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Abstract

In this paper, we use the dynamic and arbitrage-free affine models for the term structure of

interest rates AFTSM′s to model nominal and real interest rates jointly. The approach allows

decomposing interest rates into expectations for future interest rates and the risk premium investors

compensate for buying long-term bonds. In addition, we analyze its ability to capture risk-adjusted

inflation expectations using it for inflation forecasting. The results suggest that the real and nominal

term premiums are time-varying and increase along maturities. Also, the risk-adjusted inflation

expectations outperform the FOCUS survey in long forecasting horizons.

JEL classification: C53; E43; G17.
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1 Introduction

The estimation of the inflation risk premium has proved to be a challenging problem (Breach

et al. , 2020). Models with different specifications or analyzing different periods have found different

results. For instance, with data before the 2008 financial crisis, estimations involving structural

models obtained results with a high magnitude of inflation risk premium (Ang et al. , 2008; Bekaert

& Wang, 2010; Chernov & Mueller, 2012). On the other hand, studies using more recent data suggest

premiums for the risk of inflation of smaller magnitude and sometimes even negative (Grishchenko

& Huang, 2013; Abrahams et al. , 2016; Breach et al. , 2020). Since the relation of yield curves

and the macroeconomics (Litterman & Scheinkman, 1991; Cochrane & Piazzesi, 2005; Ang et al. ,

2006; Cochrane & Piazzesi, 2009; Cieslak & Povala, 2011; Crump et al. , 2018; Bernanke, 1990), it

is essential to understand of the movements the term structure to improve forecasting, derivatives

pricing, hedging, and fiscal and monetary policy.

In this paper, we use an arbitrage-free affine Gaussian model for the term structure (ATSM) to

jointly model nominal and real interest rates, decompose the breakeven inflation, analyze the term

premium dynamics, and forecast inflation. For model estimation, we use the recent approach for

asset pricing based on linear regressions proposed by Adrian et al. (2015) and Abrahams et al.

(2016). They present a method that allows computational gains in estimating factor models for

the term structure while allowing the term premium to vary over time and serial dependence on

the factors. Several other studies that estimated ATSM-class models for other economies used

maximum likelihood (Joyce et al. , 2010; Kaminska, 2013; d’Amico et al. , 2018), which involves

high-dimensional nonlinear optimization over a maximum likelihood function that can have many

maxima locations (Hamilton & Wu, 2012). The approach proposed by Abrahams et al. (2016)

considerably reduces these difficulties in estimating models of this class. To our knowledge, no

study uses this procedure to address this question in the Brazilian economy.

The literature on the Brazilian economy suggests that the risk premium varies over time; see

Lima & Issler, 2003; Tabak & Andrade, 2003; Marçal & Pereira, 2007; Tabak, 2009 for early ref-

erences. Vicente & Graminho (2015) and Caldeira (2020), for instance, suggest that the inflation

risk premium is time-varying. However, Vicente & Graminho (2015) does not find evidence of a

liquidity premium in Brazil. Also, They suggest that the inflation risk premium is small for short

horizons and is time-varying for long horizons, and inflation expectations are the main component

of breakeven inflation. Surveys of expected inflation naturally emerge as a predictor of future in-

flation. See, among other (Ang et al. , 2007; Chun, 2012). The FOCUS survey, conducted by the

Central Bank of Brazil, emerges as the main competitor to forecasting inflation in our research,

see (de Carvalho et al. , 2009). Also, breakeven inflation is naturally a competitor; see (Vicente &

Guillen, 2013; Caldeira & Furlani, 2013).

Our innovation is in the method used for the estimation, which lies in the approach of Abrahams

et al. (2016). Our main findings can be summarized as follows. First, we disentangle the influence

of term premiums on nominal and real rates. Then, we show the decomposition of the BEIR

in expected inflation and inflation risk premium. Lastly, we use the derivation of the expected

inflation to predict the IPCA. Following the literature, the results suggest that the premiums are
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time-varying and increase along maturities. The inflation risk premium is also time-varying, with

negative values in specific periods. The expected inflation and the Focus survey outperform the RW

forecasts; however, the Focus approach is a major workhorse. The second section introduces the

Abrahams et al. (2016) AFNS model estimation following this introductory section. In the third

section, we present in-sample results, term premium results, and out-of-sample inflation forecasts.

In the fourth section, we conclude.

The paper is organized as follows. Section 2 describes the factor models used for modeling

the term structure and shows how to convert yield forecasts into bond return forecasts. Section

3 discusses a two-step estimation procedure for expected bond returns and for the conditional

covariance matrix of bond returns. Section 4 discusses the empirical applications to both portfolio

optimization and to VaR computations. Finally, Section 5 concludes.

