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Abstract

We propose second-order belief model of decision-making under ambiguity, that extends the

Salience Model of choice under risk (Bordalo et al., 2012). Our model is able to predict styl-

ized facts of the literature, such as likelihood insensitivity, the fact that people tend to overesti-

mate(underestimate) the expected probability of low(high)-likelihood events to happen. We also

predict the fourfold pattern of ambiguity attitudes, where decision-makers are usually ambiguity

averse for bets on high probability gains and low probability losses, and ambiguity seeking oth-

erwise. A key feature of our model is that ambiguity attitude is a result of the combination of:

(i) the outcome domain (gain or loss) of a bet; (ii) the expected probability of the events that

are relevant to the outcome of the bet; (iii) how many states of the world are deemed possible by

the Decision-Maker. So, there is no need for additional assumptions on our model to predict that

ambiguity attitudes change according to those three factors, in agreement with the experimental

and empirical literature. Furthermore, we include the context - represented by characteristics of

the choice set of the decision-making problem - as a variable that may affect preferences, in the

same spirit of the original Salience Theory.

1 Introduction

Since Ellsberg’s (1961) seminal thought experiments for choice under ambiguity, the decision-making

behavior under circumstances of high uncertainty about the probabilities of outcomes or relevant

events for a choice have been studied. Specifically, theoretical models that deal with decision under

ambiguity try to accomodate and/or describe decision-makers (DMs) behavior when dealing with

decisions involving uncertainty where assessing a unique probability distribution (even if subjective) of

events relevant to the outcomes of the possible courses of action is particularly complex, or information

about such probabilities is scarce and/or imprecise. The presence of ambiguity may affect preferences

in a non-obvious way (Machina, 2009). Moreover, ambiguity attitudes have received much attention as

a possible explanation for economic phenomena such as the equity premium puzzle (Rieger & Wang,

2012), stock market non-participation (Antoniou et al., 2015; Dimmock et al., 2016) and home bias in

portfolio choices (Dimmock et al., 2016; Ardalan, 2019).

We contribute to the theoretical literature by axiomatizing properties of a probability weight-

ing function that reflects DMs behavior for second-order probability represenations of decision under

ambiguity problems. The probability weighting function that we propose, together with common

value/utility functions such as Prospect-Theory (Kahneman & Tversky, 1979) is able to predict many

empirical regularities of the experimental literature, such as: (i) likelihood insensitivity, the idea that

under ambiguity DMs tend to distort the weighting of events in the evaluation of an act in the direction
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of a naive probability distribution (for example, a 50-50 naive probability distribution for a bet with

two possible outcomes) (Dimmock et al., 2013; Trautmann & van de Kuilen, 2017); (ii) a fourfold

pattern of ambiguity attitude, that describes how the ambiguity attitudes of individuals varies as a

function of the expected probability of an event and the domain of the outcome (gains or losses) associ-

ated with the event occurrence for a given act. For example, when comparing a risky (with objectively

know probability of win) and an ambiguous bet (with imprecise information on the probability of win)

that involve the possibility of gaining a positive value with small expected probability, DMs usually

tend to choose the ambiguous act (be ambiguity seeking). However, if the bet now involves the same

gain, but events with mid to high expected probability of the win outcome, now the DM will usually

prefer the risky bet (Trautmann & van de Kuilen, 2015).

More specifically, our model can be interpreted as relating the stylized facts above in the following

way: once faced with imprecise information about the probabilities of events that are relevant to the

outcomes of a number of alternative courses of action, the decision-maker ”fills” the information gap

with other information that she is able to assess from the choice set, such as the number of possible

events. This use of the number of possible states of the world induced by the choice set description

causes likelihood insensitivity, interpreted as the DMs distortion in weighting of the events toward

a naive equal probability for each relevant event deemed possible. Therefore, likelihood insensitivity

causes the fourfold pattern of ambiguity attitudes: for ambiguous acts, it causes an underweight of

high likelihood events, resulting in a pessimistic (optimistic) view of expected gains (losses), causing

ambiguity aversion (seeking) behavior. Conversely, ambiguous acts contingent on low likelihood events

are overweighted, causing ambiguity seeking (averse) behavior for gains (losses).

Thus, ambiguity attitude need not to be an assumption made before applying the model, as in

other second-order belief models (e.g., Klibanoff et al., 2005). In our model, the ambiguity attitude

is a result of the combination of the outcome domain, expected probability of events, and how many

states of the world are deemed possible (i.e., are non-null) by the decision-maker.

Moreover, our probability weighting function is also able to account for puzzles related to the

nonseparability of the ambiguity degree of combined events, such as Machina (2009) reversals. Machina

reversal examples highlight that, depending on the outcome-event pairs associated with each bet, it is

possible that two bets based on the same states of the world to have different degrees of ambiguity (or

even one of them being unambiguous and the other one ambiguous), and that is specifically related to

how the acts in a choice set associated events and outcomes.

The central idea of our paper of the choice set outcomes shaping the DM’s perception of the state-

space has been applied to other decision contexts. Specifically, the psychological rationale of bottom-up

attention, i.e., a stimulus caused by the specific context of a choice problem attracting the decision

maker’s attention “bottom up,” automatically and involuntarily, is the main driver of Salience Theory

of Choice Under Risk (STR) (Bordalo et al., 2021). As may be expected, our probability weighting

function is then particularly well suited to be applied to extend STR for Choice Under Ambiguity. We

explore this way to apply the probability weighting function as a theory of Choice Under Ambiguity

that has STR as a special case - when the decision collapses to risky acts. Salience Theory has also

already been tested and used to explain a variety of stylized facts, such as the tendency to take right-

skewed risks and avoid left-skewed ones (Kahneman & Tversky, 1979) and Allais paradoxes (Bordalo

et al., 2012).

To the best of our knowledge, our model is the first one that is able to predict likelihood insensitivity

as a function of characteristics of the choice set. Moreover, our model is able to simultaneously deal

with Machina reversals (Gul & Pesendorfer, 2013), and not only to accommodate (Klibanoff et al.,
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2005; Chateneuf & Faro, 2009; Chateneauf, Eichberger & Grant (2007); Wakker, 2010) but predict

the fourfold pattern of ambiguity attitudes observed in the empirical literature. We take advantage of

the rapid growth in the experimental and empirical literature on decision-making under ambiguity to

make our model more in line with the regularities in DMs behavior found in the literature.

The rest of this paper is organized as follows. Section 2 presents a running Ellsberg-urn example

that is going to be used throughout the paper to explain the concepts and consequences of our model;

Section 3 gives the preliminaries of our model: how our second-order belief approach describes decision

under ambiguity and some background on Salience Theory. Section 4 presents our Context-Weighting

model, already applying it as a generalization of Salience Theory of Choice Under Risk (Bordalo et

al, 2012). In the subsections within this section, we give the model’s preliminaries, postulates about

how DMs interpret second-order probability distributions and, whenever possible, illustrate how theses

postulates affect DMs preferences and weighting of act outcomes. For concreteness, we also provide a

parametric example of a Context-weighting function, and apply it to our running example and some

chosen modifications of it that help to illustrate our model’s properties. Section 5 illustrates how

Choice set characteristics, DMs beliefs (i.e., second order characteristics) and the Outcome Domain of

act payoffs influence ambiguity attitude in our model. We also analyze the Machina reversal problem

and how events with correlated probability are dealt with in our model. We follow with Section 6,

where we compare our model’s characteristics and results with other popular second-order belief models

in the literature. Finally, in Section 7 we draw conclusions and give suggestions for future research.

