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Enhancing Grain Portfolio Risk
Management with GAMLSS and
MSGARCH
Aprimorando a Gestão de Risco de Portfólio de Grãos com GAMLSS e
MSGARCH
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Abstract This paper presents a novel method integrating Generalized Additive Models
for Location, Scale, and Shape (GAMLSS) with Bayesian Markov-Switching GARCH
(MSGARCH) models to enhance forecasting in commodity price returns, focusing on
grain portfolios. We leverage GAMLSS to model non-normal distributions of return
series, crucial for accurately simulating real options. These models then inform the
Bayesian MSGARCH framework, improving projections of returns and volatility, es-
sential for effective financial planning and risk management. This innovative approach
not only advances practical portfolio management but also contributes to the theoretical
development of real options theory. Demonstrating its efficacy, our methodology offers
a more informed, strategic approach to the complex world of commodity trading, bridg-
ing the gap between theoretical models and practical financial applications. Keywords:
Commodity Portfolio Management; GAMLSS; Monte Carlo Simulation; Bayesian MS-
GARCH; Real Options Theory; Financial Time Series
JEL Code: E3, C41, C43.

1. Introduction

The intricate world of financial portfolio management, particularly in the
realm of commodity grain portfolios, presents unique challenges and oppor-
tunities for financial analysts and portfolio managers. In such a context, the
selection of individual assets is often constrained by external factors, leading
to a focus on optimizing the existing portfolio mix. This paper delves into the
application of real options theory in financial planning for commodity grain
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portfolios, proposing an innovative approach that leverages the true probabil-
ity distributions of individual return series to enhance the efficacy of Monte
Carlo simulations.

The cornerstone of our approach lies in the utilization of Generalized
Additive Models for Location, Scale, and Shape (GAMLSS) (Stasinopou-
los and Rigby, 2007) to accurately model the probability distribution of each
return series. This methodological choice is driven by the need to capture the
unique characteristics of grain commodity returns, which often exhibit non-
normal distributions with significant skewness and kurtosis. By employing
GAMLSS, we can obtain a more realistic and nuanced understanding of each
commodity’s return distribution, which is crucial for effective risk assessment
and decision-making in portfolio management.

Incorporating these individualized probability distributions into computa-
tional simulations, particularly within the framework of Monte Carlo simula-
tions via Markov chains, marks a significant advancement in the application
of real options theory. This integration allows for a more precise and tai-
lored analysis of the portfolio, taking into account the distinct volatility and
risk profiles of each commodity. The use of a Bayesian Markov-Switching
GARCH (MSGARCH) (Ardia et al., 2019) model further enhances this ap-
proach. By setting the distributions identified by GAMLSS as priors in the
Bayesian MSGARCH model, we can create a robust and dynamic framework
that accurately projects returns and volatilities, thereby optimizing the finan-
cial planning process.

This methodology not only contributes to the practical aspects of portfolio
management but also enriches the theoretical underpinnings of real options
theory. It provides a novel perspective on how real options can be effectively
utilized in the context of grain commodity portfolios, where traditional asset
selection strategies may not be feasible. By integrating advanced statistical
modeling techniques with computational simulations, this research offers a
comprehensive and scientifically rigorous approach to portfolio optimization,
risk management, and strategic decision-making in the complex and often
unpredictable world of commodity trading.

In essence, this paper aims to bridge the gap between theoretical finan-
cial models and the practical realities of commodity portfolio management.
By leveraging the latest advancements in statistical modeling and computa-
tional simulations, we endeavor to provide portfolio managers with a pow-
erful toolset for navigating the challenges of the grain commodity market,
ultimately contributing to the advancement of real options theory and its ap-
plication in the field of financial portfolio management.
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2. Last findings in distributional discussion and financial time series
returns forecasting

Recent advancements in financial time series analysis encompass a range
of sophisticated methodologies, each contributing unique insights into market
dynamics, risk assessment, and portfolio optimization.

The application of Generalized Additive Models for Location, Scale, and
Shape (GAMLSS) in financial time series has been a significant development.
(Rigby and Stasinopoulos, 2005) introduced GAMLSS to model the proba-
bility distribution of return series, offering flexibility in distribution selection
and handling censored data. (Stasinopoulos and Rigby, 2007) further demon-
strated the GAMLSS framework’s efficacy in fitting highly skew and kurtotic
distributions in financial time series.

