any policy intervention, in which innovation occurs only in the polluting sector, and
the growth rate of productivity using polluting inputs is increasing, while productivity using
clean inputs is constant. On the other hand, considering pollutant emissions may also reveal
that efficient allocation not only increases economic production but also reduces emissions.

In Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), the effects of resource
misallocation among firms are evaluated, emphasizing that this inefficient allocation signifi-
cantly contributes to productivity differences between countries, and highlighting potential
gains from more effective allocation. Using firm-level microdata from the United States,
China, and India, quantitative evidence was provided on the impact of misallocation on
productivity levels, revealing that distortions in resource allocation could explain up to 60%
of the observed productivity loss in China and India compared to the United States (Hsieh
and Klenow, 2009). Subsequently, this theme has been addressed in specific studies for
other countries, such as Vasconcelos (2017), which identified evidence of misallocation in the
Brazilian manufacturing sector.
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Using a similar approach to Hsieh and Klenow (2009), Yu et al. (2021), Yu et al.
(2022), and Wu et al. (2022) also investigate the impacts of misallocation in the electric power
generation sector in China, including renewable electric power plants, while Zhang and Kong
(2022) examine the relationships between Total Factor Productivity of electric power firms
and energy transition policies in China.

In the Brazilian context, environmental issues assume even greater importance due
to the abundance of natural resources and its unique biodiversity. The country faces the
challenge of reconciling economic development with environmental preservation, especially in
sectors highly dependent on natural resources such as mining, oil exploration and refining
and energy generation. In light of this, this paper aims to integrate firm pollutant emissions
into the investigation of (green) misallocation, as well as to assess their impacts on Total
Factor Productivity (TFP), potential output gains with efficient allocation, and variations in
pollutant quantities generated.

In addition to this introduction, the second section covers concepts related to resource
misallocation and its role in the economic growth of countries. Moreover, an overview of
pollutant generation by human activity is provided. Furthermore, guidelines are presented
that standardize the disclosure of air pollution emissions by firms, known as the Greenhouse
Gas (GHG) Protocol.

The methodologies used in the calculations and evaluations of the degree of misalloca-
tion, potential output gains, and behavior of pollutant emissions are detailed in the third
section. The traditional model of Hsieh and Klenow (2009) is derived, and modifications
are implemented that incorporate firm pollutant emissions into the analyses, allowing for
examination of pollutant releases per product if production factors were allocated efficiently.

The acquisition of the necessary data for the analyses conducted in this paper is
detailed in the fourth section, where the main sources of data are presented, both from
financial information (value added, capital, and labor) and from firm air pollution data.
The methodologies applied in constructing the panels of financial information and pollutant
emissions, as well as the cross-sectional analysis for the year 2022, are displayed and statistical
summaries of the constructed databases are also presented.

The fifth section is dedicated to presenting results and conducting analyses. It presents
the degree of misallocation for publicly traded companies from 2010 to 2022, including the
distribution of productivities and their measures of dispersion. Additionally, the behavior
of pollutant emissions for the year 2022 is exhibited under efficient resource allocation
assumptions. In the sixth section, to test the robustness of the findings, calculations are
redone by varying the values of parameters σ (elasticity of substitution between differentiated
goods) and αs (elasticity of output with respect to capital).
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Finally, the seventh section presents the concluding remarks, aiming to synthesize the
main ideas, procedures and results obtained, as well as to establish, based on the analyses
conducted, additional points of discussion for the topic.

2 Misallocation and Pollutant Emissions

This Section is divided into two subsections: (i) Misallocation and (ii) Pollutant Emissions.
Subsection 2.1 presents concepts related to resource misallocation, explaining its role in
Economics, particularly in development literature, and its significance for economic growth
in countries. In Subsection 2.2, an overview of pollutant emissions is provided, detailing the
concepts of Scope 1, 2, and 3 emissions as defined by the GHG Protocol.

2.1 Misallocation

In Restuccia and Rogerson (2013) and Restuccia and Rogerson (2017), the authors provide an
overview of recent literature linking productivity and misallocation, presenting the concepts
and studies developed in this area. They emphasize that countries with lower productivity
rates may be less efficient in allocating available production factors.

A significant portion of the per capita income differences between countries is explained
by differences in total factor productivity, where aggregate productivity depends not only
on TFP of individual production units but also on the inefficient allocation of resources
among heterogeneous production units. The inefficient allocation of resources has been widely
addressed in various streams of economic literature, with significant effects on the study of
firm and overall economic productivity. One way to quantify the impact of misallocation is
to measure how much output could be gained by reallocating capital and labor among firms.

Two main approaches are used in the literature to provide answers to questions
related to productivity disparities between countries and inefficient resource allocation. These
approaches are known as direct and indirect.

A primary feature of the direct approach is the selection of factors deemed relevant
to inefficient allocation, aiming to find direct measures of these factors so that they can
subsequently be used in economic models to quantitatively assess their impact on misallocation
and aggregate TFP. An example of a widely studied factor is distortions in the credit market.

Direct methods face several challenges, such as obtaining measures of sources of
misallocation, which can be very difficult if they reflect discretionary provisions. Moreover,
the impacts of any specific factor are relatively minor when compared to the disparities
observed between developed and developing economies.
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The indirect approach in analyzing efficient allocation seeks to examine the aggregate
effect of the complete set of underlying factors without necessarily identifying each specific
source of misallocation. In contrast to the direct approach, which aims to quantify the effects
of individual factors, the indirect approach focuses on the overall assessment of misallocation.
Thus, the indirect approach provides a broader and more holistic view of misallocation,
allowing for a comprehensive understanding of its effects on productivity.

Efficient allocation of inputs results in equal marginal products across all producers at a
given level of aggregation. Therefore, by directly analyzing the variation in marginal products,
it becomes possible to quantify the extent of misallocation without explicitly identifying its
source. While this approach requires a certain structure, unlike the direct approach, it does
not necessitate the specification of a complete model.

Several caveats should be considered regarding the indirect approach. Firstly, it
pertains to the nature of heterogeneity in production functions among producers. Any
variation in the ratios of capital and labor is interpreted as misallocation, although it may
simply reflect technological differences between firms. Secondly, it involves adjustment costs,
as literature indicates significant costs associated with adjusting both labor and capital at
the firm level. This suggests that marginal products of capital and labor may vary among
producers due to these adjustment costs and specific firm-level transitory shocks. Additionally,
measurement errors in firm data will lead to differences in marginal products among firms,
even when misallocation is absent. Moreover, productivity losses stemming from misallocation
reported using the indirect approach are typically much higher than those reported using the
direct approach.

The resource misallocation can stem from various sources, including legal decisions
such as features of the tax code, as well as discretionary provisions by the government or other
entities like banks, which favor or penalize specific companies, influencing even the decisions
of entry and exit of these firms. In addition, market imperfections such as regulation, property
rights, financial frictions, and information asymmetry can also contribute to misallocation.
Recently, the literature on resource misallocation has also incorporated aspects such as
discrimination, culture, and social norms, which can result in inefficient allocation of talent
in the labor market.

2.2 Pollutant Emissions

From pre-industrial times to the present, the role of human activities in generating pollutants
is undeniable. According to Masson-Delmotte et al. (2021), human influence on climate
warming is observable in various spheres, encompassing the atmosphere, oceans, and terrestrial
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surface.
Carbon dioxide stands out as the main catalyst for global climate changes, with human

activities playing a significant role, both in its production and in the emission of other
greenhouse gases. These emissions have experienced a continuous increase since the early
stages of the industrial era, causing modifications in the Earth’s energy balance and triggering
substantial climatic consequences (Johnson et al., 2007).

Given this scenario, the urgent need to reduce pollutant emissions has been widely
recognized, and sustainability has become an increasingly important topic worldwide, mo-
bilizing governments, civil society, and companies to adopt a wide range of new practices.
Following the call of the United Nations Sustainable Development Goals (SDGs) and the
growing focus of investors on non-financial reporting, a growing number of companies are
measuring, disclosing, and managing sustainability risks and opportunities. As highlighted by
Apergis et al. (2022), performance in environmental, social, and governance (ESG) metrics is
considered an important factor reflecting companies’ ability to generate value and execute
effective strategies.

One of the goals is to standardize the disclosure of air pollution information. The
Greenhouse Gas Protocol (GHG Protocol) is a globally recognized standard for measuring
and managing greenhouse gas emissions. Established in 1990 to meet the need for a consistent
reporting framework in this field, the GHG Protocol collaborates with governments, industrial
associations, NGOs, corporations, and other entities to provide the most widely used emissions
calculation guidelines worldwide. Playing a central role in promoting decarbonization in
public and private operations, the GHG Protocol provides a unified framework for emissions
management. Thus, organizations seeking carbon accounting solutions should ensure the
adoption of a decarbonization platform aligned with the protocol’s principles and guidelines.

In Monzoni (2008), the author explains that, seeking to delineate the sources of
direct and indirect emissions, improve transparency, and be applicable to various types of
organizations and different types of climate-related policies, three types of emission scopes
were defined for greenhouse gas accounting and inventory preparation: Scope 1, 2, and 3.