2 Running Example

In this section we present an Ellsberg urn like example to illustrate how the model can be applied

Suppose there is an urn with 12 balls. The decision-maker (DM) knows for sure that there are 3 red

balls and 3 green balls in the urn. The 6 remaining balls can be either black or yellow, in proportion

unknown to the DM. The DM interprets her lack of information about the right proportion of black

and yellow balls contained in the urn as each possible combination being equally likely. For example,

the DM believes the probability of the urn having 6 yellow balls (and no black balls) is the same as

the probability of it having 2 yellow balls (and 4 black balls). The DM is then offered the bets f0 and

fα, contingent on the color of a single ball drawn from the urn. Table 1 below describes the monetary

outcomes associated with each possible color of the drawn ball:

Red (p = 3/12) Yellow (p ∈ [0, 6/12]) Black (p ∈ [0, 6/12]) Green (p = 3/12)

f0 100 0 0 150
fα 0 100 0 150

Table 1: An Ellsberg-like ambiguity example (Example 1). We also refer to the example of this table
as the running example, throughout the text.

It is easy to see that the events ”a red ball is drawn” (Er) and ”a green ball is drawn” (Eg) are

unambiguous, whilst ”a yellow ball is drawn” (Ey) and ”a black ball is drawn” (Eb) are ambiguous.

However, note that the outcomes of act f0 are only contingent on unambiguous events: (i) Er (wins

$100 with probability 3/12); Eg (wins $150 with probability 3/12); E(y ∨ b) (gets $0 with probability

6/12). On the other hand, some of fα outcomes are contingent on ambiguous events. If the DM chooses

fα, she can: win $100 with some unknown probability, that can between 0 and 6/12 (Ey obtains); get

$0 with some unknown probability, that can between 3/12 and 9/12 (E(r ∨ y) obtains); win $150 with
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probability 3/12 (Eg obtains) - this last one the only unambiguous event-contingent outcome. Slightly

abusing terminology, we will refer to f0 as an unambiguous act, and fα as an ambiguous act, when

referring to our running example.

3 Preliminaries

3.1 Decision Under Ambiguity Representation

A choice under ambiguity is described by:

(i) a non-empty (countable) finite set S representing the states of the world, along with its Borel

σ-algebra A(S);

(ii) An arbitrary set of acts F = {f1, ..., fI}1, which constitutes the decision-maker’s (DM) choice

set. Each act is a mapping f : S → X, that assigns consequences x ∈ X to states of the world s ∈ S;

(iii) An arbitrary finite set of consequences X ⊂ R, representing the subset of payoffs induced by

the choice set F 2;

(iv) The set ∆(S) of all probability distribution measures on the measurable space (S,A(S)), along

with its Borel σ-algebra A(∆(S));

(v) A probability distribution measure µ : A(∆(S)) → P defined on the measurable space

(∆(S),A(∆(S))). This measure assigns a second-order probability to each first-order probability dis-

tribution P ∈ ∆(S).

Events E are subsets of S. For conciseness, we sometimes denote by xEy any act that yields x if

event E obtains, and y otherwise. We define a null event A ∈ A(S) as one satisfying the condition

fiAg ∼ fjAg, for all fi, fj , g ∈ F . This definition is similar to other Decision Under Ambiguity models,

such as Gul and Pesendorfer (2013). Similarly, a null probability distribution is any π0 ∈ ∆(S) for which

µ(π0) = 0. We define Π = {π ∈ ∆(S) : µ(π) > 0} as the set of non-null probability distributions and

A(Π) as its Borel σ-algebra. We typically assume that Π contains N elements, i.e., Π = {π1, ..., πN}.
Slightly abusing terminology, we also loosely refer to non-null probability distributions as plausible

distributions throughout the text. This setting follows closely other second-order beliefs models, such

as Klibanoff et al. (2005).

We denote the marginal compound probability of an event E under distributions µ(Π) and πi(E) as

µ(πi(E)) = µ(πi)·πi(E). The expected value of the probability of event E is represented as Eµ(Π(E)) =∑N
i=1 µ(πi) · πi(E), and its standard deviation is σ(µ(Π(E))) =

√∑N
i=1 µ(πi)(πi(E)− Eµ(Π(E)))2.

These concepts are frequently employed throughout the paper, as the valuation of an act contingent

on ambiguous events is dependent on the second-order µ distribution representation of the DM’s beliefs.

We now introduce the concept of an Act-Induced Partition. This definition is especially helpful

when dealing with sets of acts that have outcomes contingent on distinct events, since ambiguity is

significant only for events that play a role in determining an act’s outcome. In our ongoing example,

this distinction is easily made: for instance, event Ey is important for determining the outcome of

act fα, but only E(y∨b) (and not the events Ey and Eb separately) is essential for determining the

outcomes of f0. The Act-induced partition definition is particularly useful for handling such cases.

From now on, we denote the partition induced by an act fi as Pi.
1To avoid technical difficulties that do not add much value to our model, we assume: (a) that DM’s understand acts

that yield the same outcomes contingent on each state s ∈ S as reducible to a choice set without act-duplicates, i.e.,
F = {fi ∈ F ′ : ∀fj ∈ F ′fi ̸= fj}; (b) the choice set is non-trivial, i.e., fi ̸= fj for some fi, fj ∈ F

2formally, X =
⋃I

i=1 fi(S), i.e., is the union of the images of the available acts fi ∈ F for all possible states of the
world s ∈ S.
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Definition 1 (Act-Induced Partition) Let fi : S → X be an act such that fi ∈ F . Then, for any

x ∈ X, define Eix = {s ∈ S : fi(E) = x} as the set of events in S that are mapped to x ∈ X by fi.

Then, the fi Act-Induced Partition Pi is the partition of S that contains every Eix for each x ∈ X,

i.e., Pi = {Eix : x ∈ X}.

In other words, Pi is a partition of the state space S such that each subset of the partition corresponds

to a unique outcome in X under the act fi. This partition represents the way in which fi maps the

events of the state space to the outcomes in X.

Note that, by the definition of a partition of a set, and assuming the choice set F is non-empty,

then every Eix ∈ Pi is non-null. Second, for any act contingent on an ambiguous event, there must

be at least two events in its’ Act-Induced Partition (otherwise, the DM would know that the only

event s ∈ Eix obtains with probability 1). That is, for a discrete state-space S the cardinality of Pi

(|Pi| ∈ N) is greater or equal to 2 for any ambiguous act fi ∈ F .