In the realm of real options theory, Monte Carlo simulations have been
instrumental. (Amédée-Manesme et al., 2013) showcased the effectiveness of
combining Monte Carlo simulations with options theory in real estate portfo-
lio valuations and risk management, enhancing financial assessment accuracy.

Forecasting financial return series, particularly for commodities, has seen
notable advancements. (Cotter et al., 2020) developed models for accurately
capturing the dynamics of commodity prices and their return distributions.
(Chandrasekara et al., 2016) provided insights into modeling return distribu-
tions for financial indices like Oil, Gold, and Cocoa using the scaled t distri-
bution.

The exploration of Markov Switching GARCH (MSGARCH) models in
financial time series has opened new avenues for understanding market volatil-
ities. (Ardia et al., 2019) introduced the MSGARCH package in R, facilitating
effective simulations, estimations, and risk management in financial markets.
This tool has been instrumental in analyzing exchange rate and stock market
return data.

Moreover, the application of Markov regime-switching models in finan-
cial time series has shed light on the significant impact of regime shifts on
market properties. (Cai, 1994) and (Otranto, 2016) have demonstrated how
these shifts profoundly affect the characteristics of financial time series, of-
fering a more comprehensive perspective on market volatility and its impli-
cations for investment strategies.

In conclusion, the integration of these diverse methodologies—from GAMLSS
and Monte Carlo simulations to MSGARCH and Markov regime-switching
models—has significantly advanced the field of financial research. These de-
velopments not only enhance our understanding of market dynamics but also
equip financial analysts and investors with sophisticated tools for portfolio
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optimization and risk management. The collective insights from these studies
lay a solid foundation for future research in financial time series modeling,
paving the way for more informed and strategic investment decisions.

3. Methodology

In this section, we introduce the Generalized Additive Models for Lo-
cation, Scale, and Shape (GAMLSS) framework (Stasinopoulos and Rigby,
2007)). This advanced statistical modeling technique extends beyond tradi-
tional regression analysis by allowing for the explicit modeling of not only
the mean (location) but also other distribution parameters such as scale, skew-
ness, and kurtosis. The GAMLSS framework is particularly suited for data
sets with complex, non-normal error distributions and offers enhanced flexi-
bility over traditional models.

This research utilizes the Generalized Additive Models for Location, Scale,
and Shape (GAMLSS) framework, a sophisticated approach for statistical
analysis that accommodates non-normal and complex error distributions. GAMLSS
extends traditional regression models, enabling the modeling of the entire dis-
tribution of the response variable, encompassing the location (µ), scale (σ ),
and shape parameters (ν ,τ).

Y ∼ D(µ,σ ,ν ,τ),

µ = g−1
1 (X1βββ 1 + s1(x1)),

σ = g−1
2 (X2βββ 2 + s2(x2)),

ν = g−1
3 (X3βββ 3 + s3(x3)),

τ = g−1
4 (X4βββ 4 + s4(x4)),

In GAMLSS, selecting the appropriate probability distribution for the re-
sponse variable is crucial. The selection process involves:

1. Considering a range of distributions (Normal, Binomial, Poisson, etc.).

2. Fitting the GAMLSS model to the data using each distribution.

3. Comparing the model fits using criteria such as the Generalized Akaike
Information Criterion (GAIC), Bayesian Information Criterion (BIC)
or Deviance.

4. Choosing the distribution that provides the best fit based on these crite-
ria.
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The GAMLSS-estimated distributions are integral as priors in the Bayesian
Markov-Switching GARCH (MSGARCH) model (Ardia et al., 2019)). This
synergetic approach, combining GAMLSS and Bayesian MSGARCH, allows
us to construct a more comprehensive and nuanced model of financial series
volatility.

3.1 Markov-Switching GARCH Model

In our study, we explore a novel methodological synthesis that integrates
the probabilistic findings from the GAMLSS framework into the Bayesian
MSGARCH model. This approach aims to utilize the estimated distributions
from GAMLSS as informative priors in our Bayesian MSGARCH model, en-
hancing the analysis of financial time series, particularly in assessing volatil-
ity dynamics.