Scope 1 covers direct greenhouse gas emissions originating from sources owned or
directly controlled by an organization. These emissions are generated by a variety of
activities, such as the generation of electricity, heat, or steam in stationary sources like boilers,
furnaces, and turbines, as well as the processing or manufacturing of chemicals and materials.
Additionally, emissions associated with the transportation of materials, products, waste, and
employees in vehicles owned by the organization are also considered in Scope 1. Other sources
of direct emissions include intentional or unintentional leaks from owned equipment, such as
gas discharges in equipment operation, covers, packaging, and tanks, methane emissions in
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coal mines and ventilation, as well as hydrofluorocarbon (HFC) emissions from refrigeration
and air conditioning equipment and methane leaks related to gas transportation.

Scope 2 concerns indirect greenhouse gas emissions arising from the acquisition of
electricity and thermal energy consumed by a company, encompassing energy purchased or
brought into the organization’s operational boundaries. For many companies, this energy
acquisition represents one of the main sources of pollutant emissions and, consequently, a
significant opportunity for reducing their emissions. Accounting for these emissions allows
for an assessment of risks and opportunities associated with variations in energy costs and
emissions.

Indirect emissions originating from activities preceding the company’s energy supplier,
such as prospecting, well drilling, flaring, and transportation in the energy chain, are
categorized in Scope 3. This category addresses all other indirect emissions related to the
company’s activities that occur in sources not owned or controlled by the company. Also
known as value chain emissions, Scope 3 emissions encompass all indirect emissions that
occur upstream and downstream in the reporting company’s supply chain, categorized into 15
different categories as defined by the GHG Protocol, including business travel, waste disposal,
and the acquisition of goods and services.

Therefore, the public disclosure of emission inventories, aggregating Scope 1, 2, and 3
emissions, is crucial for promoting corporate transparency and accountability. It provides
relevant information about companies’ carbon footprints, contributing to their credibility and
image. Additionally, broad access to this data is essential since emissions affect the entire
society, thus ensuring a basic right for citizens and public and private managers.

3 Misallocation Framework

3.1 Canonical Model

The theoretical model developed by Hsieh and Klenow (2009) was pioneering in calculating
the misallocation originating from the existence of firm-level distortions, which affect the
optimal allocation of resources (capital and labor) within sectors. Subsequent studies, such as
Oberfield (2013), Dias et al. (2016), Vasconcelos (2017), and Chen et al. (2023), incorporated
additional components into the theory, including the possibility of resource reallocation
between sectors, the inclusion of inputs as a production factor, sectoral complementarities,
and climate shocks.

This paper will follow the canonical model, which assumes an economy with a single
final good Y , produced by a representative firm in a perfectly competitive market. The

6



representative firm combines the product Ys of S industries using a Cobb-Douglas production
function:

Y =
S∏
s=1

Y θs
s (1)

Considering that
∑S

s=1 θs = 1, cost minimization implies that the share of each sector
in the economy is given by:

θs =
PsYs
PY

(2)

The price of the product Ys in each sector is denoted by Ps, while P is the price of the
final good in the economy, which is assumed to be the numéraire, hence P = 1. At the firm
level, the market is defined as monopolistic competition, where the intermediate good Ys is a
CES aggregate function with Ms differentiated products:

Ys =

(
Ms∑
i=1

Y
σ−1
σ

si

) σ
σ−1

(3)

The parameter σ measures the elasticity of substitution between differentiated goods,
and Ysi is the output of firm i in sector s. Profit maximization in the sector implies the
inverse demand for each variety:

Psi = PsY
1
σ
s Y

− 1
σ

si (4)

The term PsY
1
σ
s is unobserved and therefore can be set equal to 1. This equality does

not affect relative productivities and output gains, as there is no reallocation of resources

between sectors Dias et al. (2016). This premise is equivalent to setting κs = (PsYs)
− 1

σ−1

Ps
= 1

in Hsieh and Klenow (2009).
Each differentiated good is determined by a Cobb-Douglas production function at the

firm level:
Ysi = AsiK

αs
si L

1−αs
si (5)

The firm’s capital stock, labor, and total factor productivity are determined by Ksi,
Lsi, and Asi, respectively. The capital share αs may vary across sectors but remains the same
within each sector.

It is possible to separately identify distortions affecting both capital and labor simulta-
neously and those affecting the marginal product of one resource relative to the other. Thus,
two types of distortions are introduced in the model: (i) a product distortion τYsi , which
increases the marginal products of capital and labor in the same proportion, and (ii) a capital
distortion τKsi

, which increases the marginal product of capital relative to labor.
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For example, the capital wedge τKsi
is expected to be high for firms facing credit

constraints, while τYsi is likely high for firms constrained by size and low for firms receiving
subsidies. Considering these distortions, the profit of firm i is given by:

πsi = (1− τYsi)PsiYsi − ωLsi − (1 + τKsi
)RKsi (6)

Where R and ω are the costs of capital and wages, respectively. Maximizing the firm’s
profit leads to the standard condition where its price is a fixed markup over its marginal cost

Psi =
σ

σ − 1

(
R

αs

)αs
(

ω

1− αs

)1−αs (1 + τKsi
)αs

Asi(1− τYsi)
(7)

The first-order conditions for profit maximization also imply:

Ksi

Lsi
=

αs
1− αs

ω

R

1

(1 + τKsi
)

(8)

Lsi ∝
Aσ−1
si (1− τYsi)

σ

(1 + τKsi
)αs(σ−1)

(9)

Ysi ∝
Aσsi(1− τYsi)

σ

(1 + τKsi
)αs(σ)

(10)

It is noted that the allocation of resources depends on both the firm’s TFP levels and
the distortions it faces. This fact leads to differences in marginal revenues of labor and capital
across firms, which would be equalized in the absence of distortions.

From the first-order conditions, it is also possible to observe that the marginal revenues
of capital and labor (MRPKsi and MRPLsi) are proportional to the revenue (PsiYsi) per
unit of capital and labor, respectively:

MRPKsi = αs
σ − 1

σ

PsiYsi
Ksi

= R
1 + τKsi

1− τYsi
(11)

MRPLsi = (1− αs)
σ − 1

σ

PsiYsi
Lsi

= ω
1

(1− τYsi)
(12)

The equations above are also used to determine the distortions faced by each firm:

1 + τKsi
=

αs
1− αs

ωLsi
RKsi

(13)

1− τYsi =
σ

σ − 1

ωLsi
(1− αs)PsiYsi

(14)

Within industries, firms equalize their marginal revenues from capital and labor after
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tax payments, therefore, prior to payment, there is dispersion in marginal revenues due to
distortions. These equations enable the estimation of wedges from revenue (or value added)
information, production factors, and the parameters σ and αs.

According to Foster et al. (2008), there is a distinction between two measures of total
factor productivity at the firm level. One is the traditional Solow residual, which indicates
how productive a firm is in terms of "physical" output, denoted as TFPQ. The other is
TFPR, which measures how productive the firm is in terms of revenue:

TFPQsi = Asi =
Ysi

Kαs
si L

(1−αs)
si

(15)

TFPRsi = PsiAsi =
PsiYsi

Kαs
si L

(1−αs)
si

(16)

In the absence of distortions, more capital and labor are allocated to plants with higher
physical productivity until the point where higher output Ysi results in a lower price Psi,
equalizing its revenue productivity to that of plants with lower output, thus TFPR does
not vary among firms within the same sector. From Equations 7, 11 e 12, we can show that
TFPRsi is proportional to the geometric mean of the marginal revenue products of capital
and labor:

TFPRsi = PsiAsi =
σ

σ − 1

(
R

αs

)αs
(

ω

1− αs

)1−αs (1 + τKsi
)αs

1− τYsi

=
σ

σ − 1

(
MRPKsi

αs

)αs
(
MRPLsi
1− αs

)1−αs

∝ (MRPKsi)
αs(MRPLsi)

(1−αs) ∝ (1 + τKsi
)αs

1− τYsi

(17)

Except for the wedges, the components of TFPRsi are sector-specific fixed parameters,
therefore, without distortions, revenue productivity does not vary within the same sector, as
expected.

Given that, for an industry, Ks =
∑Ms

i=1Ksi and Ls =
∑Ms

i=1 Lsi represent the aggregated
capital and labor, and that TFPs represents its total factor productivity, and considering
that the sector is a representative firm whose production function is also Cobb-Douglas, with
some algebra, we obtain:

Ys = TFPsK
αs
s L

1−αs
s (18)

TFPs =

[
Ms∑
i=1

(
Asi

TFPRs

TFPRsi

)σ−1
] 1

σ−1

(19)
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The term TFPRs is proportional to the geometric mean of the weighted average of the
sector’s marginal revenue products of capital and labor and represents the observed TFPR:

TFPRs =
σ

σ − 1

 R(
αs
∑Ms

i=1

1−τYsi
1+τKsi

PsiYsi
PsYs

)
αs

 ω(
(1− αs)

∑Ms

i=1(1− τYsi)
PsiYsi
PsYs

)
1−αs

=
σ

σ − 1

(
MRPKs

αs

)αs (
MRPLs
1− αs

)1−αs

∝ (MRPKs)
αs(MRPLs)

(1−αs)

(20)

With the values of MRPKs and MRPLs being determined by:

MRPKs =
R(

Ms∑
i=1

1− τYsi
1 + τKsi

PsiYsi
PsYs

) (21)

MRPLs =
ω(

Ms∑
i=1

(1− τYsi)
PsiYsi
PsYs

) (22)

If the marginal revenues of capital and labor are equalized among firms within the
same sector and, consequently, their revenue productivities, we get TFPRs = TFPRsi. Thus,
from Equation 19, we have that the industry’s TFP will be:

As =

(
Ms∑
i=1

Aσ−1
si

) 1
σ−1

(23)

As the firms’ production Ysi is not observed, but rather their revenue PsiYsi, it is not
possible to obtain the value of Asi directly from Equation 15. Using Equation 4 in 15, we
obtain an expression that allows us to find the value of Asi:

Asi = κ
(PsiYsi)

σ
σ−1

Kαs
si L

(1−αs)
si

(24)

The scalar κs = (PsYs)
− 1

σ−1

Ps
is not observed and can be set to 1, preserving the relative

productivities and reallocation gains.
Combining Equations 1 and 18, it is possible to obtain the economy’s aggregate product

as a function of the aggregate sectoral production factors and their TFP:

Y =
S∏
s=1

(TFPsK
αs
s L

1−αs
s )θs (25)
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Finally, for each sector, the ratio between the observed product Y and the efficient
product Y ∗, obtained when the TFPR of the firms is equalized, thus with TFPs = As,
provides the degree of misallocation in the industry and, consequently, the potential output
gains when resources are allocated efficiently. The aggregation of all sectors, using the
Cobb-Douglas function in 1, provides the misallocation and output gains for the economy.