For concreteness, let’s apply the definition to example 1. The act-induced partitions for each

act are determined by the outcomes induced by the acts, P0 = {{Er}, {Ey, Eb}, {Eg}} and Pα =

{{Er, Eb}, {Ey}, {Eg}}.
In agreement with models such as Prospect Theory (PT) and the Salience Theory of Choice Under

Risk (STR) model, the DM uses a value function v : X → R to evaluate payoffs, relative to the

reference point of zero3. We concentrate on a PT-like (as in Kahneman & Tversky, 1979) value

function exhibiting loss aversion, although alternative functions such as linear utility (with respect to

a reference point) (Bordalo et al., 2012) can also be utilized with similar outcomes. Following STR,

we denote xis as the monetary payoff yielded by the act fi if state s ∈ S obtains. xs = {x1s, ..., xIs} is

the set of payoffs implied by each act in F , conditional on the state s being true. x−i
s = {xjs}j ̸=i is the

set of payoffs implied by each act in (F \ fi) - i.e., all acts in F except act fi - whenever the true state

is s.

According to our preliminaries, our running example presented in the previous section could then

be represented in the following way:

(i) S = {Er, Ey, Eb, Eg} is the state-space. S Borel σ-algebra is

A(S) = {∅, {Er}, {Ey}, {Eb}, {Eg}, {Er, Ey}, {Er, Eb}, {Er, Eg}, {Eb, Ey}, {Eb, Eg}, {Ey, Eg}
, {Er, Ey, Eb}, {Er, Ey, Eg}, {Ey, Eb, Eg}, S};

(ii) The choice set is F = {f0, fα};
(iii) X = {0, 100, 150} is the set of consequences;

(iv) Π is the set of all probability functions associated with the measurable space (S,A(S)), i.e.,

∆(S) = {π(r), π(y), π(b), π(g) ∈ [0, 1] : π(r) + π(y) + π(b) + π(g) = 1}, where π(r), π(y), π(b), π(g) are
the (first-order) probabilities of Er, Ey, Eb, Eg being true, respectively. The set of non-null elements

of ∆(S) is Π = {Π1, ...,Π7}, with elements given in the Table 2 below;

(v) Assuming that the DM believes that each plausible ball composition of the urn is equally likely

to be true, µ(Π1) = µ(Π2) = µ(Π3) = µ(Π4) = µ(Π5) = µ(Π6) = µ(Π7) =
1
7 , and µ(Πq) = 0, for all

other Πq ∈ ∆(S) such that Πq ∩ (
⋃7
i=1 Πi) = ∅4.

3.2 Salience Representation

Following the STR Model, we define a continuous and bounded salience function for each state of the

world s ∈ S as ω : F → R. Given S and F , a function ω(xis, x
−i
s ) is considered a salience function if it

3Without loss of generality, other reference points may also be employed in our model.
4we will discuss second-order belief formation in section 5.2
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πr πy πb πg

Π1 3/12 0 6/12 3/12
Π2 3/12 1/12 5/12 3/12
Π3 3/12 2/12 4/12 3/12
Π4 3/12 3/12 3/12 3/12
Π5 3/12 4/12 2/12 3/12
Π6 3/12 5/12 1/12 3/12
Π7 3/12 6/12 0 3/12

Table 2: Non-null first-order probability distributions in our running example.

satisfies:

(i) Ordering: if xis = maxxs, then for any ϵ, ϵ′ ≥ 0, with at least one strict inequality:

ω(xis + ϵ,x−i
s − ϵ′) > ω(xis,x

−i
s )

if xis = minxs, then for any ϵ, ϵ′ ≥ 0, with at least one strict inequality:

ω(xis − ϵ,x−i
s + ϵ′) > ω(xis,x

−i
s )

(ii) Diminishing sensitivity: if xjs > 0 for all j, then for any ϵ > 0,

ω(xis + ϵ,x−i
s + ϵ′) < ω(xis, x

−i
s )

(iii) Reflection: for any two states s, s′ ∈ S s.t. xjs > 0 for all j, we have

ω(xis,x
−i
s ) < ω(xis′ ,x

−i
s′ ) ⇔ ω(−xis,−x−i

s ) < ω(−xis′ ,−x−i
s′ )

(i) and (ii) are the key properties to explain anomalies such as the Allais Paradox, while (iii) plays

a role in the determining the model’s predictions when there are negative payoffs. Another important

remark is that the average x̄−is =
∑
j ̸=i

1
I−1x

j
s can substitute the set x−i

s as an argument of the salience

function, while keeping the properties (i), (ii) and (iii). In other words, ω(xis, x̄
−i
s ) is also a salience

function (Bordalo et al., 2012). Without loss of generality, we will refer to ω(xis, x̄
−i
s )-type salience

functions in our examples throughout the paper.

The salience function is meant to represent how a stimulus attracts the DM’s attention “bottom

up”, that is, how perceived characteristics of a state of the world within a specific set of possible courses

of action may impact decision-making. This concept contrasts with the traditional economic approach,

which views attention as either unlimited or optimally allocated ”top-down” based on current goals

and expectations. This approach does not highlight that “bottom up” stimulus-driven attention may

compete with the DM’s “top down” goals (Bordalo et al., 2022). As Kahneman (2011, p. 324) puts it,

“our mind has a useful capability to focus on whatever is odd, different or unusual”. Salience Theory

calls the payoffs that draw the decision maker’s attention “salient”.

An example is a DM confronted with the decision of using $10 that he has in his pocket to buy a

lottery ticket for a 0.001% chance of winning a $1, 000, 000 dollar prize, or investing that money for a

sure outcome of $11 (the inicial $10 plus a $1 return). Even though the expected value of betting in

the lottery is $0 (= 0.001%× ($1, 000, 000− $10) + 99.999%× ($− 10)), clearly less than the sure $11

outcome of investing. In the standard Expected Utility Theory approach, it is evident that the risky

bet’s expected value being lower than the sure value of investing implies that any individual who is

not risk-seeking should choose to invest. However, in reality, just the perspective of winning such a

huge prize may tempt the DM to bet in the lottery instead.

That is an example of the high contrast between an outcome (receiving the lottery’s prize), condi-

tional on a state of the world being true (the numbers drawn in the prize draw match the DM’s ticket)

and a course of action chosen (buying the lottery ticket), compared to the same state outcome when

a different course of action is taken (getting $11 for investing). Salience theory interprets this as the
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state ”the numbers drawn in the prize draw match the lottery ticket” being highly salient, because

different choices lead to wildly different outcomes if this state is true. As a result, the state of the

lottery prize going to the available ticket may have more weight in the DM’s evaluation of his options,

making her more inclined to buy the ticket for a chance of winning that huge prize, as opposed to the

fear of regretting that she did not buy the lottery ticket that would have won the lottery.

A slight change to our running example illustrates how salience may affect weight the weight given

by the DM to each state, conditional on the acts’ outcomes. Say we add z > 0 to the outcome

associated with the unambiguous state sr for both acts (f0, fα) (Table 2 below).

Red (Er) Yellow (Ey) Black (Eb) Green (Eg)

f0 100+z 0 0 150
fα 0+z 100 0 150

Table 3: An Ellsberg-like ambiguity example (Example 2). The difference between this example and
our running example is that z > 0 is added to the outcomes associated with Er being true, for both
f0 and fα acts.