Prior Setting in Bayesian MSGARCH:

Prior(θ) = GAMLSS-Estimated Distribution(µ,σ ,ν ,τ),

where θ represents the parameter set of the MSGARCH model. The prior
distribution is informed by the GAMLSS estimates for µ (location), σ (scale),
ν , and τ (shape parameters). It is important to note that while GAMLSS
provides a comprehensive analysis of the distributional characteristics of fi-
nancial returns, its direct application as priors in MSGARCH requires care-
ful consideration. The parameters in GAMLSS do not directly correspond
to the volatility dynamics typically modeled in MSGARCH. Therefore, our
approach focuses on leveraging the distributional insights from GAMLSS to
inform the broader structure and parameterization of the MSGARCH model,
rather than a direct parameter-to-parameter translation.

Bayesian Inference:

Posterior(θ |Data) ∝ Likelihood(Data|θ)×Prior(θ),

emphasizing the integration of GAMLSS-estimated distributions within
the Bayesian framework of MSGARCH. This methodological integration is
intended to enrich the MSGARCH analysis by providing a more nuanced
understanding of the underlying distributional properties of the financial time
series.

The Markov-Switching GARCH (MSGARCH) model represents a signif-
icant advancement in financial time series analysis by incorporating regime
shifts, essential for capturing the dynamic nature of financial markets. The
MSGARCH model is adept at modeling periods of varying volatility, reflect-
ing the real-world behavior of financial markets more accurately.
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Model Dynamics:

yt |(st = k, It−1)∼ D(0,hk,t ,ξk),

where D(0,hk,t ,ξk) denotes a distribution with zero mean and regime-
dependent variance and shape parameters. The variable st evolves according
to a Markov chain, capturing the state-dependent nature of financial volatility.

Regime Transition:

P(st = j|st−1 = i) = pi, j,

where pi, j represents the transition probability from state i to state j. This
Markovian structure enables the model to adapt dynamically to changes in
market conditions.

Volatility Dynamics:

hk,t = α0 +α1y2
t−1 +β1hk,t−1 + ...+βphk,t−p,

allowing for a flexible representation of volatility dynamics within each
regime.

This sophisticated approach to volatility modeling is crucial for effective
risk management and option pricing in financial markets, as it accounts for
the non-linear and regime-dependent nature of market volatility. Our method-
ology acknowledges the complexities and potential limitations of integrating
GAMLSS and MSGARCH models, aiming to utilize the strengths of both to
provide a more comprehensive understanding of financial time series behav-
ior.
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4. Results and discussion

In this section of our study, we initially focus on a portfolio of grain com-
modities, specifically examining the series of returns for corn. This choice
stems from the understanding that, contrary to Markowitz’s theory of in-
verse covariance in portfolio diversification, commodities in the same cate-
gory might not always exhibit such inverse relationships. By concentrating
on corn, a key commodity within this sector, we aim to shed light on spe-
cific market behaviors and trends that might differ from those observed in a
more diversified portfolio context. This targeted analysis allows for a nuanced
understanding of the corn market dynamics.

First of all, let´s inspect all selected time series in our portfolio:

Figure 1
Closing prices and respective returns for each time series data in selected portfolio

Figure 1 displays the time series plots for the closing prices and returns of
a selection of grain and livestock commodities. The commodities included are
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corn (ZC=F), oats (ZO=F), Kansas City wheat (KE=F), rough rice (ZR=F),
feeder cattle (GF=F), soybeans (ZS=F), soybean meal (ZM=F), and soybean
oil (ZL=F). Each plot is divided into two sections: the left side depicts the
closing prices, while the right side shows the returns.

The price plots exhibit volatility clustering, a common characteristic in
commodity markets, where periods of high volatility are followed by periods
of low volatility. Notably, corn (ZC.F.Close) shows significant price spikes,
which could be indicative of market responses to external factors such as
weather patterns, trade policies, and global demand shifts.