Y

Y ∗ =
S∏
s=1

[
Ms∑
i=1

(
Asi
As

TFPRs

TFPRsi

)σ−1
] θs

σ−1

(26)

3.2 Green Misallocation: Behavior of Pollutant Emissions

In the context of evaluating the behavior of air pollution when misallocation is eliminated, it
will be considered that the firms’ emissions are proportional to their output. Thus, to obtain
the new value of the firm’s emissions, it is also necessary to calculate what its efficient output
would be:

e∗si = esi

(
Y ∗
si

Ysi

)
(27)

The firm’s observed pollutant emissions and output are represented by esi and Ysi,
respectively, while the emissions when resources are efficiently allocated are represented by
e∗si and its efficient output by Y ∗

si.
In the canonical model, the value of TFPRs represents the observed average revenue

productivity of a sector. However, an important question is how to find the value of the
sector’s productivity when distortions are eliminated and TFPRsi are equalized, which will
be represented by TFPR∗

s. According to Dias et al. (2016), one possibility is to use the value
of the industry’s TFPR obtained when the wedges are zero, however, this does not guarantee
that the quantities of Ks and Ls will be the same after the reallocation of resources among
firms.

The alternative proposed by the authors is that all firms will face the same distortions,
and such distortions will be such that the demand for capital and labor in the sector remains
the same after the reallocation of production factors. Analogous to obtaining the distortions
faced by firms, according to Equations 13 and 14, the sector’s capital and labor wedges, which
in this case will also be faced by firms, are given by:

1 + τKs =
αs

1− αs

ωLs
RKs

(28)

1− τYs =
σ

σ − 1

ωLs
(1− αs)P ∗

s Y
∗
s

(29)
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Based on Equations 4, 15, and 16, it is possible to find the values of the firms’ output
and revenue as functions of their physical productivity and revenue productivity:

Ysi =

(
Asi

TFPRsi

)σ
(30)

PsiYsi =

(
Asi

TFPRsi

)σ−1

(31)

The above equations allow estimating the efficient levels of firms’ output and revenue
by simply replacing the observed TFPRsi with the efficient one:

Y ∗
si =

(
Asi

TFPR∗
s

)σ
= Ysi

(
TFPRsi

TFPR∗
s

)σ
(32)

P ∗
siY

∗
si =

(
Asi

TFPR∗
s

)σ−1

= PsiYsi

(
TFPRsi

TFPR∗
s

)σ−1

(33)

Given the equalized sector distortions, when allocation is efficient, they can be substi-
tuted into Equation 17:

TFPR∗
s =

σ

σ − 1

(
R

αs

)αs
(

ω

1− αs

)1−αs (1 + τKs)
αs

1− τYs
(34)

The TFPR∗
s is obtained by combining the above equation with the equalized sector

distortions values in 28 and 29 and the firm’s efficient revenue value, according to equation
33:

TFPR∗
s =

(∑Ms

i=1A
σ−1
si

Kαs
s L

1−αs
s

) 1
σ

(35)

Now, with the calculated TFPRs value, it is possible to find the firm’s optimal
production from equation 32 and then estimate the pollutant emissions value e∗si from
equation 27.

In evaluating emission behavior, even more relevant than the total amount of pollutants
emitted is the amount emitted per unit of output. Therefore, let E =

∑S
s=1

∑Ms

i=1 esi be the
total emissions of the economy, E/Y provides the amount of emissions per output, called
Eprod. Hence, the green misallocation index ϵ is defined, which measures the behavior of
emissions when production factors are allocated efficiently:

ϵ =
E∗
prod

Eprod
=
E∗

E

Y

Y ∗ (36)
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The index is interpreted as follows: when ϵ < 1, the efficient allocation of factors not
only increases production but also decreases the amount of pollutants emitted per unit of
product. On the other hand, ϵ > 1 means that the reallocation of factors, although increasing
the economy’s production, generates additional emissions per unit of product. The percentage
change in emissions per unit of product is given by 100(ϵ− 1)%. It should be noted that the
index can also be used, analogously, for sectoral evaluation.

4 Data

The theoretical framework developed by Hsieh and Klenow (2009) for calculating misallocation
involves firm-level data. The data for this study were primarily obtained through web scraping
from two main sources: (i) the open database of the CVM (Comissão de Valores Mobiliários),
Brazilian Securities and Exchange Commission and (ii) the Public Emissions Registry of the
Brazilian GHG Protocol Program.

From these sources, panels of financial information and pollutant emissions were
constructed. The intersection of these panels, supplemented with additional data from other
sources, generated the 2022 cross-sectional database, containing aggregated financial and
pollutant emission data.

4.1 Firm-Level Financial Information

The financial data regarding the firms were obtained through the open databases of CVM, the
regulatory agency for the securities market, which provides standardized financial statements
of listed companies on B3 S.A., the Brazilian stock exchange, during the period from 2010 to
2022. The databases are available in both individual and consolidated versions. Consolidated
data were used due to their closer alignment with the firms’ information in the emissions
database, despite having fewer observations.

As, for productivity and misallocation calculations, firms’ production is represented by
a Cobb-Douglas function, as per Equation 5, the data sought includes values for capital stock,
labor, and production. Traditionally used in this literature, including Hsieh and Klenow
(2009), value added and personnel expenses represent production and labor, respectively.

Oberfield (2013) warns that measuring firms’ capital stock poses significant challenges,
potentially leading to an exaggerated misallocation indication if calculated inadequately.
Therefore, the author employs the perpetual inventory method in constructing firms’ capital
stock. However, due to data limitations, especially for non-listed firms, this study adopts the
original approach, using firms’ fixed assets as capital stock, similar to Dias et al. (2016).
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Table 1: Statistical Summary of the Listed Companies Panel

Year Observations Personnel Expenses
(R$ billion)

Fixed Assets
(R$ billion)

Value Added
(R$ billion)

Revenue
(R$ billion)

2010 296 129 1,001 787 1,704
2011 353 142 1,084 798 1,827
2012 284 160 1,211 745 1,940
2013 341 214 1,575 1,068 3,295
2014 277 177 1,382 764 2,101
2015 275 193 1,481 804 2,220
2016 276 199 1,396 929 2,286
2017 278 199 1,423 987 2,332
2018 283 216 1,503 1,159 2,679
2019 327 243 1,773 1,192 2,930
2020 376 261 1,852 1,265 3,311
2021 456 312 2,091 1,910 4,417
2022 466 354 2,406 2,033 5,140

Notes: Table constructed from open data provided by the CVM (Securities and Exchange Commission).
Financial data are in nominal values. Each observation represents a company in a specific year.

The database created is an unbalanced panel with 4288 observations over 13 years,
excluding financial sector firms. The number of companies per year ranges from 275 in 2015 to
466 in 2022, distributed across 24 distinct sectors. Table 1 presents the statistical summary.

The parameters αs for the industries, capital share - elasticity of output with respect
to capital, are calculated as 1 minus the elasticity of output with respect to labor, estimated
using data on personnel expenses and value added from the panel of financial information
of listed companies, as shown in Table 2. This table also includes data on the elasticities
of American industries for the period between 2008 and 2022, published by the Bureau of
Economic Analysis (BEA), which will also be used to calculate the degree of misallocation in
Section 6 - Robustness.