Then, by diminishing sensitivity, ω(xEr
) < ω(xEy

). That would result in an overweight of the

difference in outcomes when Ey is true. That is, the difference between $100 and $0 outcomes in favor

of fα when a yellow ball is drawn seems now more attractive than the $100+ z versus $0+ z difference

in outcomes when a red ball is drawn. That would lead to an overweight of the Ey event in the DM’s

choice, resulting in a more favorable view of the fα option. That is, if in example 1 f0 ≻ fα, then for

Salience Theory there exists some z > 0 such that f0,z ≺ fα,z. This representation sharply contrasts

with standard economic theory, specifically with the Sure-Thing Principle of Subjective Expected

Utility (SEU) Theory (Savage, 1954). For SEU, the addition of z as portrayed necessarily does not

change preferences.

All of that considered, the value function that represents the DM’s preferences and the effect of

Salience in their choice is given by:

V (fi) =
∑
s∈S psω(xs)v(x

i
s)

where ω(xs) is a salience function applied to state s, given the choice and consequence sets. v(xis)

is the value of the outcomes associated with the choice of act i if state s is true. ps is the probability

of state s happening. Since Bordalo et al. (2012) proposes a theory of choice under risk - not yet

considering the case of decision under uncertainty or ambiguity - they assume that ps are objective

and known probabilities that exist for each state s ∈ S. In our model, we build upon the relaxation of

that assumption.

4 The Model

4.1 Main Assumptions

Next we describe two main assumptions of our model. The first one concerns the representation of

preferences over constant acts - i.e., acts that do not involve risk and result in the same outcome no

matter what is the true state of the world. The assumptions assert that there is a value function that

represents the DM’s preferences over such acts, with the standard properties of other similar models.
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(A1 - Value Function on Acts) Let cxi , cxj be constant acts, with consequences xi, xj ∈ X for

any s ∈ S, respectively. Then, there exists a value function v : R → R, continuous, strictly increasing,

and normalized so that v(0) = 0 such that, cxi ⪰ cxj if and only if v(cxi) ≥ v(cxj ).

Our second assumption states that the choice problem analyzed with our problem is not trivial, i.e.,

there is at least one act that is not constant in the choice set.

(A2 - Nontriviality) Define a non-constant act f as one where f(si) ̸= f(sj) for some non-null

si, sj ∈ S, and a not-certain state of the world as s ∈ S such that µ(Πi(s)) < 1 for some non-null

Πi ∈ Π. Then, we assume there exists some non-constant act f ∈ F , with outcome contingent on at

least one not-certain state of the world s ∈ S.

With that taken care of, we can move to the main definition of our model in the next section.

4.2 Ambiguity Adjustment Function

Given our preliminary setting, we define a function Ψ that represents how probability weighting rep-

resenting preferences may be affected by event ambiguity5.

Definition 3 (Ambiguity Adjustment Function Ψ): Let S be a finite discrete state-space and A(S)

its Borel σ-algebra. Let fn : S → X be acts, where X ∈ R is an arbitrary set of consequences,

F = {f1, ..., fN} is a choice set and Pn is the partition of S induced by some act fn ∈ F . Let ∆(S)

be the set of all probability measures on (S,A(S)), µ a probability distribution measure on ∆(S),

µ : ∆(S) → P with finite variance, and Π = {πi ∈ ∆(S) : µ(πi) > 0} the set of non-null (first-order)

probability measures. Then, Ψ : µ → [0, 1] is an Ambiguity Adjustment Function if the following

properties hold:

P1(Degenerate Distribution Independence) For any non-null event E ∈ A(S), λ ∈ (0, 1),

degenerate µ1, µ2 and distribution measures µi, Ψ(µ1(E)) ≥ Ψ(µ2(E)) if and only if

Ψ(λ µ1(E) + (1− λ) µi(E)) ≥ Ψ(λ µ2(E) + (1− λ) µi(E)).

Moreover, under any distribution µ, for any null event E0, Ψ(µ(Π(E0))) = 0. And, for the universal

event ES = S Ψ(µ(Π(ES))) = 1.

P2(Comparative Second-Order Probabilities) For any non-null event E ∈ A(S), all λ, λ′ ∈
(0, 1) and degenerate distributions µ1, µ2, µ3, µ4 such that Ψ(µ1(E)) > Ψ(µ2(E)) and

Ψ(µ3(E)) > Ψ(µ4(E)), then Ψ(λ µ1(E) + (1− λ) µ3(E)) ≥ Ψ(λ′ µ1(E) + (1− λ′) µ3(E)) if and only

if Ψ(λ µ2(E) + (1− λ) µ4(E)) ≥ Ψ(λ′ µ2(E) + (1− λ′) µ4(E))

P3(Small-Distribution Continuity) For all µi, µj , µk satisfying Ψ(µi(E)) > Ψ(µj(E)) for an

event E ⊂ S, then there is λ ∈ (0, 1) such that:

Ψ(µi(E)) > Ψ(λ µk(E) + (1− λ) µj(E)) and Ψ(λ µk(E) + (1− λ) µi(E)) > Ψ(µj(E)).

P4(Sub-partition Invariance) For every act-induced partition Pi =
⋃n
i=1Ei induced by some

act fi, and some fixed µ,
∑
iΨ(µ(

⋃
E∈Ei

E)) = Ψ(µ(Ei)).

P5(Belief Symmetry) Let Pi =
⋃n
i=1Ei and Pj =

⋃n
j=1Ej be act-induced partitions for some

acts fi and fj , respectively. Then, the following holds:

(i) For all events E,E′ ∈ Pi, µ(E) = µ(E′) =⇒ Ψ(µ(E)) = Ψ(µ(E′)).

(ii) For every event E ∈ Pi
⋂
Pj and |Pi| = |Pj | (where |A| denotes the cardinality of a set A),

there is a unique y ∈ R : Ψ(µ(E)) = y.

5Definition 3 is valid for finite discrete state-spaces S. To an adaptation of this definition for continuous state-spaces,
see Appendix C.
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Properties P1, P2 and P3 are analogous to the Ordinal Event Independence, Comparative Proba-

bility and Small-Event Continuity postulates of Subject Expected Utility Theory (Karni, 2014, p.12).

P1 states that Ψ has to preserve the ordering of events weighting for any two degenerate distribution

measures µ1 and µ2, when they are mixed with a non-null distribution measure. P2 states that Ψ

should preserve the comparative ranking of ambiguity aversion between two mean-preserving spreads

of second-order probability distributions. P3 introduces a form of continuity of probability weighting

Ψ on the second-order distribution µ.

Property P4 makes sure that making further partitions (i.e., refinements of the Act-Induced Parti-

ion) of an event associated with an outcome x for some act f do not change the weighting (represented

by Ψ) of that outcome within this act, i.e., it doesn’t change the valuation of act f . In other words,

only event partitions that matter to the outcome x or to the description of the state-space S are rel-

evant to probability weighting. Finally, P5 makes sure that that the Ψ function is consistent in that:

(i) within an act, if the information about the compound probability of an event of any two events

is the same, their weighting is equal; (ii) if the same event is relevant to determine the results of two

distinct acts fi, fj and the Act-Induced Partitions of the acts are similar (in that they fave the same

cardinality), then their weighting is the same for both acts.

