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Abstract

In this article, we show how the use of the ‘no distortion at the top’
property, in addition to optimality conditions from Araujo, Vieira, and
Calagua (2022, Economic Theory, 1-26), allows to solving the model
of optimal regulation of a firm that has private information about
its cost and demand functions, introduced by Lewis and Sappington
(1988, The RAND Journal of Economics, 438-457).
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1 Introduction

Screening problems arise in several economic situations, including optimal
taxation, nonlinear pricing, regulation of monopolists, and auctions. Most
of the literature has modeled the private information of the agent by a
parameter in one dimension. However, in many situations, it is required to
consider multiple dimensions to model the agent’s characteristics accurately.
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In one-dimensional models, the Spence-Mirrlees or single-crossing condition
allows order the types by their marginal valuation for the principal’s instrument.
In multiple dimensions, the lack of an exogenous order among types makes
it difficult to solve the problem. Thus, compared to one-dimensional models,
there are few examples with analytical solution. We refer to Laffont, Maskin,
and Rochet [1987], Basov [2001], and Araujo, Vieira, and Calagua [2022a],
who have developed different techniques to obtain the solution.

One of the first screening models with bidimensional types was proposed
by Lewis and Sappington [1988]. The authors modeled the regulatory policy
of a monopolist firm with private information about both costs and demand,
where the contract consists of the unit price to be charged and the subsidy
received from the government. Lewis and Sappington’s analysis led to a
solution that Armstrong [1999] noted was incorrect. However, Armstrong did
not provide the correct solution. Additionally, Armstrong [1999] conjectured
that in the optimal contract, a positive mass of types should be excluded,
like in the nonlinear pricing setting (see Armstrong [1996]). That is, if the
firm’s parameters belong to a certain region of positive measure, the firm will
select a contract in which there will be no production because at the given
price there will be no demand. Nevertheless, Calagua [2023] obtained the
numerical solution of this model, and shows that such an exclusion feature
is not present.

In this work we obtain the correct analytical solution of the model of Lewis
and Sappington [1988]. The analysis is based on the necessary optimality
conditions from Araujo, Vieira, and Calagua [2022a], which are also sufficient
for optimality as Perez Vilcarromero [2022] has proved. Although one of the
main assumptions of Araujo, Vieira, and Calagua [2022a] is not valid, we
can manage this issue by using the ‘no distortion at the top’ property. The
solution obtained confirms the numerical approximation from Calagua [2023].
The relevant conclusions are, as mentioned, that it is not optimal to exclude
a positive mass of agents, and that price is almost always above marginal
cost.

The ‘no distortion at the top’ property refers that the type of agent that
gets the maximum allocation has no distortion with respect to the allocation
with complete information. In one dimension, single-crossing is sufficient
for this property but is not necessary (see Vagliasindi [1996] for a model of
finite types). Araujo and Moreira [2010] analyzed a model without single-
crossing and concluded that there is no distortion at the middle. There are
also examples in Schottmüller [2015] and Araujo, Vieira, and Parra [2022b]
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without single-crossing where can be no distortion at the top, and examples
with distortion for all the types. In the two-dimensional model we consider,
the prevalent assumption is that single-crossing holds in each parameter
direction. Whit this assumption, Araujo, Vieira, and Calagua [2022a] and
Perez Vilcarromero [2022] showed that the dimensionality of the optimal
allocation can be reduced to one, and therefore the ’no distortion at the top’
property is expected to hold1.

The plan of the paper is as follows: Section 2 describes the regulation
model proposed by Lewis and Sappington [1988]. Section 3 summarizes the
optimality conditions of Araujo, Vieira, and Calagua [2022a], extended by
Perez Vilcarromero [2022], for a general formulation of a screening problem.
Section 4 is devoted to obtaining the solution of the model. Conclusions are
given in Section 5.

2 Lewis and Sappington’s model

In the framework of the regulation of a monopolistic company, Lewis and
Sappington [1988] considered that the demand for the firm’s product q =
Q(p, a) and the costs of producing output q, C(q, b), involve the firm’s private
information parameters (a, b) distributed over Θ = [a, a]× [b, b] according to
a strictly positive density function ρ(a, b).