4.2 Firm-Level Pollution Emissions

The data on pollutant emissions were obtained from the Public Emissions Registry, organized
by the Center for Sustainability Studies (FGVces) at the School of Business Administration
of Fundação Getulio Vargas (FGV EAESP). This registry includes information from the
corporate greenhouse gas (GHG) emission inventories of organizations participating in the
Brazilian GHG Protocol Program. The registry boasts the largest database of public
organizational inventories in Latin America, with more than 2,300 inventories. The data
cover the period from 2008 to 2022.
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Table 2: Sectoral Capital Shares αs

Sectors BR Capital Shares US Capital Shares

Agriculture (Sugar, Alcohol, and Sugarcane) 0.82 0.81
Food 0.54 0.59
Beverages and Tobacco 0.90 0.59
Toys and Leisure 0.78 0.41
Communication and IT 0.34 0.45
Trade (Wholesale and Retail) 0.73 0.50
Construction, Building Materials, and Decoration 0.67 0.37
Education 0.53 0.15
Packaging 0.70 0.47
Electric Power 0.88 0.74
Mining 0.87 0.72
Pharmaceuticals and Hygiene 0.60 0.73
Printing and Publishers 0.52 0.33
Lodging and Tourism 0.57 0.37
Metallurgy and Steel 0.68 0.48
Machinery, Equipment, Vehicles, and Parts 0.53 0.41
Paper and Pulp 0.85 0.47
Petrochemicals and Rubber 0.87 0.86
Oil and Gas 0.89 0.85
Sanitation, Water, and Gas 0.73 0.74
Transportation and Logistics 0.77 0.42
Medical Services 0.56 0.17
Telecommunications 0.89 0.73
Textile and Clothing 0.58 0.28
Notes : Capital shares αs obtained from data provided by the Brazilian Securities and Exchange Commission
(CVM) and the Bureau of Economic Analysis (BEA). CVM data cover the period 2010-2022, while BEA
data cover the period 2008-2022.

The firms’ inventories are qualified with three different seals: gold, silver, and bronze.
The gold seal represents a complete publication, including third-party verification and valida-
tion of information by a Verification Body. The silver seal signifies a complete publication,
and the bronze seal indicates a partial publication. Of the total sample, about 52% of the
inventories are classified as gold and 41% as silver, providing robustness to the pollutant
emission data.

Although the emission information is published on the program’s website, the database
is not available for download, necessitating data scraping. This effort resulted in a panel
comprising 2,368 observations over 15 years. The number of firms per year ranges from 23 in
2008 to 432 in 2022, spread across up to 21 sectors. Emissions are detailed by scope type,
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including the source and type of gas, totaling up to 37 different variables, with information
on Scopes 1 or 2 being mandatory. Table 3 presents the statistical summary of the panel.

Table 3: Statistical Summary of the Emissions Panel

Year Observations Total Emissions
(ktCO2e)

Average Emissions
(ktCO2e)

Maximum Emissions
(ktCO2e)

2008 23 85,230 3,706 51,273
2009 39 87,193 2,236 51,558
2010 79 117,324 1,485 53,867
2011 99 900,080 9,092 561,608
2012 115 355,629 3,092 229,039
2013 133 387,743 2,915 227,938
2014 142 423,786 2,984 253,241
2015 147 420,571 2,861 262,806
2016 153 1,014,659 6,632 541,005
2017 147 709,573 4,827 522,810
2018 151 651,982 4,318 492,277
2019 168 844,418 5,026 563,273
2020 217 926,271 4,269 566,683
2021 315 1,109,796 3,523 585,347
2022 440 1,156,192 2,628 586,859

Notes : Table constructed from data provided by the Public Emissions Registry. Scope 1, 2, and 3 values were
summed to generate the emissions value per company. Each observation represents a company in a specific
year.

4.3 Integration of Financial and Emission Data

To calculate the behavior of emissions if resources were optimally allocated, it is necessary
for the observations to include both financial and emissions data of the companies. The
initial merging of the panels constructed in subsections 4.1 and 4.2 generally results in a low
number of matches. However, it is noted that sectors with the highest quantities (both in
percentage and absolute terms) of observations are capital-intensive industries. Therefore,
calculations and analyses considering pollutant emissions were performed for the following
sectors: Capital-Intensive Agribusiness, Electric Power, Metallurgy and Steel, Oil, Gas and
Derivatives and Others. These sectors are the result of classifications by the CVM Registry.

In addition to the initial merging of the panels, supplementary data on emissions
from listed companies whose inventories were not included in the emissions panel, as well as
financial information from companies that reported their emission inventories but are not
publicly traded, were added. Finally, a cross-section for the year 2022 was generated. It is
noteworthy that, since larger companies tend to report their emissions data, the firms in
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Table 4: Cross-sectional Summary of 2022

Observations Total Value Added (%) Sector Value Added (%)

Total CVM RPE CVM Emissions
Total CVM

CVM Emissions
Total Emissions Agribusiness Electric

Power
Metallurgy and

Steelmaking
Oil, Gas

and Derivatives

112 70 78 57.2 93.0 64.6 86.1 86.0 99.0

Notes : Table constructed from financial information panel and pollutant emissions panel. CVM observations
refer to listed companies, RPE observations refer to firms that publish in the Public Emissions Registry.
CVM Emissions

Total CVM corresponds to the ratio of value added of cross-sectional listed companies to total value
added of listed companies. CVM Emissions

Total Emissions corresponds to the ratio of value added of cross-sectional listed
companies to total value added of the cross-sectional. Sectoral values are relative to the ratio of value added
of cross-sectional listed companies belonging to the sector to total value added of listed companies in the
sector. All data is for the year 2022.

this database account for more than half of the value added of the stock market, reaching
over 80% in some sectors such as Electric Power, Metallurgy and Steel, and Oil, Gas and
Derivatives. Table 4 provides information related to the 2022 cross-section.

5 Empirical Analysis

In this section, we will present the main results found regarding output gains from resource
reallocation, as well as the behavior of emissions with efficient allocation.

The choices of the parameter σ and the capital rental price R for the reference scenario
will follow the values traditionally used in this literature, namely, σ = 3 and R = 0.1. In
Hsieh and Klenow (2009), the authors show that the gains from reallocation increase with
the elasticity of substitution, making this choice conservative, given that previous research
estimates the value of σ to be between 3 and 10. Regarding the cost of capital, 5% is
considered for the interest rate and 5% for depreciation. However, a different choice has few
implications since R only affects the average capital distortion and not the relative distortions
between firms, thus not impacting the calculation of output gains (Ziebarth, 2013).

Total personnel expenses will be used as the measure of labor for the firms, resulting
in ω = 1 and Lsi = wsiNsi, with wsi being the wage paid by the firm and Nsi the number of
employees. According to Dias et al. (2016), this assumption implies that differences in hours
worked per employee and differences in human capital are already implicitly considered.

5.1 Misallocation in Publicly Traded Companies

The results presented in this Section were obtained using the financial information panel of
publicly traded companies developed in Subsection 4.1. Before calculating the variables of
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interest, we excluded the two companies with the extreme values of TFPRsi and the two
companies with the extreme values of Asi for each sector and year. Although the panel does
not have a large number of observations, this procedure is carried out to eliminate outliers
and control for potential measurement errors.

Figure 1 shows the distribution of TFPQ for selected years 2015, 2017 and 2022. The
distribution of physical productivity is adjusted by sector productivity in the absence of
distortions, log(AsiM

1
σ−1 s/As). It can be observed that the left tail of the distribution is

thicker for 2015, indicating possible policies that favored the survival of inefficient firms (with
relatively lower TFPQ), with its thickness decreasing in 2017 and 2022.

Figure 1: Distribution of TFPQ

Notes: The figure shows the physical productivity adjusted by the sector’s productivity in the absence of
distortions, log(AsiM

1
σ−1
s /As), of publicly traded companies for the years 2015, 2017, and 2022.

Table 5 shows that this pattern is consistent across other measures of TFPQ dispersion:
the standard deviation, the subtraction of the 75% and 25% percentiles, and the subtraction
of the 90% and 10% percentiles. The standard deviation decreases from 1.36 in 2015 to 1.04
in 2022, while the difference between the 75% and 25% percentiles fell from 1.98 in 2015 to
1.59 in 2022. The pattern repeats for the differences between the 90% and 10% percentiles.

Figure 2 presents the distribution of TFPR for selected years 2015, 2017 and 2022. If
the allocation were efficient the TFPR dispersion would be zero, hence greater productivity
dispersion suggests a higher degree of misallocation. The revenue productivity distribution
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Table 5: Dispersion of TFPQ

2015 2017 2022

Standard Deviation 1.36 1.20 1.04
75 - 25 1.98 1.88 1.59
90 - 10 4.55 3.84 3.25

Notes: Statistics are for log(AsiM
1

σ−1
s /As). Standard deviation is weighted by value added. 75 - 25 is the

difference between the 75th and 25th percentiles, and 90 - 10 is the difference between the 90th and 10th
percentiles.

is adjusted by TFPRs, log(TFPRsi/TFPRs). The year of 2015 has a higher degree of
dispersion, with longer tails and lower density of firms centralized in the distribution. By
2017, a shift in the distribution shape is observed, which by 2022, is clearly less dispersed.

Figure 2: Distribution of TFPR

Notes: The figure shows the revenue productivity adjusted by the sector’s observed TFPRs,
log(TFPRsi/TFPRs), of publicly traded companies for the years 2015, 2017, and 2022.

Similar to TFPQ, Table 6 reinforces the consistency of the misallocation pattern
shown in the TFPR distribution through dispersion measures. The standard deviation
decreases from 0.83 in 2015 to 0.63 in 2022, while the difference between the 90% and 10%
percentiles fell from 2.82 in 2015 to 2.31 in 2022. The difference between the 75% and 25%
percentiles, despite decreasing between 2015 and 2017, returns to the same level in 2022.
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Table 6: Dispersion of TFPR

2015 2017 2022

Standard Deviation 0.83 0.77 0.63
75 - 25 1.04 0.84 1.05
90 - 10 2.82 2.74 2.31

Notes: Statistics are for log(TFPRsi/TFPRs). Standard deviation is weighted by value added. 75 - 25 is
the difference between the 75th and 25th percentiles, and 90 - 10 is the difference between the 90th and 10th
percentiles.