4.2.1 Illustrating Properties of the function

We proceed to give examples that illustrate why each postulate is important, and its’ consequences to

the representation of choice under ambiguity and preferences in this circumstances of decision-making.

Take another Ellsberg-urn like example. Suppose there is an urn with 12 balls. Then, define the

following degenerate second-order distributions of the urn: 4 red balls, 1 yellow ball and 7 black balls

(4R, 1Y, 7B) as µ1; 1 red ball, 4 yellow balls and 7 black balls (1R, 4Y, 7B) as µ2.

Given the payoff structure in the table below, it is reasonable to assume that, in a decision-making

situation where µ1 is true, f1 ⪰ f2 - and that happens because the event Er has more weight in the

decision (and so, the favorable outcome for f1 when Er is true prevails). This is represented in our

model by a higher probability weighting Ψ(µ1(Er)). Analogously, in another decision-making situation

where µ2 is true, it is reasonable to assume that f2 ⪰ f1. Combining the preferences of both decision

problems, Ψ(µ1(Er)) ≥ Ψ(µ2(Er)).

Red (Er) Yellow (Ey) Black (Eb)

f1 100 0 0
f2 0 100 0

Table 4: An Ellsberg-urn example. We call this Example 3.

Now, define an additional ball composition as µi: the DM knows there is between 4 and 6 red balls,

between 4 and 6 yellow balls, and between 0 and 4 black balls ([4,6]R, [4,6]Y, [0,4]B). Now, consider

the problem where the probability distribution is µi,1 = ([4, 5]R, [3, 4]Y, [4, 6]B). That means that we

can represent µi,1 as a convex combination of previous distributions: µi,1 = 1
2µ1 +

1
2µi. Analogously,

define µi,2 = ([3, 4]R, [4, 5]Y, [3, 5]B) = 1
2µ1 +

1
2µi.

Under µi,1, the probability of Er being true is at least 4/12 (and it may be 5/12 with positive

probability) - while under µ1 the probability of Er being true was precisely 4/12. Therefore, it is

reasonable to assume that, if under µ1 f1 ⪰ f2, under µi,1 also f1 ⪰ f2 - since the event that gives

a favorable outcome for f1 may be now more probable than in the previous situation, favoring the

act f1 even more. Moreover, since the only change that happened was in the compound probability

9



distribution of events, it is reasonable to assume that this means that Ψ(λµ1(Er) + (1− λ)µi(Er)) ≥
Ψ(µ1(Er)). Analogously, under µ2,i, it is sensible to presume that f2 ⪰ f1 still holds - as it happened

under µ2.

Because of this, it is reasonable to assume that the weighting function in such situations should

be such as Ψ(µ1,i(Er)) ≥ Ψ(µ1(Er)) ≥ Ψ(µ2,i(Er)) ≥ Ψ(µ2(Er)), where the two weighting functions

to the left represent the decision-making problems where f1 ⪰ f2. Rearranging the inequalities,

Ψ(µ1(Er)) ≥ Ψ(µ2(Er)) and Ψ(λ µ1(Er) + (1 − λ) µi(Er)) ≥ Ψ(λ µ2(Er) + (1 − λ) µi(Er)), as the

postulate P1 poses.

As for P2, the postulate makes sure that the ordering of the values of the function Ψ is independent

on the specific compound probability distributions, when these distributions are degenerate. For

concreteness, suppose the same setting of Example 3, but the following compound distributions: µ1 =

(10R, 0Y, 2B);µ2 = (8R, 2Y, 2B);µ3 = (4R, 2Y, 6B);µ4 = (2R, 2Y, 8B). It is reasonable to assume

the DM weights the state Er at least as much under µ1 (since there are 4 red balls in the urn, for

sure) than under µ2. That is interpreted in our model as Ψ(µ1(Er)) ≥ Ψ(µ2(Er)). Analogously, we

can also assume that Ψ(µ3(Er)) ≥ Ψ(µ4(Er)). Say λ = 3/4 and λ′ = 1/2. Then, using λ, λ′ to

construct convex combinations of µ1, µ2 we get the following marginal probabilities for Er: µ1,2,λ =

(3/4 µ1(Er) + 1/4 µ2(Er)) = (9.5R); µ1,2,λ′ = (1/2 µ1(Er) + 1/2 µ2(Er)) = (9R). Therefore, it is

reasonable to assume that Ψ(µ1,2,λ) ≥ Ψ(µ1,2,λ′).

That says something about the ordering of the weights of distributions µ: convex combinations that

give more weight to the higher(lower) weighted distribution, should be weighted higher(lower). In the

example, µ1 had the higher weighted Er, and λ gives more weight to that distribution than λ′ - that

is, in our model, higher Ψ. Analogously, we expect that logic to happen consistently for any µ, so that,

if we apply the same logic to µ3 and µ4 in the example, µ3,4,λ = (3/4 µ3(Er) + 1/4 µ4(Er)) = (3.5R);

µ3,4,λ′ = (1/2 µ1(Er) + 1/2 µ2(Er)) = (3R) imply Ψ(µ3,4,λ(Er)) ≥ Ψ(µ3,4,λ′(Er)).

Small-Distribution Continuity (P3) introduces a form of continuity for the Ψ function. It makes

sure that there is no distribution µi that is infinitely more (or less) weighted than some other dis-

tribution µj , insofar as we can always find some convex combination of µj and some µk that has

more (less) weight than µi, for some appropriately chosen λ. In the Example 3 setting, let µi =

([10, 11]R, [0, 1]Y, 1B);µj = ([0, 1]R, [0, 1]Y, 11B). It is, then, reasonable to assume that Ψ(µi(Er)) >

Ψ(µj(Er)), since it is certain that µi implies there are more red balls in the urn than µj . However, if

we choose an appropriate distribution, say µk = ([11, 12]R, [0, 1]Y, 0B), and an appropriate coefficient,

say λ = 3/4, we can construct a distribution that has more weight than µi for event Er. An important

remark is that the nontriviality assumption, specially in that there is some uncertainty about which is

the true event. For example, P3 would not apply for (12R, 0Y, 0B), since it implies it is certain that a

red ball is going to be drawn, and the choice does not involve risk. This is also why P3 highlights that

the property is valid for any non-null event that has involves some uncertainty of happening, i.e., the

event is a subset of the state-space S. Since our purpose is to design a theory to deal with decision

under risk and uncertainty, however, this should not be an issue.

We turn now to Sub-partition invariance, property P4. Differently than the first three properties,

this one is not analogous to any of the classic postulates of SEU about preferences. What this property

makes sure is that partitioning an event Ei ∈ Pi into non-null ”sub-events” Ej ∈ Ei such that⋃N
j=1Ej = Ei does not affect the weighting of outcomes. That is, refining further an event in a way

that is not relevant to the outcomes of fi nor the description of state-space S does not affect preferences.