When examining the returns, corn (ZC.F.Close_ret) and others displays
periods of heightened activity interspersed with more stable phases, suggest-
ing a non-constant variance in the return series—a phenomenon that may be
effectively captured by our proposed GAMLSS and MSGARCH modeling
approach.

The statistical analysis of the return series for each commodity in our
portfolio is summarized in Table 1. This table presents the results of the
Jarque-Bera test, which assesses the normality of the distribution of returns,
alongside measures of skewness and kurtosis. Across the board, the p-values
indicate a rejection of the null hypothesis for normal distribution, confirm-
ing that the returns are not normally distributed and exhibit characteristics of
leptokurtosis.

Table 1
Distributional pattern of price returns of selected grains portfolio

Time Series Jarque-Bera p-value Skewness Kurtosis Distribution Type
GF=F 17180.20 0.00 0.58 12.19 Leptokurtic
KE=F 226.80 0.00 0.24 1.33 Leptokurtic
ZC=F 139867.89 0.00 -2.54 34.56 Leptokurtic
ZL=F 870.51 0.00 -0.28 2.70 Leptokurtic
ZM=F 34661.20 0.00 -1.77 17.03 Leptokurtic
ZO=F 66153.75 0.00 -1.84 23.74 Leptokurtic
ZR=F 374155.67 0.00 -3.01 56.81 Leptokurtic
ZS=F 7481.51 0.00 -1.06 7.79 Leptokurtic

Following the rejection of normality in our return series, as evidenced by
the Jarque-Bera test results, we proceeded to identify the most fitting distri-
butional patterns for each commodity in the portfolio. This step is crucial as
it informs the selection of appropriate priors for our Bayesian MSGARCH
models, ensuring that our volatility forecasts are grounded in empirically ob-
served behaviors of return series.

In our analysis, various distributions were fitted to the price returns of a
selected portfolio of grains. Table 2 presents the best-fit distributions for the
return series of each commodity, chosen based on the distributional charac-
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teristics revealed in Table 1. We employed various distribution families, in-
cluding Johnson SU, Generalized t, and Skew t types, to match the observed
leptokurtosis and skewness. Parameters such as location (µ), scale (σ ), and
shape (ν , τ) were estimated to fine-tune the distributions to the empirical data.

Table 2
Distributional pattern of price returns of selected grains portfolio

Ticker Family µ σ ν τ

GF=F ⇒ Feeder Cattle Johnson SU original 0.00 -4.88 0.02 0.07
KE=F ⇒ Hard Red Winter Wheat Exp. gen. β 2 (2nd kind) -0.00 -4.71 -0.04 -0.27
ZC=F ⇒ Corn Generalized t 0.00 -4.11 0.28 0.90
ZL=F ⇒ Soybean Oil Generalized t 0.00 -4.02 0.34 0.99

ZM=F ⇒ Soybean Meal skew t type 3 -0.00 -4.47 0.07 1.21
ZO=F ⇒ Oats skew t type 4 0.00 -4.14 1.28 1.50
ZR=F ⇒ Rough Rice SST 0.00 -4.20 0.05 0.22
ZS=F ⇒ Soybeans skew t type 4 0.00 -4.60 1.31 1.70

Each distribution is described by a set of parameters that collectively de-
fine its shape and scale. The parameter µ represents the location parameter,
analogous to the mean in a normal distribution, which indicates the central
tendency of the returns. The σ parameter is related to the scale of the distri-
bution, influencing the spread or variability of the returns.Each distribution is
described by a set of parameters that collectively define its overall behavior
and characteristics, providing a comprehensive framework for understanding
the statistical properties of the price returns for each commodity.

The parameters ν and τ are shape parameters. ν influences the heaviness
of the tails of the distribution, where lower values indicate heavier tails, sug-
gesting a higher probability of extreme returns. This is particularly relevant
in financial contexts where the risk of extreme market movements is a sig-
nificant concern. The τ parameter affects the peakedness or kurtosis of the
distribution, with higher values indicating a more pronounced peak, suggest-
ing a higher concentration of returns close to the mean.The parameters ν and
τ are shape parameters. ν influences the heaviness of the tails of the distribu-
tion, where lower values indicate more substantial tails. This feature is crucial
for modeling the probability of extreme return values, which is particularly
relevant in financial markets where tail risks cannot be ignored.