2 Gaussian Affine Term Structure Models

Affine term structure models (ATSMs), since Duffee (2002), are the most commonly used class of

models in the literature for decomposing interest rates on government bonds. More recently, the

approach developed by Adrian et al. (2015) has been widely used to decompose interest rates

into their components: expectation and forward premium. This section presents an ATMS model

specification following the exposition of Abrahams et al. (2015) and Abrahams et al. (2016).

The price, at time t, of a zero-coupon bond with maturity n is denoted by P
(n)
t . As is common in

Gaussian models for the term structure, it is assumed that the vector of state variables is governed

by an autoregressive process of the type VAR(1):

Xt+1 − µX = Φ (Xt − µX) + νt+1, νt+1 ∼ N (0,Σ) (1)

where the shocks νt+1 are conditionally Gaussian, homoscedastic and independent over time. A

single pricing mechanism is introduced to enforce the absence of arbitrage which governs all traded

assets:

P
(n)
t = E

{
Mt+1P

(n−1)
t+1

}
. (2)

The stochastic discount factor Mt (pricing kernel) is a function of the short-term interest rate and

the risk perceived by the market:

Mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tΣ−1/2νt+1

)
, (3)

where rt = lnP
(n)
t denotes the risk-free interest rate that is continuously compounded. In Gaussian

ATSMs the log price, P
(n)
t , of a risk-free discount bond with remaining time to maturity n follows

logP
(n)
t = An +B prime

n Xt which implies that:

rt = δ0 + δ′1Xt. (4)
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The risk market price vector, λt, is an essentially affine function of the factors, as in Duffee (2002):

λt = Σ−1/2 (λ0 + λ1Xt) , (5)

where λ0 and λ1 have dimensions K × 1 and K ×K, respectively. Further defines:

µ̃ = (IK − Φ)µX − λ0, (6)

Φ̃ = Φ− λ1. (7)

These parameters govern the dynamics of the pricing factors under the risk-neutral and feature

prominently in the recursive pricing relationships derived below.

Given the above assumptions, it can be shown that interest rates on zero-coupon bonds are

affine functions of the factors (Ang & Piazzesi, 2003):

y
(n)
t = − 1

n

(
An +B′nXt

)
, (8)

where the coefficients An and Bn follow the recursive equations:

An = An−1 +B′n−1µ̃+
1

2
B′n−1ΣBn−1 − δ0, A0 = 0 (9)

B′n = B′n−1Φ̃− δ′1, B0 = 0K×1. (10)

Recently, there has been a growing interest in the literature in recovering expectations about

future inflation rates from the nominal and real term structure of interest rates (Abrahams et al.

, 2016; Breach et al. , 2020). Let Qt be a time price index t and let P
(n)
t,R be the price in t of an

inflation-indexed bond with face value 1, which pays the amount Qt+n

Qt
at maturity, t+n. The price

of such a title satisfies the following:

P
(n)
t,R = Et

{
exp (−rt − . . .− rt+n−1)

Qt+n
Qt

}
. (11)

Denote the log-inflation for one period by πt = ln
(

Qt

Qt−1

)
, therefore:

Qt+n
Qt

= exp

(
n∑
i=1

πt+i

)
. (12)

As in the case of nominal bonds, the prices of inflation-indexed bonds are exponentially affine in

terms of pricing factors:

logP
(n)
t,R = An,R +B′n,RXt. (13)

Thus, one-period inflation is also a linear function of the state variables:

πt = π0 + π′1Xt,
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where π0 is a scalar and π1 is a vector of dimension (K×1). According to Abrahams et al. (2016),

it is possible to derive recursions for the prices of inflation-linked bonds by rewriting the equation

(11) in terms of the price of another inflation-linked bond traded one period ahead:

PRt,n = Et
{

exp (−rt + πt+1)P
(n−1)
t+1,R

}
. (14)

Solving this equation and combining the coefficients, we arrive at the coefficients of Equation (13),

which are determined by the following system of equations in differences:

An,R = An−1,R +Bπ′
n−1,Rµ̃+

1

2
Bπ′
n−1,RΣBπ

n−1,R − δ0,R, A0,R = 0 (15)

B′n,R = Bπ′
n−1,RΦ̃− δ′1, B0,R = 0K×1. (16)

where δ0,R = δ0 − π0 and Bπ
n,R = (Bn,R + π1) ∀n. Making the parameters referring to the risk

market price, λ0 and λ1, equal to zero in the systems of equations (9)-(10) and (??)-(16), we obtain

the risk-adjusted pricing parameters (makes the mapping of the risk-neutral measure, Q, to the

physical measure, P ).