The regulator offers the firm a menu of unit prices p and corresponding
subsidy t conforming to the firm’s type is revealed. The profit of the firm
of type (a, b) is pQ(p, a) − C(Q(p, a), b) + t. The profit reservation level is
type independent and normalized at zero. It is assumed that the regulator
can ensure that the firm serves all demand at the established prices. The
regulator’s objective function is the expected consumer surplus net of the
transfer to the firm∫ a

a

∫ b

b

{Π(Q(p(a, b), a), a)− p(a, b)Q(p(a, b), a)− t(a, b)}ρ(a, b)db da (1)

where Π(Q, a) =
∫ Q

0
P (ξ, a)dξ, and P (·) denotes the inverse demand curve.

The regulator’s problem is to design the menu of contracts (p(a, b), t(a, b))

1A general result of ’no distortion at the top’ as a necessary condition in multiple
dimensions is under construction.
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to maximize (1) subject to individual rationality

p(a, b)Q(p(a, b), a)− C(Q(p(a, b), a), b) + t(a, b) ≥ 0

and incentive compatibility constraints

p(a, b)Q(p(a, b), a)−C(Q(p(a, b), a), b) + t(a, b) ≥
p(â, b̂)Q(p(â, b̂), a)− C(Q(p(â, b̂), a), b) + t(â, b̂)

Lewis and Sappington derived a solution for the particular example

Q(p, a) = α− p+ a , C(q, b) = K + (c0 + b)q (2)

with α,K and c0 positive constants and a uniform distribution over
Θ = [0, 1]2. However, in Armstrong [1999], the author noted that Lewis and
Sappington’s solution for this example was incorrect, but without solving it
correctly.

In order to fit the formulation of the screening problem as in Araujo,
Vieira, and Calagua [2022a] and Perez Vilcarromero [2022] to apply the
optimality conditions, we introduce the following change of variables:

v(p, a, b) := pQ(p, a)− C(Q(p, a), b)

H(p, a) := pQ(p, a)− Π(Q(p, a), a)

V (a, b) := v(p(a, b), a, b) + t(a, b)

Now, the regulator’s problem can be written as (notice that the new variable
V is the firm’s profit)

max
p(·),V (·)

∫ a

a

∫ b

b

{v(p(a, b), a, b)−H(p(a, b), a)− V (a, b)}ρ(a, b)db da (P)

subject to

(IR) V (a, b) ≥ 0 ∀ (a, b) ∈ Θ

(IC) V (a, b)− V (â, b̂) ≥ v(p(â, b̂), a, b)− v(p(â, b̂), â, b̂) ∀ (a, b), (â, b̂) ∈ Θ

3 Optimality conditions

We briefly expose of the methodology in Perez Vilcarromero [2022], that
extends Araujo, Vieira, and Calagua [2022a], to obtain optimality conditions.
Consider the screening problem (P) for a general density ρ and Θ = [0, 1]2.

The basic assumptions are
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1. the constant signs of va and vb

2. the constant signs of vpa and vpb (single-crossing in each direction).

The first assumption is used to eliminate IR constraints and express the
objective function just in terms of the instrument variable. This assumption
is not guaranteed in Lewis and Sappington’s model. However, we only need
V (a, b) expressed in terms of the minimum value of V reached at some corner,
say

V (a, b) = V (1, 1) +

∫ b

1

Vb(a, ξ)dξ +

∫ a

1

Va(ξ, 1)dξ (3)

Integrating (3) over the type set, using the envelope theorem2 and integration
by parts we obtain :∫ 1

0

∫ 1

0

V (a, b)ρ(a, b)dadb =V (1, 1)−
∫ 1

0

∫ 1

0

F2(a, b)vb(p(a, b).a.b)dadb

−
∫ 1

0

va(p(a, 1), a, 1)
(∫ 1

0

F1(a, b)db
)
da

where

F1(a, b) =

∫ a

0

ρ(ξ, b)dξ , F2(a, b)

∫ b

0

ρ(a, ξ)dξ

This will be useful if we know a priori that V is minimized at such corner,
which justifies the assumption of the constant signs of va and vb because, by
the envelope theorem, we can know the increasing directions of V . Thus,
assigning V (1, 1) = 0 is optimal and guarantees that all IR constraints are
satisfied.