The specific families of distributions used – such as the Johnson SU, Ex-
ponential Generalized Beta 2, Generalized t, Skew t type 3, Skew t type 4, and
SST – were chosen based on their ability to capture the unique characteristics
of the return distributions for each commodity. These distributions provide
a nuanced view of the underlying dynamics of commodity prices, which is
essential for informed decision-making in commodity markets and financial
investment strategies.
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This narrative ensures that the reader is aware of where to find detailed
information on the probability density functions, highlighting the importance
of these details to the overall integrity of your econometric modeling. It also
emphasizes the rigor of your methodological approach.

The Bayesian estimation further refines our model, capturing the nuances
of volatility in the corn returns. The Markov-switching specification named
gjrGARCH_std is a testament to the complexity and the heterogeneity of the
regimes within the corn market. The Bayesian approach reveals a subtle inter-
play between the states, as evidenced by the posterior mean transition matrix,
which reflects a high degree of persistence within each regime.

The estimated parameters from the posterior sample underscore the dy-
namics within the corn market:

Posterior mean of parameters:
α0,1 = 0.0000, (SD = 0.0000)
α1,1 = 0.0474, (SD = 0.0271)

β1 = 0.8648, (SD = 0.0830)
ν1 = 5.5070, (SD = 0.5896)

The transition probabilities for remaining in the same state or switching
to another state are as follows:

P =

[
0.9953 0.0047
0.0269 0.9731

]
With stable probabilities of:

π =
[
0.8504 0.1496

]
The acceptance rate of the MCMC sampler at 27.4% and the DIC score

of -15502.9513 collectively affirm the robustness of the Bayesian estimation,
providing a reliable framework for volatility forecasting and risk assessment
in the corn market.

Parameter estimates indicate that the evolution of the volatility process
is heterogeneous across the two regimes. Indeed, we first note that the two
regimes report different unconditional volatility level by around 24,01287%
and 25,97128%.
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The intricacies of the corn market’s volatility are captured through the
regime-switching model, where the estimated volatility and regime probabil-
ities are visually represented in the attached graph. This graphical represen-
tation provides a clear depiction of the market’s dynamic nature, highlighting
the transitions between periods of low and high volatility.

Figure 2 offers a compelling visualization of the volatility regimes over
time, depicted by the red line indicating smoothed probabilities of the high-
volatility state. The black dots represent the actual volatility percentages ob-
served in the corn market. It is evident from the graph that the high-volatility
states correspond with periods of market turbulence, which are crucial for
traders and risk managers to identify and navigate.

Figure 2
Estimated volatility and regime probabilities for corn

The lower panel of Figure 2 illustrates the persistence and the frequency
of volatility spikes, with the y-axis reflecting the probability of being in a
high-volatility state. The clustering of spikes suggests that volatility is not
randomly distributed over time but tends to occur in bursts, followed by rela-
tively calmer periods.
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This behavior is consistent with the phenomenon of volatility clustering
commonly observed in financial time series and specifically modeled by our
GARCH-based approach.

Analyzing the upper panel, we notice that the smoothed probabilities (red
line) align closely with the observed volatility (black dots), indicating that
our model effectively captures the transition between regimes. This align-
ment also suggests that the model could serve as a predictive tool, providing
foresight into potential shifts in market conditions.

The posterior distribution of mixture and Markov-switching models of-
ten exhibits non-elliptical shapes which lead to non-reliable estimation of the
uncertainty of model parameters (see, e.g., (Ardia et al., 2009)). This invali-
dates the use of the Gaussian asymptotic distribution for inferential purposes
in finite samples.

Our results display this characteristic as shown in Figure 3 where we plot
2,500 draws of the posterior sample for the parameters α1,1 and α1,2.

Figure 3
Scatter plot of posterior draws from the marginal distribution of (α1,1,α1,2)>
obtained with the adaptive random walk strategy. The blue square reports the

posterior mean, and the red triangle reports the ML estimate.