3 Estimation

3.1 Nominal bonds returns

Recall that log excess one-period holding returns are defined as

rx
(n−1)
t+1 = logP

(n−1)
t+1 − logP

(n)
t − rt. (17)

Plugging equation (13) we obtain

rx
(n−1)
t+1 = (An−1 −An − δ0)−

(
B′n + δ′1

)
Xt +B′n−1Xt+1 (18)

Thus, imposing the recursive equations yields (9) and (10)

rx
(n−1)
t+1 = αn−1 −B′n−1Φ̃Xt +B′n−1Xt+1, (19)

where

αn−1 = −
(
B′n−1µ̃+

1

2
B′n−1ΣBn−1

)
. (20)

3.2 Inflation-linked bonds returns

Log excess one period holding returns on inflation indexed securities are then given by

rx
(n−1)
t+1,R = logP

(n−1)
t+1,R − logP

(n)
t,R − rt. (21)
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Thus, imposing the recursive equations yields (15) and (16)

rx
(n−1)
t+1,R = αn−1,R − (Bn−1,R + π1)′ Φ̃Xt +B′n−1,RXt+1, (22)

where

αn−1,R = −
(
π0 + (Bn−1,R + π1)′ µ̃+

1

2
(Bn−1,R + π1)′Σ (Bn−1,R + π1)

)
. (23)

3.3 Initial Conditions

To obtain initial conditions note that adding inflation to both sides of equation (21) and combining

with equations (15), and (16), we obtain

rx
(n−1)
t+1,R + πt+1 = απn−1,R − (Bn−1,R + π1)′ Φ̃Xt + (Bn−1,R + π1)′Xt+1, (24)

where

απn−1,R = −
(

(Bn−1,R + π1)′ µ̃+
1

2
(Bn−1,R + π1)′Σ (Bn−1,R + π1)

)
. (25)

Stacking log excess holding period returns on nominal bonds from equation (19) and on inflation-

indexed bonds from equation (24) into the vector Rπ, we thus obtain

Rπt+1 = α−BΦ̃Xt +BXt+1, (26)

where

α = −
(
Bµ̃+

1

2
γ

)
, (27)

B = (B1, . . . , BNN
, B1,R + π1, . . . , BNR,R + π1)′ , (28)

γ =
(
B′1ΣB1, . . . , B

′
NN

ΣBNN
, (B1,R + π1)′Σ (B1,R + π1) , . . . , (BNR,R + π1)′Σ (BNR,R + π1)

)′
.

(29)

For initial conditions we use an approach similar to Adrian et al. (2015). To provide initial estimates

of our parameters we stack the observed return data as

Rπ = απι′T −BΦ̃X− +BX + E (30)

where Rπ is N × T,X−and X are K × T matrices of the stacked Xt−1 ’s and Xt ’s, respectively,

and ιT is a T × 1 vector of ones. Using the estimated residuals, Êols, from this regression we obtain

Σ̂e = T−1 · ÊolsÊ
′
ols. Our initial value for Φ̃ is

ˆ̃Φgls = −
(
B̂′olsΣ̂

−1
e B̂ols

)−1
B̂′olsΣ̂

−1
e B̂Φ̃ols (31)
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We then run an additional SUR on ιT and
(
− ˆ̃ΦglsX− +X

)
to obtain initial values for α and B

which we label α̂gls and B̂gls . Finally, we produce an initial value for µ̃ as

ˆ̃µgls = −
(
B̂′glsΣ̂

−1
e B̂gls

)−1
B̂′glsΣ̂

−1
e

(
α̂gls +

1

2
γ̂gls

)
, (32)

where γ̂gls is formed using B̂gls and Σ̂ (see equation (29)). We also need initial values for the

parameters (δ0, δ
′
1) governing the nominal short rate. Since the nominal short rate is directly

observed, this is simply achieved by performing an OLS regression of the short rate onto a constant

and the vector of pricing factors as in Adrian et al. (2015).

The parameters µ̃ and Φ̃ are related to the market price of risk parameters λ0 and λ1 via the

relationships µ̃ = (IK − Φ)µX − λ0 and Φ̃ = Φ − λ1. Since the pricing factors X are observed

and follow the joint vector autoregression given by equation (1), the OLS estimator of µX is simply

given by the sample mean of the factors X and the OLS estimator of Φ is obtained by regressing the

demeaned observations of X on their one period lags equation by equation. We stack the estimated

innovations into the matrix V̂ and construct an estimator of the state variable variance-covariance

matrix Σ̂ = T−1 · V̂ V̂ ′. Given estimates µ̂X and Φ̂, we then obtain estimates of the market price of

risk parameters via

λ̂0 =
(
IK − Φ̂

)
µ̂X − ˆ̃µgls,

λ̂1 = Φ̂− ˆ̃Φgls.
(33)

In our empirical application we skip the estimation of parameters via numerical maximization of

the likelihood as per Abrahams et al. (2016) and use the values of OLS initial conditions estimation.