Another point to be noted regarding the efficient allocation of production factors is
how revenue productivity correlates with physical productivity. As pointed out by Dias et al.
(2016), this relationship is particularly harmful because, when positive, it means that the
more productive firms also face the greatest distortions.

Table 7 shows that the TFPQ and TFPR of firms are positively correlated, indicating
that more productive companies face higher distortions and thus tend to produce less, while
less productive companies tend to become larger than their efficient size. In addition to the
complete sample calculations, values were also estimated for the Electric Power sector, which,
as observed in Figure 3, shows a high correlation pattern.

Table 7: Correlation between TFPQ and TFPR

2010-2022 2015 2017 2022

Total 0.60 0.67 0.57 0.65
Electric Power 0.90 0.95 0.92 0.91

Notes : Correlations are between log(AsiM
1

σ−1
s /As) and log(TFPRsi/TFPRs) for the selected years of 2015,

2017 and 2022, and for the entire period of 2010-2022. Values in the Total row correspond to all sectors,
while Electric Power considers only companies in this sector.

Following the observations of Chen et al. (2023), another interesting illustration of
the degree of misallocation is the comparison between how the production factors should be
allocated, when associated with their physical productivities, and their actual allocations.
In other words, considering the total capital and labor of a sector, in an efficient allocation,
the shares of the factors for each firm should be proportional to Aσ−1si, as per Equations
8 and 9. Therefore, the correlation between log(Asi) and log(Ksi) or log(Lsi) is positive
when distortions are equalized. In the case of marginal revenues of capital and labor, in an
efficient allocation, MRPKsi and MRPLsi should be equalized across firms, so the correlation
between physical productivity and marginal revenues is null.
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Figure 3: Correlation between TFPQ and TFPR in the Electric Power Sector

Notes : The figure shows the correlation between log(AsiM
1

σ−1
s /As) and log(TFPRsi/TFPRs) in the Electric

Power sector for the period 2010-2022.

Figure 4 - (a) shows the amount of capital each firm possesses against its TFPQ, with
the red line representing how the sector’s capital allocation should be, contrasted with the
observed trend in black, which has a slightly negative correlation. In the case of labor, as
shown in Figure 4 - (b), a positive correlation is observed, but not in the same proportion
as efficient allocation. Figure 4 - (c) documents the Marginal Revenue of Capital, which is
strongly positive in relation to physical productivity, whereas, in an efficient allocation, as
per the red line, it should be equalized among firms. Figure 4 - (d) shows that the observed
Marginal Revenue of Labor is only slightly correlated with the firm’s TFPQ, indicating a
lower degree of misallocation for this factor.

The charts in Figure 4 are related to the Electric Power sector for the year 2022. It is
important to note that there are sectors with positive correlations between production factors
and productivity, as well as marginal revenues that are not correlated with productivity, such
as the Metallurgy and Steel industry. However, the Electric Power sector provides graphics
that more clearly illustrate the issues discussed in this study.

Figure 5 shows the potential output gains with the equalization of revenue productivities
among firms within the same sector, for the period from 2010 to 2022. Despite the variations,
a trend of increasing misallocation and, consequently, potential output gains can be observed
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between 2010-2012 and 2014-2018, with a trend of improvement in the efficient allocation of
resources from then on. In Hsieh and Klenow (2009), the authors use the potential gains from
the beginning and end of the evaluated period to estimate the behavior of the allocation of
production factors. From this perspective, there were no advances in the efficient allocation of
Brazilian publicly traded companies between 2010 and 2022, as their potential gains remain
the same (around 70%).

Figure 4: Capital, Labor, MRPK, and MRPL: Observed and Efficient Allocation

Notes: (a) and (b) reports the efficient and actual allocation of capital and labor with respect to physical
productivity. (c) and (d) reports the real and efficient marginal revenue product of capital and labor with
respect to physical productivity. All values are in log. Each point represents a company, and the red line
indicates the efficient allocation. The data are for the Electric Power sector, referring to the year 2022.
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Figure 5: Potential Output Gains from Intra-Sectoral TFPR Equalization

Notes: The output gains are in percentage. The values are for 100(Y ∗/Y − 1), where Y
Y ∗ =

∏S
s=1

[∑Ms

i=1

(
Asi

As

TFPRs

TFPRsi

)σ−1
] θs

σ−1

and TFPRsi =
PsiYsi

Kαs
si L

(1−αs)
si

.

Table 8: Potential Output Gains for the Years 2015, 2017 and 2022

2015 2017 2022

Output Gains 181.41 124.27 71.31

Notes: Output gains with intra-sectoral equalization of TFPR for the selected years of 2015, 2017 and 2022.
Gains are in percentage values.

According to this theory, it is not possible to determine the causes of the decline in the
efficient allocation of resources between 2010 and 2018 (or the possible stagnation between
2010 and 2022). However, there is a consensus that Brazil went through a period of difficulties
in the last decade, which could either reflect or have reflected the degree of misallocation
observed. On the other hand, evaluating a more recent period using selected years, there
was a 64% improvement in resource allocation, averaging 7% per year, between 2015 and
2022, as shown in Table 8. Considering the period from the last inflection point in 2018, the
allocation is 68% more efficient in 2022, with an average improvement of 14% per year.
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5.2 Green Misallocation Analysis

The results for this section were obtained using the cross-sectional data developed in Subsection
4.3, which considers not only the financial information of the firms but also their pollutant
emissions. The initial part of this section will be similar to the previous section, including
the exclusion of the two companies that show extreme values of TFPRsi per sector, followed
by the calculations of the variables of interest.

Figure 6: Distribution of Physical Productivities and Revenue Productivities

Note: (a) shows the physical productivities of listed companies (CVM) and companies from the cross-section

(Emissions) adjusted by sector productivities in the absence of distortions, log(AsiM
1

σ−1
s /As), for the year

2022. (b) shows the revenue productivities of listed companies (CVM) and companies from the cross-section
(Emissions) adjusted by observed sector productivities, log(TFPRsi/TFPRs), for the year 2022.

Figure 6 (a) shows the distribution of the TFPQ of firms from the 2022 cross-section
(Emissions), in contrast with the distribution of publicly traded companies (CVM) for the
same year. The distributions of physical productivities are adjusted by the productivity of the
sector in the absence of distortions, log(AsiM

1
σ−1
s /As). It is observed that the cross-sectional

distribution is less centralized and has a slightly more pronounced left tail compared to the
distribution of listed companies. Figure 6 (b) shows the distribution of the TFPR of firms
from the 2022 cross-section (Emissions), in contrast with the distribution of publicly traded
companies (CVM) for the same year. The distributions of revenue productivities are adjusted
by TFPRs, log(TFPRsi/TFPRs). The samples show a similar density of firms centralized
in the distribution, with distinct behaviors in the tails.

Table 9 reinforces the patterns observed in Figure 6 through dispersion measures.
For physical productivities, the standard deviations of the samples are similar, while the
differences between the 75%-25% and 90%-10% percentiles are larger for the cross-section,
thus adhering to Figure 6 (a). In the case of revenue productivities, the three measures of
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Table 9: Dispersion of Physical and Revenue Productivities

Asi (Emissions) Asi (CVM) TFPRsi (Emissions) TFPRsi (CVM)

Standard Deviation 0.95 1.04 0.44 0.63
75 - 25 1.97 1.59 0.81 1.05
90 - 10 3.74 3.25 2.22 2.31

Notes: Statistics are for log(AsiM
1

σ−1
s /As) and log(TFPRsi/TFPRs) for listed companies (CVM) and

cross-sectional companies (Emissions). Standard deviation is weighted by value added. 75th - 25th is the
difference between the 75th and 25th percentiles, and 90th - 10th is the difference between the 90th and 10th
percentiles. Results are for the year 2022.

the cross-section are lower than those observed in companies listed on the Brazilian stock
exchange, which may indicate a lower degree of misallocation for the cross-section.

As shown in Table 4, more than 60% of the firms in the cross-section are listed, whose
added value represents more than 90% of the total sample. Thus, it was expected that the
distribution and dispersion measures would be similar to those presented in Subsection 5.1.

The correlation between revenue productivity and physical productivity is also eval-
uated since, as pointed out in the previous section, if it is positive, it indicates that the
more productive firms are those that face the greatest distortions. Table 10 shows that the
TFPQ and TFPR of firms are positively correlated. All sectors show a correlation between
productivities, with the Electric Power sector presenting the highest degree.

Table 10: Correlation between TFPQ and TFPR

Total Capital-Intensive
Agribusiness

Electric
Power

Metallurgy
and Steelmaking

Oil, Gas
and Derivatives Others

2022 0.78 0.27 0.91 0.47 0.66 0.52

Notes: Correlations are between log(AsiM
1

σ−1
s /As) and log(TFPRsi/TFPRs) for the year 2022. The value

in the Total row corresponds to the entire cross-sectional.