For example, let’s take Example 3 setting, with µ = ([4, 6]R, [4, 6]Y, [0, 4]B). Now, suppose we write

the numbers zero or one in the red balls of the urn, even though the payoffs associated with Er are
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not changed, so that between 2 and 3 red balls have the number zero on it (Er0), and between 2 and

3 red balls have the number one (Er1) on it. We can then represent the distribution that takes into

account this difference as two separate states of the world as µ = ([2, 3]R0, [2, 3]R1, [4, 6]Y, [0, 4]B).

Since payoffs associated with Er under µ1 and associated with Er0 and Er1 under µ2 remain the same

- so that the refinement of the event Er into Er0 and Er1 is irrelevant to the evaluation of the act -

we can represent this modified urn’s payoffs as in the table below:

Red (Er,0) Red (Er,1) Yellow (Ey) Black (Eb)

f1 100 100 0 0
f2 0 0 100 0

Table 5: An Ellsberg-urn example. We call this Example 3.

What P4 states is that Ψ(µ(Er)) = Ψ(µ(Er0)) + Ψ(µ(Er1)), that is, that Decision-makers only

care about this kinds of event composition changes as long as they affect the outcomes associated with

them through the acts in the choice set.

Finally, we turn to the Belief Symmetry postulate, P5. It states a particular way in that the Ψ

function is consistent in weighting events. P5-(i) presume consistency between different events within

an act with the same compound probability of obtaining; and P5-(ii) implies a form of consistency for

the weighting of the same event between acts. Let’s go back to our running example. Suppose µ =

(3R, [0, 6]Y, [0, 6]B, 3G). Then, P5-(i) states that Ψ(µ(Er)) = Ψ(µ(Eg)) and Ψ(µ(Ey)) = Ψ(µ(Eg)),

which only stands to reason: since their marginal compound probability distribution is the same,

their weight in the decision-making process should also be the same. Now, take acts f0 and fα of

Table 4 example, and note that their act induced partitions are: P0 = {Er, Eg, E(y ∨ b)}, Pα =

{Ey, Eg, E(r ∨ b)}. There is one event Eg that is in both act-induced partitions. Besides, in both

cases there are three events in the Act-Induced partitions, so that the amount of relevant events in

determining the outcomes is the same in both cases. Therefore, P5-(ii) states that Ψ(µ(Eg)) has the

same value when applied to evaluate acts f0 and fα. Intuitively, P5 statements put together say that

events to which the DM has the exact the same marginal probability distribution information should

be weighted equally, if there is an equal amount of possible outcomes for the acts considered. Its

the information about the probability of the events and its’ comparison to other relevant events that

matter for weighting, and not the event itself.

4.2.2 General Evaluation Acts

Having defined our Ψ function, and applying it to generalize Salience Theory to Choice Under Ambi-

guity, we can now define the DM’s valuation of an act fi ∈ F :

V (fi) =
∑
s∈Pi Ψ(µ(Π(s))) ω(σ(xs)) v(x

i
s)

To make sure property P4 holds, we also define Ψ(µ(Π(s))) = 1/|E|·Ψ(µ(Π(E))) for any s ∈ E ∈ Pi.
That is, if the refinement of an event in a E ∈ Pi is not relevant in determining the outcomes of some

act fi, then we can just divide the weights of the event equally among each state s ∈ E.

Proposition 1 below states that we can define our decision under ambiguity model as one with

choice under risk (i.e., when µ is a degenerate distribution, in our model’s interpretation) as a specific

case.
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Proposition 1(Existence of Ψ that generalizes choice under risk) Let S be a finite state-space, and

A(S) its’ σ-algebra. Define ∆(S) as the set of probability measures on the (S,A(S)) space, and

µ : ∆(S) → P a (second-order) probability distribution measure on ∆(S). Define Π = {Πi ∈ ∆(S) :

µ(Πi) > 0}. Suppose µ is degenerate. Then, any Ψ function such that Ψ(µ(Π(s))) = πs for every

s ∈ S, where π : S → P is a probability measure on S. Moreover, πs = Eµ(EΠ(s)), i.e., πs is the

expected probability of state s being true.

This makes sure that, in situations of decision under risk, we can define a Ψ function that collapses

to a regular weighting by the objective probability of each event E relevant to evaluate each act. In

other words, this makes sure that our model is a generalization of Salience Theory of Choice Under

Risk (Bordalo et al., 2012). An example of Ψ function that satisfies not only postulates P1 through

P5 but also an additional postulate P6 - that introduces likelihood insensitivity in our model - is given

in section 4.2.3. A simpler - but not that interesting to our purposes - parametric example of function

that satisfies only postulates (P1) through (P5) is also given in Appendix B.

Going back to our running example, without loss of generality, by assumption A1 we can normalize

the value function so that v(0) = 0. Our assumption of the example was that Π = {Π1, ...,Π7}, and
µ(Π1) = µ(Π2) = ... = µ(Π7) = 1

7 . We display again below the payoff and the non-null first-order

probability distributions tables.

Red (Er) Yellow (Ey) Black (Eb) Green (Eg)

f0 100 0 0 150
fα 0 100 0 150

Table 6: An Ellsberg-like ambiguity example (Example 1). We also refer to the example of this table
as the running example, throughout the text.

πr πy πb πg

Π1 3/12 0 6/12 3/12
Π2 3/12 1/12 5/12 3/12
Π3 3/12 2/12 4/12 3/12
Π4 3/12 3/12 3/12 3/12
Π5 3/12 4/12 2/12 3/12
Π6 3/12 5/12 1/12 3/12
Π7 3/12 6/12 0 3/12

Table 7: Non-null first-order probability distributions in our running example.

We also note that the salience function properties make sure that Er and Ey are the most salient

states, i.e. ωr = ωy = ω and ω > ωb > ωg. Then, the value functions of each act are:

V (f0) = Ψ(µ(Er)) ω v(100) + Ψ(µ(Ey ∨ b)) v(0))(ω + ωb) + Ψ(µ(Eg)) ωg v(50)

= Ψ(µ(Er)) ω v(100) + Ψ(µ(Eg)) ωg v(150)

V (fα) = Ψ(µ(Er ∨ b) v(0))(ω + ωb) + Ψ(µ(Ey)) ω v(100) + Ψ(µ(Eg)) ωg v(50)

= Ψ(µ(Ey)) ω v(100) + Ψ(µ(Eg)) ωg v(150)
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By our running example assumptions about µ, and by Belief Symmetry (Property P5), Ψ(µ(Eg))

is equal in both equations. Therefore, in our model the DM’s choice hinge on whether Ψ(µ(Er)) ≥
Ψ(µ(Ey)) - in which case f0 ⪰ fα - and/or Ψ(µ(Er), |S|) ≤ Ψ(µ(Ey), |S|), which implies f0 ⪯ fα.

By Proposition 1, we know that we can define a Ψ function such that Ψ(µ(Er)) = Eµ(Er). Since

Eµ(Er) = Eµ(Ey), to determine the DM’s preference we have to determine whether Ψ(µ(Ey)) ≤ Eµ(Ey)
(i.e., the DM is ambiguity averse) and/or Ψ(µ(Ey)) ≥ Eµ(Ey) (i.e., the DM is ambiguity seeking).