The blue square reports the posterior mean while the red triangle reports
the ML estimate. An interesting aspect of the Bayesian estimation is that we
can make distributional (probabilistic) statements on any (possibly nonlin-
ear) function of the model parameters. This is achieved by simulation. For
instance, for each draw in the posterior sample we can compute the uncondi-
tional volatility in each regime, to get its posterior distribution.

Figure 4 displays the posterior distributions of the unconditional annual-
ized volatility in each regime.
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Figure 4
Histograms of the posterior distribution for the unconditional volatility in each

regime.

In the low-volatility regime, the distribution is centered around 10% per
annum. For the high-volatility regime, the distribution is centered around 80%
per annum. The 95% confidence bands given by the Bayesian approach are
[1.4%, 3.9%] and [4.8%, 11.1%], respectively. Notice that both distributions
exhibit positive skewness. Hence, relying on the asymptotic normal approx-
imation with the delta method would yield erroneous estimates of the 95%
confidence band of the unconditional volatility in each regime.

Having delved into the Bayesian estimation’s intricate details and its im-
plications for understanding volatility regimes, our analysis now progresses
to the Monte Carlo Markov Chain (MCMC) method. The MCMC technique
stands as a cornerstone of computational Bayesian statistics, facilitating the
estimation of complex models where traditional analytical approaches may
falter.

The MCMC method, particularly its application through the Metropolis-
Hastings algorithm, allows us to draw samples from the posterior distribution
of our model’s parameters, even when the distribution cannot be explicitly
defined. These samples form the basis of our Bayesian inference, providing
a numerical approximation to the posterior distributions that are otherwise
analytically intractable.

Building upon the robust framework established through Bayesian esti-
mation and MCMC methodologies, we turn our attention to the practical out-
comes of these simulations. Specifically, we examine the results pertaining to
the log-returns and conditional volatilities of corn prices, as projected by our
model.

Figure5 presents the observed and out-of-sample (OOS) forecasted log-
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returns for corn prices. The observed log-returns, depicted in blue, illustrate
the historical volatility experienced within the market. In contrast, the OOS
forecasted log-returns, represented in red, offer a window into the future
through the lens of our model’s probabilistic predictions.

Figure 5
Observed and OOS forecasting of log-returns for corn prices

It is evident from Figure 5 that the projected log-returns capture the essence
of market behavior, closely following the trends and fluctuations observed in
historical data. This congruence between observed and projected values un-
derpins the model’s capability to accurately reflect the market’s complexities
and to serve as a reliable tool for anticipating future movements.

Moving on to the conditional volatilities, Figure 6 contrasts the observed
volatilities against the forecasted volatilities, providing an assessment of how
well our model captures the dynamic risk profile of the corn market. The ob-
served conditional volatilities, shown in blue, highlight the periods of market
stress, which are critical for risk management purposes.

Figure 6 juxtaposes the observed conditional volatilities against those
forecasted by our model, offering a comparative view of the market’s an-
ticipated risk profile. The blue line traces the historical volatilities, reflect-
ing the market’s realized fluctuations over time. The red line, denoting pro-
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jected volatilities, provides insights into future expectations as inferred by the
model.

Figure 6
Observed and forecasted conditional volatilities for corn prices

The historical volatility pattern, characterized by pronounced spikes, serves
as a testament to the corn market’s susceptibility to sudden shifts in sentiment
and fundamentals. In contrast, the forecasted volatility suggests a relatively
calmer market outlook, potentially indicative of a period of stabilization or
the successful implementation of market-calming strategies.

However, it is imperative to approach these projections with cautious opti-
mism. While the forecasted reduction in volatility is encouraging, it is crucial
to acknowledge the inherent uncertainty in such predictions. Market condi-
tions can change rapidly due to a multitude of unforeseen factors, and thus,
the actual path of future volatility may deviate from these forecasts.

The MCMC simulation process underpinning these forecasts has been
carefully calibrated to capture the complex dynamics of the corn market. The
resulting projections are not merely statistical outputs; they embody a com-
prehensive analysis that considers the stochastic nature of market movements.