Table 11 shows the potential output gains from equalizing revenue productivities
among firms in the same sector for the year 2022. Additionally, it provides the total emissions
observed, i.e., with the presence of misallocation, and what the total emissions would be
with the efficient allocation of resources. It is observed that even with a positive variation
in production, the total value of emissions does not increase proportionally to the variation
in production. The green misallocation index ϵ, which measures the behavior of emissions,
is less than one, indicating that the efficient reallocation of factors not only increases the
economy’s production but also decreases the amount of pollutants emitted per product, as
can be seen from the negative variation in emissions per product.
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Table 11: Behavior of Emissions with Efficient Allocation

2022

Output Gains 30.74
Total Observed Emissions 1,365,840
Total Emissions with Efficient Allocation 1,243,760
Epsilon 0.70
Emissions Variation per Product -30.35

Notes: Output gains, with intra-sectoral TFPR equalization, in percentage terms. Total emissions are in
ktonCO2e. Emissions variation is given by 100(ϵ− 1)% where ϵ = E∗

prod

Eprod
= E∗

E
Y
Y ∗ .

Figure 7, which correlates physical and revenue productivities with emissions per
product, shows behavior consistent with the previously found results. Given that efficient
allocation reduces emissions per product, it was expected that the more productive firms
would be less polluting. This situation occurs for both TFPQ and TFPR, corroborating
the correlation found between productivities, as shown in Table 10.

Figure 7: Correlation of Productivities and Emissions per Product

Notes: (a) shows the correlation of physical productivity adjusted by sector productivity in the absence of

distortions, log(AsiM
1

σ−1
s /As), with emissions per product, for the year 2022. (b) shows the correlation of

revenue productivity adjusted by observed sector productivity, log(TFPRsi/TFPRs), with emissions per
product, for the year 2022.

Table 12 details, by sector, the behavior of emissions for the year 2022. It is noted that
for all sectors, the green misallocation index ϵ was less than one, indicating that potential
output gains were accompanied by a reduction in emissions per product.

For the Electric Power sector, the decrease in emissions was proportionally less than
the output gains (-57.08% versus 181.92%), similar to the Oil, Gas, and Derivatives industry,
but to a lesser degree, with emissions per product and output gains variation of around -3%
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and 4.4% , respectively. For the other sectors, efficient allocation not only generated potential
output gains but also reduced emissions more than proportionally, i.e., a positive variation of
1% in production decreased emissions by more than 1%.

The Oil, Gas, and Derivatives sector accounts for about 50% of the added value of the
2022 cross-section, so its relatively low output gains and emissions per product variation have
a strong impact on the overall sample results. Notably, this industry has one of the most
negative images concerning environmental issues, as its products are intrinsically polluting.
However, this fact leads the sector to seek alignment with global ESG practices, both to
improve its image with the public and due to market demand, which already considers ESG
performance in credit granting and cost, as detailed by Apergis et al. (2022). Additionally,
the sector faces stricter environmental oversight, which may be one of the reasons for the low
variation in emissions.

Table 12: Behavior of Emissions with Efficient Allocation - 2022

Sector Production
Gains

Observed
Emissions

Emissions
Efficient Allocation ϵ Index Emissions

Variation per Product

Total 30.74 1,365,840 1,243,760 0.70 -30.35
Agribusiness 19.80 23,388 18,800 0.67 -32.90
Electric Power 181.92 75,451 91,305 0.43 -57.08
Metallurgy and Steelmaking 13.70 641,310 500,946 0.69 -31.30
Oil, Gas and Derivatives 4.42 622,927 630,727 0.97 -3.03
Others 21.46 2,764 1,982 0.59 -40.95

Notes: Output gains with intra-sector TFPR equalization in percentage values. Total emissions are in

ktonCO2e. Emissions variation is given by 100(ϵ− 1)% where green misallocation index ϵ =
E∗

prod

Eprod
=
E∗

E

Y

Y ∗ .

It is not the intention of this work to seek explanations for why efficient resource
allocation, in addition to generating potential output gains, leads to a reduction in emissions
per product. However, it is noteworthy that this occurs for all sectors.

6 Robustness

The results presented in Section 5 consider the reference scenario, where the parameter value
σ is equal to 3 and the capital shares αs are constructed using the financial information
panel of Brazilian publicly traded companies for the period 2010-2022. Additionally, it is
assumed that the variation in firms’ emissions is linear with output. In this Section, the
parameter values will be altered, and emissions will not have constant returns to scale, in
order to evaluate how the results are affected by these modifications.

27



6.1 Variation of the Elasticity of Substitution Between Differentiated

Goods

The definition of the parameter σ is a strong simplification assumption for the analysis, as
the elasticity of substitution between differentiated goods is not the same across different
industries. Additionally, since the firm’s production is not observed, the parameter is crucial
for obtaining the product from the value added.

Traditionally, in the empirical literature on efficient resource allocation, a value of
σ = 3 is used. However, in Dias et al. (2016), the authors also consider other values in their
misallocation calculations, such as 5.6 for the United States and 6.8 for Portugal, based on
more recent research.

Table 13 shows how the potential output gains of companies listed on the Brazilian
stock exchange and the 2022 cross-section vary with changes in σ. It can be observed that
the estimates of the degree of misallocation are highly sensitive to elasticity, with the 2017
gain more than tripling when σ is changed from 3 to 7. It is noted that the variation in
emissions per product in the 2022 cross-section follows the same pattern, meaning a higher
elasticity amplifies its decrease as the production gain has increased in magnitude.

Table 13: Robustness Test σ: Potential Output Gains and Emissions Variation

2015 2017 2022 Cross-Sectional
2022

Emissions Variation
per Product

σ = 3 181.41 124.27 71.31 30.74 -30.35
σ = 5 379.51 277.21 119.71 50.10 -49.24
σ = 7 526.25 406.65 152.03 68.59 -64.77

Notes: Robustness test, varying the elasticity of substitution between differentiated goods, for potential
output gains with equalization of intra-sector TFPRs for selected years 2015, 2017 and 2022. Emissions
variation per product is for the 2022 cross-sectional. All values are in percent.

As observed by Vasconcelos (2017), the increase in the degree of misallocation was
expected, as more substitutable products imply that the effect of relative prices is intensified.
Moreover, the results illustrate that the reference scenario with σ = 3 can be interpreted as a
conservative estimate of the extent of the degree of misallocation.

6.2 Variation of the Output Elasticity with Respect to Capital

Hsieh and Klenow (2009) adopt American factor shares as a reference, assuming that
elasticities are less distorted compared to other countries, both within and between sectors.
For the reference scenario of this paper, αs was calculated using the Personnel Expenses
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Figure 8: Robustness Test αs: Potential Output Gains from Equalizing Intra-sectoral TFPR

Notes: The output gains are in percentage terms. The values are for 100(Y ∗/Y − 1), where Y
Y ∗ =

∏S
s=1

[∑Ms
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)σ−1
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.

and Added Value data from the financial information panel of Brazilian companies listed
on the stock exchange, assuming that any differences in elasticities compared to the United
States are due to intrinsic country characteristics rather than distortions, as pointed out by
Oberfield (2013).

To calculate the capital shares of American industries, sectoral data from the Bureau
of Economic Analysis (BEA) for the period 2008-2022 were used. Since the sector classifica-
tions of the CVM and BEA are different, an approximate correspondence between the two
classifications was made. An important difference compared to Hsieh and Klenow (2009) is
that the financial information from CVM and BEA reflects not only salaries but also other
personnel expenses such as social security and additional benefits, while the database used
by the authors (NBER Productivity Database) does not consider these, thus requiring the
additional assumption of a multiplicative factor for labor costs.

Figure 8 compares the potential output gains from equalizing revenue productivity
among firms within the same sector, using the product elasticities relative to American and
Brazilian capital for the period 2010 to 2022. It can be observed that the behavior of the
degree of misallocation is extremely similar, with the difference manifesting in the level of
potential output gains, which are lower when American capital shares are used.

Similarly, when using the Brazilian elasticity, there is a trend of improvement in efficient
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allocation for the more recent period of 2015-2022. When using the American elasticity,
however, the growth is lower, at approximately 5% per year, compared to the 7% presented in
the reference scenario. In the case of the 2022 cross-section, the magnitudes of output gains
and emission variations per product also decrease when using the American αs, as shown in
Table 14.

Table 14: Robustness Test αs: Potential Output Gains and Emissions Variation

2015 2017 2022 Cross-Sectional
2022

Emissions Variation
per Product

BR Capital Shares 181.41 124.27 71.31 30.74 -30.35
EUA Capital Shares 108.01 81.57 40.55 25.8 -20.35

Notes: Robustness test, varying the elasticity of output with respect to capital, for potential output gains
with equalization of intra-sector TFPRs for selected years 2015, 2017 and 2022. Emissions variation per
product is for the 2022 cross-sectional. All values are in percent.

6.3 Returns to Scale in Pollutant Emissions

In evaluating the behavior of companies’ pollutant emissions when production factors are
allocated efficiently, it was considered that emissions vary linearly with the firm’s product,
as per Equation 27. However, it is possible that technological factors impact companies’
efficiency concerning pollutant emissions, meaning there may be returns to scale in pollutant
emissions.

In Qi et al. (2021), the authors present evidence that larger industries are more likely
to adopt cleaner technologies and are relatively less polluting, while Dasgupta et al. (1998)
find that, for Brazil and Mexico, smaller firms generate more toxic gas emissions. Therefore,
Equation 27 can be modified so that firm size is considered in projecting new emissions after
eliminating misallocation:

e∗si = esi

(
Y ∗
si

Ysi

)ψ
(37)

If ψ is less than 1, as the firm grows, its emissions per product decrease, conversely, if
the firm shrinks, its emissions are proportionally higher. With ψ greater than 1, the larger
the firm’s product, the higher the pollutant emissions per product. If ψ = 1, the emissions
variation is linear, which is the reference scenario.