2The incentive compatibility constraints can be expressed as V (a, b) being the optimal
value of the problem

max
(â,̂b)∈[0,1]2

{v(p(â, b̂), a, b) + t(â, b̂)}

in which (a, b) is the solution. From the envelope theorem we have

Va(a, b) = va(p(a, b), a, b) , Vb(a, b) = vb(p(a, b), a, b)
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Therefore, the objective on the screening problem (P) can be written as∫ 1

0

∫ 1

0

G(p(a, b), a, b)dadb+

∫ 1

0

va(p(a, 1), a, 1)
(∫ 1

0

F1(a, b)db
)
da (4)

where

G(p, a, b) =
(
v(p, a, b)−H(p, a) +

F2(a, b)

ρ(a, b)
vb(p, a, b)

)
ρ(a, b)

On the other hand, from the incentive constraints, the following PDE
must be satisfied: −vpb

vpa
pa + pb = 0 (5)

The idea is to find the optimal value of p over the norteast frontier Γ =
{0} × [0, 1] ∪ [0, 1]× 1, denoted by ϕ3. For this purpose, consider the initial
value problem

−vpb
vpa

pa + pb = 0

p|Γ = ϕ(r)

and solve it by using the method of characteristics, which allows for a
reparametrization of the type set in terms of the contour lines of p. Specifically,
following the method of characteristics, define a(r, s), b(r, s)) as the solution
of

as(r, s) = −vpb
vpa

(ϕ(r), a(r, s), b(r, s)) a(r, 0) = α(r)

(6)

bs(r, s) = 1 b(r, 0) = β(r)

where (α(r), β(r)) = (0, 2r) for r ∈ [0, 1/2] and (α(r), β(r)) = (2r − 1, 1) for
r ∈ [1/2, 1] describes the east frontier and the north frontier, respectively.

The method provides a change of variables (r, s) → (a(r, s), b(r, s)) such
that p(a(r, s), b(r, s)) = ϕ(r). That is, the solution of system (6) are the
contour curves of p(·, ·) parametrized by s ∈ [0, U(ϕ(r), r)].

3As in Araujo, Vieira, and Calagua [2022a] and Perez Vilcarromero [2022], the frontier
to considerer could be different.
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Observe that the tangent vector of the contour curve (a(r, s), b(r, s)) are

given by (−vpb
vpa

(ϕ(r), a(r, s), b(r, s)), 1).

The change of variables to re-express the objective leads to the following
equivalent problem:

max
ϕ(·)

∫ 1

0

(∫ U(ϕ(r),r)

0
G(ϕ(r), a(r, s), b(r, s))

∣∣∣∂(a, b)
∂(r, s)

∣∣∣ds+2va(ϕ(r), 2r−1, 1)T (r)1[ 1
2
,1]

)
dr

s.t. ϕ(·) is nonnegative and nondecreasing

where T (r) =
∫ 1

0
F1(2r − 1, b)db, and U(ϕ(r), r) denotes the upper limit of s

.
Thus, from the Euler equations, the optimal ϕ(·) must satisfy∫ U(ϕ(r),r)

0

Gp

vpa
(ϕ(r), a(r, s), b(r, s))ds = 0 for r ∈ [0, 1/2] (7)∫ U(ϕ(r),r)

0

Gp

vpa
(ϕ(r), a(r, s), b(r, s))ds = −T (r) for r ∈ [1/2, 1] (8)

4 Solving the Lewis and Sappington’s model

We focus on solving the problem (P) with uniform distribution of types over
Θ = [0, 1]2, and Q(p, a) and C(q, b) defined as in (2):

Q(p, a) = α− p+ a , C(q, b) = K + (c0 + b)q

Thus we have:

v(p, a, b) = −p2 + (a+ b+ α + c0)p− (α + a)(c0 + b)−K

Π(Q(p, a), a) = (α + a)(α− p+ a)− (α− p+ a)2

2

In view of vpa = vpb = 1, the assumption 1) is satisfied. This implies that
p(·, ·) is nondecreasing in a and b. Therefore, the ‘top type’ is (1, 1), that gets
the maximum price: p(1, 1) ≥ p(a, b) for all (a, b) ∈ [0, 1]2.
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The assumption 2) is not fully satisfied. From the envelope theorem we
have