Also we use the sum of squared real return fitting errors as the criterion function to estimate π0 and

π1 as per Abrahams et al. (2015). We provide explicit expressions for real yields as linear-quadratic

functions of π0 and π1 (given estimates for ˆ̃Φgls, ˆ̃µgls, δ̂0,ols, δ̂1,ols) which may be used for numerical

optimization. We then solve for the estimated π0 and π1 with the initial conditions via,

(
π̂0, π̂

′
1

)′
= arg min

π0,π1

NR∑
i=1

T∑
t=1

(
rx

(n−1)
t+1,R − g

(
π0, π1;

ˆ̃̃
Φgls, ˆ̃µgls, δ̂0,ols, δ̂1,ols, ni, t

))2

(34)

where g(·) can be found by using the recursive equations (15) and (16). Next section presents the

dataset and results.

4 Data and Results

We use end-of-month values from 2006:01 to 2022:04 for a total of T = 196 monthly observations.

In the estimation, a cross-section of NN = 11 one-month excess holding period returns for nominal

rates with maturities n = 6, 12, 24, · · · , 120 months and NR = 9 excess returns on NTNB′s with

maturities n = 24, · · · , 120 months is used. The SELIC rate is used as the nominal risk-free rate.

The price index Qt used to calculate NTNB′s payouts is IPCA index, which is available from the
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IBGE site. See Table 1 for statistics of interest rates.

Table 1: Descriptive Statistics

Maturities n = 12 n = 24 n = 36 n = 60 n = 120

Nominal Interest Rates

Mean 0.103 0.107 0.110 0.114 0.117

Std. Dev. 0.034 0.030 0.027 0.024 0.022

Skewness −0.514 −0.485 −0.404 −0.237 −0.052

kurtosis 2.484 2.671 2.828 3.053 3.205

ρ(1) 0.977 0.970 0.961 0.948 0.935

ρ(6) 0.775 0.767 0.751 0.713 0.649

Real Interest Rates

Avg. 0.048 0.053 0.055 0.057 0.058

Std. Dev. 0.027 0.024 0.022 0.018 0.014

Skewness −0.097 0.019 0.064 0.108 0.076

kurtosis 2.783 2.791 2.899 2.950 2.839

ρ(1) 0.962 0.964 0.964 0.966 0.962

ρ(6) 0.732 0.773 0.778 0.774 0.758

Following Abrahams et al. (2016) and various other authors (Adrian et al. , 2015; Joslin et al.

, 2011; Wright, 2011), we calculate principal components from yields and used as pricing factors

in the model. Specifically, two sets of principal components are used. First, KN = 3 principal

components are extracted from nominal yields of maturities n = 6, 12, 24, · · · , 120 months. Then

additional factors are obtained as the first KN = 2 principal components from the residuals of

regressions of NTNB′s yields of maturities n = 24, · · · , 120 months on the KN nominal principal

components. This orthogonalization step reduces the unconditional collinearity among the pricing

factors. In sum, K = KN +KR = 5 model factors. See Figure 1.

We show the in-sample results in Table 2 and Figures 2 and 3 . In general, the model fits better

to long maturities. The BEIR decomposition suggests that the real and nominal term premiums

increase along maturities. Also, the same happens with inflation risk premiums, which account for

the most movements of the BEIR in long maturities. Thus the expected inflation is quite flat for

long maturities and is highly correlated to BEIR in short maturities. See Figures 4, 5, and 6.