Based in our model, we give a possible answer to that question in the next section.

4.2.3 Additional Property P6 and Ambiguity Attitudes

We take advantage of the growing evidence on ambiguity attitudes to add a property to Ψ to make sure

the model is a good description of the stylized facts about Decision Under Ambiguity (Trautmann &

van de Kuilen, 2015). From the experimental and empirical literature, we know that ambiguity attitude

is a function of: (i) the ”likelihood” of the event; (ii) whether the outcome associated to that event for

some act is in the gain or loss domain; (iii) how many possible states of nature define the outcomes of

each act.

We represent those stylized facts by postulate P6, stated below:

Definition 3.1 (Contextual Ambiguity Adjustment Function Ψ) Let postulates P1-P5 of Definition

3 hold for a Ψ function. Then, Ψ is a Contextual Ambiguity Adjustment Function if postulate P6 also

holds:

P6(Partition Monotonicity) For any non-degenerate probability distribution µ1 and µ2 such

that µ1(Π(Ei)) = µ2(Π(Ei)) for some Ei ∈ Pi and µ1(Π(Ej)) = µ2(Π(Ej)) for some Ej ∈ Pj , if
|Pi| < |Pj |, then Ψ(µ1(Π(Ei))) ≥ Ψ(µ2(Π(Ei))) implies Ψ(µ1(Π(Ej))) ≥ Ψ(µ2(Π(Ej))).

To illustrate what property P6 assures us, consider our running example, but now assume µ1 =

([0, 6]R, [0, 6]Y, 3B, 3G) and µ2 = ([0, 6]R, [0, 6]Y, 6B, 0G). That is, under µ1, the DM knows there are

3 black balls and 3 green balls, an knows that the remaining balls are either red or yellow, in unknown

proportion. Under µ2, the DM knows there are 6 black balls, and also knows the remaining balls

are either red or yellow, in unknown proportion. If the DM interprets the unknown proportion as an

equal probability of each combination of red and yellow balls being true, then it is easy to see that the

marginal probability distribution of event Ey being true is the same in µ1 and µ2. Analogously, the

same is true for event Eb. Therefore, µ1(Π(Er)) = µ2(Π(Er)) and µ1(Π(Ey)) = µ2(Π(Ey)). However,

P6 proposes that likelihood insensitivity affects weighting differently under each distribution, in the

following way: under µ2, the DM recognizes only three possible (non-null) events (Er, Ey and Eb),

and therefore the naive probability that he considers when balancing the weighting of each event is

1/3; on the other hand, under µ1, there are 4 possible non-null events, and thus the naive probability

that he considers when balancing the weighting of each event is 1/4.

For concreteness, we provide below a parametric example of Ψ for a discrete state-space S6, and

we heuristically describe that is actually an ambiguity adjustment function7 and then apply it to the

example to draw the same conclusion as in the previous paragraph. For simplicity, we also drop the

function argument in parenthesis when dealing with the parametric function below, from now on.

6We discuss continuous state-spaces in Appendix C.
7The complete proof is in the Appendix.
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ψ(µ(Π(E))) = Eµ[E](1−γ·σµ(E
i
s))

(
1 + η

|Si|

)γ·σµ(E
i
s)

(1)

where σµ(E
i
s) = σµ(Π(Eis)) is the standard deviation of the marginal probability distribution of a

µ(Π(Eis)). Eµ(s) = Eµ(Π(s)) is the expected probability of state s implied by the distribution µ(Π(s)),

Si = {s1, ..., sn} is the subset of S for which fi is well-defined, and |Si| its’ cardinality. We assume

γ ∈ [0, 2] η ∈ (−1, 1). Finally, following postulate P4, to calculate ψ for states s ∈ S (rather than

events Eis ∈ S that may contain multiple states), we consider ψ(µ(Π(s))) = 1/|Eis|ψ(µ(Π(E))), for any

s ∈ Eis ⊆ Pi and act fi, where |Eis| is the cardinality of such event.

Here, the 1/|Eis| term is used just to make sure that, for states in the same event of an act-induced

partition, the weighting is the same. For instance, in Example 1, we want sy and sb to be equally

weighted (each one with half the weighting of the event Ey ∨ b), but that the information about

the probability distribution of Ey ∨ b to be considered . Then, the first term in the outer parenthesis

indicates the part of weighting that is based on the information about probability distributions available

to the DM (Eµ[s] and σµ(Eis)), while the second term indicates how other information about the choice

set F itself (such as |Si|) may distort that weighting, specifically through likelihood insensitivity.

Since the standard deviation of Π(E) is always positive and bounded above at 1
2
8, and we assume

γ ∈ [0, 2] the exponents of the equation are always between zero and one. γ can be seen as the

degree to which the DM ”distorts” the weight given to an event as a function of the imprecision of the

information about its’ probability.

By our nontriviality assumption A2, for any ambiguous event |Pis| ≥ 2, which means that |Si| ≥ 2,

i.e., there are at least two possible events that affect the outcome of fi and form a partition of S.

Moreover, |Si| is constant for each state s ∈ Si 9. That means η ∈ (−1, 1) assures that the second

term in parenthesis in 4.2.3 is always greater than zero, but less than one. Here, η is the parameter

that indicates at what value of expected likelihood Êµ[s] the DM is indifferent between being totally

ignorant about the probability distribution (and relying heavily on a naive distribution to determine

the weight of state s in the evaluation of the act) and knowing for sure that the probability of state s

happening is π(s) = Êµ[s]. Higher η indicate a higher indifference point Êµ[s]. Also, for values close to

the extremes in the (−1, 1) range, this indifference point may not exist at all under some distributions

µ.

Proposition 2: The ψ function represented in equation is a Contextual Ambiguity Adjustment

Function, that is, it satifies postulates P1 through P6.

Proof: in Appendix A.

To make it tangible, take a modified version of our running example. Let there be an Ellsberg

urn with 100 balls, and consider two possible information sets: (1) the DM knows that the Ellsberg

urn contains either zero or r̄ red balls, and the remaining balls can be either, yellow, black or green,

in unknown proportion; (2) the DM only knows that the urn contains either r or 100 red balls, and

8To see this, note that the maximum standard deviation for Π(E) is obtained when the probability mass is
concentrated in its’ extreme points, since Π(E) ∈ [0, 1] is bounded. That is, the maximum standard deviation
of Π(s) is obtained when π1 = 0, π2 = 1 and µ(π1) = 1/2, µ(π2) = 1/2. In that case, max(σµ(Π(s))) =√

1/2(1− Eµ(Π(s)))2 + 1/2(0− Eµ(Π(s)))2 = 1/2
9There may be some instances where, for some event E ∈ Pi

s ∩ Pj
s , |Pi

s|, when the partition of (Pi
s \ E) differs from

(Pj
s \ E), which would violate the Belief Symmetry property (P5). Hovever, economically significant examples such as

these are rather uncommon, both in the experimental and empirical literature.
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the remaining balls can be either, yellow, black or green, in unknown proportion10. In our model,

assuming the DM interprets that each possible red ball composition as being equally likely, Case 1

would be described by Π1(Er) = 0,Π2(Er) = r̄/100 and µ1(Π1) = µ1(Π2) = 1/2. Similarly, Case 2

would be described by Π3(Er) = r,Π4(Er) = 1 and µ2(Π3) = µ2(Π4) = 1/2.