Va(a, b) =va(p(a, b), a, b) = p(a, b)− c0 − b

Vb(a, b) =vb(p(a, b), a, b) = p(a, b)− α− a = −Q(p(a, b), a)

thus, we can be sure that Vb ≤ 0 (because Q ≥ 0). However, the sign of Va

is not a priori determined.
Recall that assumption 2) were needed to eliminate the IR constraints

since it provides information at which point the function V reaches the
minimum. We can ensure this by the following result, in which the ‘no
distortion at the top’ property is used.

Proposition 4.1. The firm’s profit V is nonincreasing over [0, 1]× {1}

Proof: For no distortion at the top, the price allocated to type (1, 1) must
maximize the social surplus in the scenario of complete information, in which
the utility of the regulator is Π(Q(p, 1), 1) − pQ(1, 1) − t and utility of the
monopolist is pQ(1, 1) − C(Q(p, 1), 1 + t. Then p(1, 1) must be the solution
of

max
p>0

{Π(Q(p, 1), 1)− C(Q(p, 1), 1)}

or

max
p>0

{(α + 1− c0 − 1)(α + 1− p)− (α + 1− p)2

2
−K}

Thus we obtain
p(1, 1) = c0 + 1 (9)

On the other hand, over the north frontier of the type set [0, 1]2 we have

Va(a, 1) = p(a, 1)− c0 − 1 ∀ a ∈ [0, 1] (10)

Since p(1, 1) = c0 + 1 is the maximum price, then

c0 + 1 ≥ p(a, 1) ∀ a ∈ [0, 1] (11)

Combining (10) and (11) we obtain Va(a, 1) ≤ 0 ∀ a ∈ [0, 1]. □

Therefore, V reaches the minimum at (1, 1). This guarantees the expression
in (3) and the validity to apply the optimality conditions.
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1

1 (1, 1)

Figure 1: Arrows represent the nondecreasing direction of the firm’s profit
V . While V weakly increases vertically over all the type set, horizontally it
is only over the north frontier as shown in Proposition 4.1.

The remaining analysis is quite simple. Due to the tangent vector of
the contour curves of an implementable p(·, ·) is constant (as(r, s), bs(r, s)) =
(−1, 1), the contour curves are lines with slope equal to -1.

The solution of system (6) is given by

a(r, s) = −s b(r, s) = s+ 2r for r ∈ [0, 1/2]
a(r, s) = 2r − 1− s b(r, s) = s+ 1 for r ∈ [1/2, 1]

Besides, by uniform distribution ρ(a, b) = 1, then F1(a, b) = a and
F2(a, b) = b. Thus,

G(p, a, b) = v(p, a, b)−H(p, a) +
F2(a, b)

ρ(a, b)
vb(p, a, b)

= −p2 + (a+ b+ α + c0)p− (α + a)(c0 + b)−K

+
(α + a− p)2

2
+ b(p− α− a)

Therefore
Gp

vpa
(p, a, b) = c0 + 2b− p

For r ∈ [0, 1/2], to determine U = U(ϕ(r), r), note that the contour line
(a(r, s), b(r, s)) = (−s, s+ 2r) intersects the south frontier when b(r, U) = 0,
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that is U(ϕ(r), r) = −2r. By applying (7) we have∫ −2r

0

(
c0 + 2(s+ 2r)− ϕ(r)

)
ds = 0

thus we obtain
ϕ(r) = c0 + 2r for r ∈ [0, 1/2] (12)

For r ∈ [1/2, 1], there is no need to use (8). This is because for r = 1/2 the
optimal value assigned to type (0, 1) is

ϕ(1/2) = p(0, 1) = c0 + 1 = p(1, 1) = ϕ(1)

Recall that the value of p(1, 1) was determined in (9). Therefore, since ϕ is
nondecreasing over [1/2, 1], we must have

ϕ(r) = c0 + 1 for r ∈ [1/2, 1] (13)

Returning to the original variables, due to a + b = 2r, we obtain that
optimal prices are given by

p(a, b) =

{
c0 + a+ b if a+ b ≤ 1
c0 + 1 if a+ b > 1

(14)