As shown in Table 15, after eliminating misallocation, when emissions have decreasing
returns to scale, there is a reduction in pollutants emitted per product. In contrast, when
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returns (of pollution) are increasing, emissions per product rise, causing the variation in
emissions per product to change from -31.48% when ψ = 0.8 to -26.55% when ψ = 1.2.

Table 15: Robustness Test ψ: Returns to Scale in Pollutant Emissions

ψ = 0.8 ψ = 0.9 ψ = 1.0 ψ = 1.1 ψ = 1.2

Output Gains 30.74 30.74 30.74 30.74 30.74
Total Observed Emissions 1,365,840 1,365,840 1,365,840 1,365,840 1,365,840
Total Emissions with Efficient Allocation 1,223,629 1,229,462 1,243,760 1,269,554 1,311,646
Epsilon 0.69 0.69 0.70 0.71 0.73
Emissions Variation per Product -31.48 -31.15 -30.35 -28.91 -26.55

Notes: Output gains with intra-sector TFPR equalization in percentage terms. Total emissions are in
ktonCO2e. Emissions variation is given by 100(ϵ− 1)% where ϵ = E∗

prod

Eprod
= E∗

E
Y
Y ∗ .

These results imply that firms that have grown are less polluting than those that
have shrunk, which aligns with the findings throughout this work. As observed in Figure
7, emissions per product are negatively correlated with physical productivity. Therefore, in
an efficient allocation, firms with higher physical productivity (which are also less polluting)
grow.

Figure 9: Correlation Between Firm Size Variation and Actual Firm Size

Notes: The figure shows the correlation between log(Ysi) and log(Y ∗
si)/log(Ysi) of firms from the 2022

cross-section.

Figure 9 reinforces the findings of Qi et al. (2021) and Dasgupta et al. (1998), as a
positive correlation is observed between the firm’s observed size and its size variation after the
reallocation of production factors. In other words, for the observed sample, larger companies
are more productive and less polluting.
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7 Conclusion

The objective of this paper was to calculate the degree of resource misallocation among
publicly traded Brazilian companies, the potential output gains when resources are efficiently
reallocated and the change in pollutant emission levels. To investigate these objectives,
concepts and the importance of analyzing efficient resource allocation in the economy were
presented, as well as the main guidelines standardizing the emission inventories disclosed by
firms, established by the GHG Protocol. Furthermore, pollutant emissions of companies were
incorporated into the methodology developed by Hsieh and Klenow (2009) by considering
the variation in firms’ pollutant emissions as proportional to the ratio between the optimal
output (without the presence of misallocation) and the observed output.

The theoretical framework developed requires the use of firm-level information. There-
fore, using data provided by the Brazilian Securities Commission (CVM), a panel of firms’
financial information was created. The pollutant emission data were obtained from the Public
Emissions Registry, which covers the air pollution inventories of organizations participating in
the Brazilian GHG Protocol Program. These were used to create a panel of firms’ pollutant
emissions, while the cross-section used in the calculation of emission behavior with efficient
allocation was obtained by merging the two created panels.

The results presented for the reference scenario were consistent. Two distinct trends
were observed: an increase in the degree of misallocation between 2010-2012 and 2014-2018,
followed by an inflection and trend towards improved efficient allocation from the end of this
period. For the selected years 2015, 2017 and 2022, whose potential output gains decreased
from 181% to 71%, the distributions and their dispersion measures reflected the improvement
in resource allocation.

An interesting point, observed when evaluating green misallocation for the 2022 cross-
section, was that the efficient allocation of factors not only increases the economy’s production
but also decreases the amount of pollutants emitted per product. This situation occurred
across all analyzed sectors, with the aggregate result being a potential production gain of
31% and a 30% reduction in emissions per product.

Robustness tests confirmed the values found in the reference scenario, as the observed
variations were only in level, not in behavior. As the elasticity of substitution between
differentiated goods increases, the degree of misallocation also increases, being highly sensitive
to σ. This trend is also observed in emissions per product, meaning that increased elasticity
amplifies the (negative) variation in air pollution. When using American capital shares, the
results obtained were extremely similar to the reference scenario, with differences manifesting
only in the level of potential output gains, whose values are higher when using Brazilian
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capital shares’ product elasticities. Considering scale returns in firms’ pollutant emissions,
when emissions per product grow with firm size, an increase in total emissions is observed,
while when emissions decrease with firm size, a reduction in per-product pollution is observed,
corroborating the fact that larger firms are more productive and less polluting.

The objective of the indirect approach used in this work is to analyze the aggregate effect
of misallocation, without needing to identify specific sources causing resource misallocation.
However, the results obtained allow for some analyses when contextualized with the Brazilian
scenario. The degrees of misallocation at the beginning and end of the observed period
(2010-2022) are similar, around 70%, meaning no improvement in efficient resource allocation
is observed during this period, which coincides with the difficulties faced by Brazil in the last
decade.

The dynamic observed of increased output gains and reduced emissions per product
with efficient resource allocation is perhaps the result that generates the greatest potential for
further investigations, as it provides a starting point to ascertain iif there is causality in this
relationship, obviously accompanied by a more robust database and well-defined identification
strategy.

Finally, the biggest challenge in expanding the study of the green misallocation,
i.e., links between productivity, resource misallocation and pollutant emissions, is precisely
firm-level data, especially emissions data. In Brazil, where the universe of publicly traded
companies or those present in the Annual Industrial Survey (PIA) numbers in the hundreds
of thousands, the number of firms reporting their inventories in the Public Emissions Registry
is modest. Thus, alternatives must be sought to obtain more representative data samples,
whether such data pertain to specific sectors whose firms are legally required to report their
emissions or from countries whose firm-level emissions data represent a larger share of the
total companies.

With the growing need for environmental preservation, it becomes urgent and impera-
tive to reconcile economic development with the reduction of pollutant emissions.
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Appendix A - Canonical Model Solution

Representative Firm’s Problem

The representative firm combines the product Ys of S industries using a Cobb-Douglas
production function:

Y =
S∏
s=1

Y θs
s (A.38)

Considering that
∑S

s=1 θs = 1, the cost minimization problem is given by:

min
{Ys}Ss=1

S∑
s=1

PsYs (A.39)

Subject to the constraint in Equation A.38. The Lagrangian is given by:

L =
S∑
s=1

PsYs − λ(
S∏
s=1

Y θs
s − Y ) (A.40)

The first-order conditions imply that:

Ps∗ = λθs∗Y
θs∗−1
s∗

S−{s∗}∏
s=1

Y θs
s

Ps∗Ys∗ = λθ∗s

S∏
s=1

Y θs
s = λθ∗sY (A.41)

From the relationship between two sectors:

Ys = Yj
Pj
Ps

θs
θj

Y =
S∏
s=1

Y θs
s =

S∏
s=1

(
Yj
Pj
Ps

θs
θj

)θs
Y = Yj

Pj
θj

S∏
s=1

(
θs
Ps

)θs
Yj
Pj
θj

= Y

S∏
s=1

(
Ps
θs

)θs
(A.42)
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Therefore, defining P =
∏S

s=1

(
Ps

θs

)θs
, cost minimization implies that the share of each

sector in the economy is given by:

θs =
PsYs
PY

(A.43)

Intermediate Sector Problem

The market at the firm level is defined as monopolistic competition, with intermediate good
Ys and Ms differentiated products:

Ys =

(
Ms∑
i=1

Y
σ−1
σ

si

) σ
σ−1

(A.44)

The demand for intermediate goods is derived from the profit maximization problem
of industry s, where the profit is given by:

πs = PsYs −
Ms∑
i=1

PsiYsi (A.45)

Therefore, the profit maximization problem is given by:

max
Ysi

Ps

(
Ms∑
i=1

Y
σ−1
σ

si

) σ
σ−1

−
Ms∑
i=1

PsiYsi (A.46)

The first-order conditions imply the inverse demand for each variety:

Psi = Ps

(
σ

σ − 1

)( Ms∑
i=1

Y
σ−1
σ

si

) 1
σ−1 (

σ − 1

σ

)
Y

− 1
σ

si

Psi = PsY
1
σ
s Y

− 1
σ

si (A.47)

Firm-level Profit Maximization Problem

Each differentiated product is determined by a firm-level Cobb-Douglas production function:

Ysi = AsiK
αs
si L

1−αs
si (A.48)
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Using Equations A.47 and A.48, the profit maximization problem of firm i is given by:

max
Ksi,Lsi

πsi = (1− τYsi)PsiYsi − ωLsi − (1 + τKsi
)RKsi (A.49)

= (1− τYsi)PsY
1
σ
s Y

− 1
σ

si Ysi − ωLsi − (1 + τKsi
)RKsi

= (1− τYsi)PsY
1
σ
s Y

σ−1
σ

si − ωLsi − (1 + τKsi
)RKsi

= (1− τYsi)PsY
1
σ
s

(
AsiK

αs
si L

1−αs
si

)σ−1
σ − ωLsi − (1 + τKsi

)RKsi

From the first-order conditions with respect to Ksi and Lsi, the capital-labor ratio is
obtained:

(1− τYsi)PsY
1
σ
s

(
σ − 1

σ

)
Y

− 1
σ

si (1− αs)Asi

(
Ksi

Lsi

)αs

= ω (A.50)