The insights gained from Figure 4 are invaluable for risk management
purposes. The observed conditional volatilities underscore the need for robust
hedging mechanisms to protect against market turbulence. Meanwhile, the
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projected conditional volatilities can inform strategic decisions, such as the
timing of entries and exits in the market, and the allocation of resources to
different risk management instruments.

Ultimately, the conditional volatility forecasts derived from our Monte
Carlo MCMC simulations serve as a critical input for portfolio optimization
and risk assessment. By providing a probabilistic view of future volatilities,
our model aids in the construction of resilient portfolios capable of withstand-
ing the vicissitudes of the commodities market.

In conclusion, the detailed analysis of both observed and projected volatil-
ities enriches our understanding of the corn market’s behavior. It highlights
the integral role of advanced econometric techniques in deciphering the com-
plexities of financial markets, thereby enabling more informed decision-making
for practitioners and stakeholders in the agricultural commodities trading space.

5. Final Considerations and Future Research Directions

This paper has unveiled a synergistic integration of Generalized Addi-
tive Models for Location, Scale, and Shape (GAMLSS) with Bayesian Markov-
Switching Generalized Autoregressive Conditional Heteroskedasticity (MS-
GARCH) models, aimed at refining the forecasting accuracy of commodity
price returns. By applying these advanced statistical tools within the specific
context of grain portfolio management, we have illustrated their collective
power in offering profound insights into financial time series.

The utilization of the GAMLSS framework has enabled us to accurately
model the non-standard distributional attributes characteristic of grain com-
modity returns. Concurrently, the Bayesian MSGARCH models have been
pivotal in offering dynamic and probabilistic forecasts of returns and volatil-
ity. The empirical validation of these methodologies showcases a significant
enhancement in simulation and prediction precision over traditional modeling
approaches.

In the practical application of these models, particularly within the corn
market, we have observed compelling market dynamics such as volatility
clustering and regime shifts. These phenomena underscore the necessity for
traders and risk managers to possess a nuanced understanding of these mod-
els. The Bayesian methodology, with its capacity for probabilistic forecasting,
emerges as a vital asset in the financial econometrics toolkit.

As our research journey concludes, the pathway for future investigation
unfurls with promising prospects. One such direction entails the exploration
of Bayesian simulation models, specifically assessing the variability in asset
distributions through Markov Chain Monte Carlo (MCMC) techniques. This
approach offers a fascinating avenue to examine the models’ adeptness at
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capturing and projecting the erratic peaks and troughs within return series,
thereby enhancing our comprehension of market dynamics and the predictive
reliability of financial models.

Further research could also extend the current modeling framework to
a broader spectrum of commodities and financial instruments, probing the
models’ efficacy across varied markets and asset classes. This exploration
would illuminate how these models fare in environments characterized by
differing liquidity and volatility levels.

Advancements in computational algorithms, spurred by the evolution of
machine learning and artificial intelligence, present another fertile ground for
research. There exists an opportunity to craft more refined and scalable al-
gorithms capable of managing extensive datasets, which, in turn, could yield
forecasts of unparalleled accuracy. Additionally, weaving macroeconomic in-
dicators and news sentiment into the modeling framework can provide a more
comprehensive perspective on the forces propelling market dynamics. This
holistic approach promises to substantially augment the predictive capabili-
ties of financial models, offering a richer analysis of market behavior.

Finally, with the financial landscape continually reshaped by regulatory
shifts and the escalating emphasis on sustainability and ethical investment
practices, it becomes imperative to assess their impact on commodity mar-
kets. Future studies could delineate how financial models might adapt to these
evolving paradigms, ensuring their ongoing relevance and utility.

In essence, our work not only furnishes the financial sector with prag-
matic tools for planning and risk management but also propels the theoretical
development of real options theory forward. We invite the academic and pro-
fessional finance communities to build upon our findings, venturing into the
untapped territories of financial econometrics that lie ahead.
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A. Appendix

Table A1
Summary of Key Research in Financial Time Serfies Analysis

Authors (Year) Focus Area Methodology Key Contributions
(Rigby and Stasinopoulos,
2005)

GAMLSS in Financial
Time Series

Statistical Model-
ing

Introduced GAMLSS for
flexible distribution mod-
eling and handling cen-
sored data

(Stasinopoulos and Rigby,
2007)