In Inflation forecasting, we use the model-implied inflation expectations as a predictor, rep-

resenting breakeven inflation rates adjusted for risk premia. For instance, we use the six-month

maturity to predict inflation 6-months ahead, and so on. The same is done to unadjusted NTNB

breakevens, which is a predictor of future inflation as well. The third is a simple random walk fore-

cast, which takes the average realized inflation over the prior n months as a prediction of average

inflation over the next n months. Forecasts are performed over horizons from 6 to 36 months, and

forecasting errors are computed using overlapping observations. The panel reports out-of-sample

results, using an eleven-year “learning period” over the period 2006:01–2016:06 and forecasting

over the period 20016:07–2022:04. So, 6-months ahead has 70 forecasts, 12-months ahead has 64

forecasts, 24 months ahead has 52 forecasts, and 24-months ahead has 40 forecasts. See Table
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Figure 1: Pricing factors: observed time series
Note: This figure plots the time series of the factors of our model. These are the first three principal components extracted
from the cross-section of end-of-month observations of nominal yields of maturities n = 6, 12, 24, . . . , 120 months. The fourth and
fifth factors are the first two principal components extracted from the cross-section of orthogonalized real yields of maturities
n = 24, . . . , 120, the residuals from regressing real yields on the first three principal components of the nominal yield curve.
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3 and Figure 7. The results suggest it is difficult to outperform the Focus survey; however, the

model-implied forecast follows closely. The next section presents concluding remarks.

Table 2: In-Sample Results

Note: This table compares the root mean squared error and mean absolute error of nominal and

real yield curves at one-year, three-year, five-year, and ten-year maturities. The first panel reports

in-sample results for the entire sample from 2006:01 to 2022:04

Maturities

Measure
n = 12 n = 36 n = 60 n = 120

RMSE : Nominal 0.157 0.073 0.135 0.148

RMSE : Real 0.472 0.096 0.132 0.070

MAE : Nominal 0.123 0.058 0.104 0.117

MAE : Real 0.375 0.075 0.099 0.057

Figure 2: Observed and Nominal Model-Implied Time Series
Note: This figure provides time series plots of observed and model-implied nominal yields at one-year, three-year, five-year, and
ten-year maturities. The observed yields are plotted by solid blue lines, whereas dashed green lines correspond to model-implied
yields.
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Figure 3: Observed and Real Model-Implied Time Series
Note: This figure provides time series plots of observed and model-implied real yields at one-year, three-year, five-year, and
ten-year maturities. The observed yields are plotted by solid blue lines, whereas dashed green lines correspond to model-implied
yields.
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Figure 4: Nominal Term Premium
Note: This figure provides time series plots of the decomposition of the observed nominal yield curves in risk-neutral yield and

yield term premium at one-year, three-year, five-year, and ten-year maturities.
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Figure 5: Real Term Premium
Note: This figure provides time series plots of the decomposition of the observed nominal yield curves in risk-neutral yield and

yield term premium at one-year, three-year, five-year, and ten-year maturities.
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Figure 6: BEIR Decomposition
Note: This figure shows the decomposition of breakeven inflation rates into the model-implied expected inflation and the inflation
risk premium. The panels show this decomposition at one-year, three-year, five-year, and ten-year maturities.
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Table 3: Inflation Forecasting
Note: This table compares three models’ root mean squared error for predicting future inflation

(IPCA). The first uses the model-implied inflation expectations derived in Section 2. These represent

breakeven inflation rates adjusted for risk premia. The second method takes unadjusted breakevens

as a predictor of future inflation. The third is a simple random walk forecast, i.e., it takes the average

realized inflation over the prior n months as a prediction of average inflation over the next n months.

Forecasts are performed over horizons from 6 to 36 months, and forecasting errors are computed

using overlapping observations. The panel reports out-of-sample results, utilizing an eleven-year

“learning period” over the period 2006:01–2016:06 and forecasting over the period 20016:07–2022:04.

So, 6-months ahead has 70 forecasts, 12-months ahead has 64 forecasts, 24-months ahead has 52

forecasts, and 24-months ahead has 40 forecasts. Bold values are statistically significant by at least

5%, according to Giacomini & White (2006) test.

Horizons

Model
n = 12 n = 36 n = 60 n = 120

RandonWalk 2.743 4.320 4.487 4.295

Focus 0.842 0.749 0.747 0.848

Modelforecast 0.933 0.782 0.788 0.839

Breakevens 0.989 0.788 0.850 0.873
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Figure 7: Cumulative Squared Prediction Error
Note: This figure shows the cumulative squared prediction error of Random Walk, Focus, Model-Implied Expected Inflation, and

BEIR forecasts at one-year, three-year, five-year, and ten-year maturities.
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5 Concluding remarks

We estimate an arbitrage-free Gaussian model for the term structure of the yield curve that allows

joint modeling of nominal and real interest rates. The model enables the decomposition of BEIR

into expectations for inflation and risk premium. In-sample results suggest that the term premiums

are time-varying and increase along maturities, which include negative values. The risk-adjusted in-

flation expectations outweigh unadjusted BEIRs and a Random Walk in the out-of-sample inflation

forecast. The Focus survey is a benchmark challenging to outperform. However, the model-implied

predictions have better results in long horizons.
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