With this, the regulator’s objective takes the value: (c0 − α)2/2 + (c0 −
α)/2−K + 5/24, the optimal subsidy is given by

t(a, b) =

 (a+ b)2

2
− (α− c0)(a+ b) + α− c0 −

1

2
+K if a+ b ≤ 1

K if a+ b > 1

(15)
and the firm’s profit is:

V (a, b) =

 a2 + b2 − 1

2
+ (1− b)(α− c0) if a+ b ≤ 1

(a+ α− c0 − 1)(1− b) if a+ b > 1
(16)

Next, we provide the graphs of optimal prices p(·, ·), subsidy t(·, ·), firm’s
profit V (·, ·), productionQ(·, ·), and the difference between price and marginal
cost p(·, ·)− Cq(Q(·, ·), ·) for the case c0 = 1, α = 5, and K = 2 4.

4Calagua [2023] shows the graphs of the numerical solution for the same parameter
values.
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Conclusions

The solution obtained in (14) and (15) confirms the conclusions from the
numerical solutions given in Calagua [2023]. The most relevant are:

1. At the optimum, the firm produces a positive quantity regardless of its
type.

2. The regulator induces the firm to price above marginal costs for almost
all (a, b) types rather than a = 0 or b = 1 (i.e., such types with the a
priori lowest demand or such types with the highest costs).

3. The type of firm with the highest cost parameter receives zero profit.

4. By the optimal firm’s profit V , there is no exclusion of a positive mass
of types.

5. In the region of types (a, b) with a + b ≤ 1, the optimal price equals
the adjusted marginal cost (AMC), defined as

AMC(s) =

∫ s

0
Cq(Q(p(ã, s− ã), ã), s− ã)ρ(ã, s− ã)dã∫ s

0
ρ(ã, s− ã)dã

+

∫ s

0
F (ã, s− ã)dã∫ s

0
ρ(ã, s− ã)dã
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where s is such that a+ b = s ≤ 1, and F (a, b) =
∫ b

0
ρ(a, b̃) db̃.

6. In the region of types (a, b) with a + b > 1, bunching is observed in
price p(a, b) = c0 + 1, and subsidy t(a, b) = K (which is the firm’s
fixed cost). This subsidy feature in half of the realizations aligns with
the traditional policy regulation approach used in situations without
information asymmetry.

Points 3) and 4) are supported by the expression given in (16). Note
that, when α is sufficiently large relative to c0

5 (as presumed in Lewis and
Sappington [1988]), the firm’s profit V equals zero if and only if b = 1.

The most important conclusion is the no-exclusion feature in the optimal
contract. This is contrary to Armstrong’s conjecture and to Barelli, Basov,
Bugarin, and King [2014] result, which extended the Armstrong [1996] theorem
of generic desirability of exclusion. However, Barelli, Basov, Bugarin, and
King [2014] have considered prices to be a subset of [c0 + 1, α] for applying
their theorem, and this is not the case.

A detailed discussion of why the result in Armstrong [1996] about the
optimality of exclusion cannot be applied in this regulation model can be
found in Calagua [2023]. A rough explanation is that, while Armstrong
[1996] result was given for a monopolist as the principal that could obtain
more income from customers still in the market versus zero penalties from
customers excluded, the regulator has to assume a negative penalty when
excluding a type of firm.

About the point 5), Lewis and Sappington [1988] introduced the previous
definition of AMC(s) as the sum of the expected marginal costs given s and
the bidimensional version of the inverse hazard rate. They also provided
the following interpretation of the second term in AMC(s): “Intuitively,
this term captures the optimal mark-up of price above expected marginal cost.
The mark-up balances the expected losses from inefficiently low output with
the expected gains from reduced information rents that accrue to the firm
because of its private knowledge.”

Baron and Myerson [1982] obtained a conclusion related to ‘price equals
adjusted marginal cost ’ in their analysis of a model where the regulator faces
uncertainty solely about the firm’s cost function. According to their findings,
at the optimum, prices exceed marginal costs for all cost realizations except
the lowest one.

5It is enough that α > c0 + 1.
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