GAMLSS in Financial
Time Series

Statistical Model-
ing

Demonstrated efficacy in
fitting skew and kurtotic
distributions

(Amédée-Manesme et al.,
2013)

Monte Carlo Simulations
in Real Options

Simulation Enhanced real estate port-
folio valuations and risk
management

(Cotter et al., 2020) Forecasting Commodity
Prices

Time Series
Analysis

Developed models for
commodity price dynam-
ics and return distributions

(Chandrasekara et al.,
2016)

Forecasting Financial In-
dices

Time Series
Analysis

Used Scaled t distribution
for modeling financial in-
dices like Oil, Gold, and
Cocoa

(Ardia et al., 2019) MSGARCH Models in Fi-
nancial Time Series

Statistical Model-
ing

Introduced MSGARCH
package in R for market
volatility analysis

(Cai, 1994) Markov Regime-
Switching Models

Statistical Model-
ing

Analyzed the impact of
regime shifts on financial
time series properties

(Otranto, 2016) Markov Regime-
Switching Models

Statistical Model-
ing

Explored flexible Markov
regime-switching models
for economic time series
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Distributional PDFs for table 2

According to the work from (Rigby et al., 2017)

Johnson SU original:

f (x;γ,δ ,λ ,ξ )=
δ

λ
√

2π

√
1+
(

x−ξ

λ

)2
exp

(
−1

2

[
γ +δ sinh−1

(
x−ξ

λ

)]2
)

where

z = ν + τ sinh−1(s) = ν + τ log
[
s+(s2 +1)1/2

]
,

Exponential generalized beta 2 (EGB2):

fY (y|µ,σ ,ν ,τ) = ezν
[
σ |τB(ν ,τ)|(1+ ez)ν+τ

]−1

where

z =
y−µ

σ
,

and B(ν ,τ) is the Beta function. The parameters µ , σ , ν , and τ represent
the location, scale, and shape parameters, respectively.

Generalized-t

The probability density function (pdf) of the Generalized t distribution,
denoted by GT (µ,σ ,ν ,τ), is defined by:

fY (y|µ,σ ,ν ,τ) = τ

[
2ν1/τ Γ(1/τ,ν)

σ (1+ |z|τ/ν)(ν+1/τ)

]
for −∞ < y < ∞, where −∞ < µ < ∞, σ > 0, ν > 0 and τ > 0, and where

z =
y−µ

σ
,

and Γ(·) is the gamma function. The GT (µ,σ ,ν ,τ) distribution is sym-
metric about y = µ .

Skewed t type 3

The probability density function (pdf) for the Skew t type 3 distribution,
denoted by ST 3(µ,σ ,ν ,τ), is defined as:
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c
σ

[
1+
(

z2

ν

)− τ+1
2
]
, if y < µ

c
σ

[
1+
(

z2

ντ

)− τ+1
2
]
, if y ⩾ µ

where

z =
y−µ

σ
, c = 2ν

1/2B
(

1
2
,

ν

2

)−1

Skewed t type 4

The probability density function (pdf) of the Skew t type 4 distribution,
denoted by ST 4(µ,σ ,ν ,τ), is defined as:

fY (y|µ,σ ,ν ,τ) =


c
σ

[
1+
( z

τ

)2
]− ν+1

2
, if y < µ

c
σ

[
1+
( z

τ

)2
]− τ+1

2
, if y ⩾ µ

where

z =
y−µ

σ
, c = 2

[
ν

1/2B
(

1
2
,

ν

2

)]−1

SST (Skewed Student-t)

The probability density function (pdf) for the Skew t type 3 distribution,
denoted by ST 3(µ,σ ,ν ,τ), is defined as:

fY (y|µ,σ ,ν ,τ) =


c
σ

[
ν2

τ

]− (τ+1)
2
[
1+ z2

ν2τ

]− (τ+1)
2

, if y < µ

c
σ

[
τ

ν2

]− (τ+1)
2
[
1+ z2

ν2τ

]− (τ+1)
2

, if y ⩾ µ

where

z =
y−µ

σ
, c = 2

[
ν

1/2B
(

1
2
,

ν

2

)]−1
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