(1− τYsi)PsY
1
σ
s

(
σ − 1

σ

)
Y

− 1
σ

si αsAsi

(
Ksi

Lsi

)αs−1

= (1 + τKsi
)R (A.51)

Ksi

Lsi
=

αs
1− αs

ω

R

1

(1 + τKsi
)

(A.52)

Using Equations A.47, A.50, and A.52, we find Psi:

(1− τYsi)PsY
1
σ
s

(
σ − 1

σ

)
Y

− 1
σ

si (1− αs)Asi

(
αs

1− αs

ω

R

1

(1 + τKsi
)

)αs

= ω

(1− τYsi)PsiY
1
σ
si

(
σ − 1

σ

)
Y

− 1
σ

si (1− αs)Asi

(
αs

1− αs

ω

R

1

(1 + τKsi
)

)αs

= ω

Psi =
σ

σ − 1

(
R

αs

)αs
(

ω

1− αs

)1−αs (1 + τKsi
)αs

Asi(1− τYsi)
(A.53)

Also from the first-order conditions, it is found that resource allocation depends both
on the firm’s TFP levels and the distortions it faces:

ω = (1− τYsi)PsY
1
σ
s

(
σ − 1

σ

)
Y

− 1
σ

si (1− αs)Asi

(
Ksi

Lsi

)αs

Lsiω = (1− τYsi)PsY
1
σ
s

(
σ − 1

σ

)
Y

− 1
σ

si (1− αs)Ysi

Lsiω = (1− τYsi)PsY
1
σ
s

(
σ − 1

σ

)(
AsiK

αs
si L

1−αs
si

)σ−1
σ (1− αs)

LsiL
−(σ−1)

σ
si ω = (1− τYsi)PsY

1
σ
s

(
σ − 1

σ

)(
AsiK

αs
si L

1−αs
si

)σ−1
σ (1− αs)L

−(σ−1)
σ

si

L
1
σ
si =

1

ω
(1− τYsi)PsY

1
σ
s

(
σ − 1

σ

)
(1− αs)

[
Asi

(
αs

1− αs

ω

R

1

(1 + τKsi
)

)αs
]σ−1

σ
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Lsi =
1

ωσ

[
(1− τYsi)PsY

1
σ
s

(
σ − 1

σ

)
(1− αs)

]σ [
Asi

(
αs

1− αs

ω

R

1

(1 + τKsi
)

)αs
]σ−1

Lsi =
Aσ−1
si (1− τYsi)

σ

(1 + τKsi
)αs(σ−1)

1

ωσ

[
PsY

1
σ
s

(
σ − 1

σ

)
(1− αs)

]σ (
αs

1− αs
ω

)αs(σ−1)

Lsi ∝
Aσ−1
si (1− τYsi)

σ

(1 + τKsi
)αs(σ−1)

(A.54)

Using the firm’s production function, we get:

Ysi = Asi

(
Ksi

Lsi

)αs

Lsi

Ysi = Asi

(
αs

1− αs

ω

R

1

(1 + τKsi
)

)αs

Lsi

Ysi ∝ Asi

(
αs

1− αs

ω

R

1

(1 + τKsi
)

)αs Aσ−1
si (1− τYsi)

σ

(1 + τKsi
)αs(σ−1)

Ysi ∝
Aσsi(1− τYsi)

σ

(1 + τKsi
)αsσ

(
αs

1− αs

ω

R

)αs

Ysi ∝
Aσsi(1− τYsi)

σ

(1 + τKsi
)αsσ

(A.55)

The marginal revenues of capital and labor (MRPKsi and MRPLsi) are proportional
to the revenue (PsiYsi) per unit of capital and labor, respectively:

(1 + τKsi
)R = (1− τYsi)PsY

1
σ
s

(
σ − 1

σ

)
Y

− 1
σ

si αsAsi

(
Ksi

Lsi

)αs−1

(1 + τKsi
)R = (1− τYsi)Psi

(
σ − 1

σ

)
αs
Ysi
Ksi

MRPKsi = αs
σ − 1

σ

PsiYsi
Ksi

= R
1 + τKsi

1− τYsi
(A.56)

ω = (1− τYsi)PsY
1
σ
s

(
σ − 1

σ

)
Y

− 1
σ

si (1− αs)Asi

(
Ksi

Lsi

)αs

ω = (1− τYsi)Psi

(
σ − 1

σ

)
(1− αs)

Ysi
Lsi

MRPLsi = (1− αs)
σ − 1

σ

PsiYsi
Lsi

= ω
1

(1− τYsi)
(A.57)
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The above equations are also used to find the values of the distortions faced by each
firm:

1 + τKsi
=

αs
1− αs

ωLsi
RKsi

(A.58)

1− τYsi =
σ

σ − 1

ωLsi
(1− αs)PsiYsi

(A.59)

From the firm’s production function, the physical and revenue productivity are ob-
tained:

TFPQsi = Asi =
Ysi

Kαs
si L

(1−αs)
si

(A.60)

TFPRsi = PsiAsi =
PsiYsi

Kαs
si L

(1−αs)
si

(A.61)

From Equations A.53, A.56, and A.57, we can show that TFPRsi is proportional to
the geometric mean of the marginal products of revenue of capital and labor:

TFPRsi = PsiAsi =
σ

σ − 1

(
R

αs

)αs
(

ω

1− αs

)1−αs (1 + τKsi
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σ
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1− αs

)1−αs
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αs(MRPLsi)
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)αs

1− τYsi

Using Equation A.47 in A.60, we get an expression that allows us to find the value of
Asi:

Psi = PsY
1
σ
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(A.62)
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The scalar κs = (PsYs)
− 1

σ−1

Ps
is not observed and can be set to 1.

Aggregate Calculations

MRPKs and MRPLs are the weighted averages of the marginal revenues of capital and
labor, respectively:

MRPKsi = R
1 + τKsi

1− τYsi

MRPKs =
R(

Ms∑
i=1

1− τYsi
1 + τKsi

PsiYsi
PsYs

) (A.63)

MRPLsi = ω
1

(1− τYsi)

MRPLs =
ω(

Ms∑
i=1

(1− τYsi)
PsiYsi
PsYs

) (A.64)

Given that, for an industry, Ks =
∑Ms

i=1Ksi and Ls =
∑Ms

i=1 Lsi and, for the repre-
sentative firm, K =

∑S
i=1Ks and L =

∑S
i=1 Ls, from Equation A.43, with P = 1, and the

distortions and marginal revenues of capital and labor obtained, we get:
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(A.65)
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Similarly:

Lsi =
σ − 1

σ
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(A.66)

The TFPRs is proportional to the geometric mean of the weighted average marginal
revenues of capital and labor for a sector and represents the observed TFPR:

TFPRs =
σ

σ − 1

(
MRPKs

αs

)αs (
MRPLs
1− αs

)1−αs

(A.67)

Considering that the sector is represented by a Cobb-Douglas production function:

Ys = TFPsK
αs
s L

1−αs
s (A.68)

TFPs =
Ys

Kαs
s L

1−αs
s

TFPs =

[∑Ms

i=1(AsiK
αs
si L

1−αs
si )

σ−1
σ

] σ
σ−1(∑Ms

i=1Ksi

)αs
(∑Ms

i=1 Lsi

)1−αs

TFPs =

[∑Ms

i=1(Asi
1−τYsi

(1+τKsi
)αs )

σ−1
] 1

σ−1(∑Ms

i=1

1−τYsi
1+τKsi

PsiYsi
PsYs

)αs
(∑Ms

i=1(1− τYsi)
PsiYsi
PsYs

)1−αs

TFPs =

[
Ms∑
i=1

(
Asi

TFPRs

TFPRsi

)σ−1
] 1

σ−1

(A.69)

If the marginal revenues of capital and labor are equalized among firms within the
same sector and, consequently, their revenue productivities, we obtain TFPRs = TFPRsi.
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Thus, from Equation A.69, we have that the efficient TFP of the industry will be:

TFPs =

[
Ms∑
i=1

(
Asi

TFPRs

TFPRsi

)σ−1
] 1

σ−1

TFPs =

 Ms∑
i=1

Asi σ
σ−1

(
MRPKs

αs

)αs
(
MRPLs

1−αs

)1−αs

σ
σ−1

(
MRPKsi

αs

)αs
(
MRPLsi

1−αs

)1−αs


σ−1

1
σ−1

As =

(
Ms∑
i=1

Aσ−1
si

) 1
σ−1

(A.70)

Combining Equations A.38 and A.68, the aggregate output of the economy can be
obtained as a function of the aggregate sectoral production factors and their TFP:

Y =
S∏
s=1

(TFPsK
αs
s L

1−αs
s )θs (A.71)

The aggregation of all sectors, using the Cobb-Douglas function in A.38, provides the
misallocation and allows for calculating the output gains for the economy:

TFPs =

[
Ms∑
i=1

(
Asi

TFPRs

TFPRsi

)σ−1
] 1

σ−1

TFPs
TFP ∗

s

=

[
Ms∑
i=1

(
Asi
As

TFPRs

TFPRsi

)σ−1
] 1

σ−1

Y

Y ∗ =
S∏
s=1

[
Ms∑
i=1

(
Asi
As

TFPRs

TFPRsi

)σ−1
] θs

σ−1

(A.72)
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