Also, note that in case (1), the expected probability of a drawn ball being red is r̄/2 ∈ [0, 0.5],

while in case (2) this expected probability is (0.5 + (1 − r)/2) ∈ [0.5, 1]. Figure 1 shows the effect of

varying η and γ in the described cases.

The Figure shows that greater values of γ indicate greater distortion in probability weighting due

to ambiguity. In other words, it means that the DM is more sensitive to ambiguity for greater γ, i.e.,

the difference in weighting is larger for the DM, given an ambiguity level represented by the standard

deviation of the second-order distribution µ(Π(E)). γ alone does not predict nor indicate ambiguity

attitude, except when γ = 0, in which case the DM is ambiguity neutral for any ambiguous event.

As we previously mentioned, η indicates where the ψ function crosses the 45°curve, so that higher

η dislocate that point to the right in the graph. Also, it may be that, for some extreme values of η

and an act fi that implies Si, the two curves cross only at Eµ[E] = 0 and Eµ[E] = 1. In subfigures (a)

and (b) of Figure 1, we can see that for η = −0.99.

We now go back to our running example, and see how act evaluation would be considered under

the parametric ψ function stated. In that case, the value functions of the lotteries would be:

V (f0) = Eµ[Er](1−γ·σµ(Er))

(
1 + η

|S0|

)γ·σµ(Er)

ω v(100)

+

(
1

|Eiy ∨ b|
+

1

|Eiy ∨ b|

)
Eµ[Ey ∨ b]

(1−γ·σµ(Ey ∨ b))

(
1 + η

|S0|

)γ·σµ(Ey ∨ b)

(ω + ωb) v(0)

+Eµ[Eg](1−γ·σµ(Eg))

(
1 + η

|S0|

)γ·σµ(Eg)

= (
3

12
)(1−γ·0) ·

(
1 + η

4

)γ·0
ω v(100) +

(
1

2
+

1

2

)
(
6

12
)(1−γ·0)

(
1 + η

4

)γ·0
(ω + ωb) v(0)

+(
3

12
)(1−γ·0) · (1 + η

4
)γ·0 ωg v(150)

=
1

4
ω v(100) +

1

4
ωg v(150)

10In both cases, we assume that each possible ball color (red, yellow, black or green) is relevant relevant in determing
the outcome of the evaluated act.
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(a)

(b)

(c) (d)

Figure 1: Effect of varying parameters η and γ on ψ, as a function of the expected probability of the
ambiguous event. Subfigures (a) and (b) show the variation of η (with fixed γ = 1) in Cases 1 and
2, respectively. Subfigures (c) and (d) show the variation of γ (with fixed η = 0) in Cases 1 and 2,
respectively. Cases 1 and 2 are described in the text, in this section. Finally, the gray dashed line
represents the 45°line, that is the weighting f ψ for unambiguous events.
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V (fα) = Eµ[Ey](1−γ·σµ(Ey))

(
1 + η

|Sα|

)σµ(Ey)

ω v(100)

+

(
1

|Eir ∨ b|
+

1

|Eir ∨ b|

)
Eµ[Er ∨ b]

(1−γ·σµ(Er ∨ b))

(
1 + η

|Sα|

)γ·σµ(Ey ∨ b)

(ω + ωb) v(0)

+Eµ[Eg](1−γ·σµ(Eg))

(
1 + η

|Sα|

)γ·σµ(Eg)

=

(
3

12

)(1−γ/3)

·
(
1 + η

4

)γ/3
ω v(100) +

(
1

2
+

1

2

)(
6

12

)(1−γ/6)(
1 + η

4

)γ/6
(ω + ωb) v(0)

+

(
3

12

)(1−0)

·
(
1 + η

4

)0

ωg v(150)

=

(
1

4

)(1−γ/3)

·
(
1 + η

4

)γ/3
ω v(100) +

1

4
ωg v(150)

Considering η ∈ (−1, 1) and γ ∈ [0, 2], then for any γ > 0, V (fα) < V (f0) and the DM chooses

act f0 over fα, which is the same ambiguity aversion result before in the nonparametric application.

If γ = 0, i.e., the individual is ambiguity neutral for any event, then V (fα) = V (f0) and the DM is

indifferent between f0 and fα.

5 Ambiguity Attitudes

One of the main reasons that make decision under ambiguity an interesting topic is the fact that it is

usual that people differentiate between acts that are contingent on unambiguous and ambiguous events

- and also between distinct degrees of ambiguity of the events. We can say heuristically that the way

people relate the imprecision of information on likelihoods of events to their choices is what we can call

ambiguity attitude. So, when comparing acts with the same payoff structure, we can derive ambiguity

attitude if payoffs are contingent on events that have the same expected probability of happening,

but with different levels of imprecision (or vagueness) of the information about that probability with

different levels of precision. In our running example 1 that is exactly what we are analyzing, that

has the payoff $100 contingent on Er for f0, and Ey for fα. Therefore, for the $100 payoff and the

F = {f0, fα} choice set, we can say that the individual is ambiguity averse if f0 ⪰ fα, and ambiguity

seeking if f0 ⪯ fα. If both are true (i.e., f0 ∼ fα), then the DM is ambiguity neutral. In different

settings, both ambiguity aversion and ambiguity seeking behavior have been observed, which is why

we use the more appropriate term ambiguity attitude (Trautmann & van de Kuilen, 2015).

Thus, we argue that ambiguity attitude is a result of two factors: (i) the (im)precision of available

information about the probability distribution of events that are relevant to the outcomes of any act

in the choice set; (ii) how people interpret this and incorporate other information about the choice set

to determine their preferences.

In our model, (i) is given by µ(Π), that attaches (second-order) probabilities to each plausible

probability distribution of events. (ii) is described by the Ψ function that relates how that information

- and complementary information about the choice set - is incorporated in the DM’s choice. We discuss

this in more detail in the next subsections.

Our model puts forward an axiomatic approach about how people interpret probabilities within the

context of choice under ambiguity. With that approach, we are able to make predictions that match

stylized facts of the literature and relates them in a meaningful way. That contrasts with previous
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models, that require an additional assumption about what ambiguity attitude the DM has based on the

model parameters, such as the Smooth Ambiguity Preference Model (Klibanoff et al., 2005) and the

α-maxmin model (Gilboa & Schmeidler, 1989). Our model closely relates to the idea of the Gajdos et

al. (2008) model that indicates that people are in general averse to information imprecision. However,

we incorporate all the information about first and second order probability distributions into the DM’s

choice, and not only the most pessimistic scenario, in terms of utility. That is, we specifically indicate

how the DM’s ambiguity attitude varies as a function of the expected probability of a given event

and characteristics of the presented choice set. Other second-order belief models in the literature, in

contrast, consider only outcomes (and the value or utility function that represents the DM’s evaluation

of outcomes) and an assumed criterion that assumes the same transformation of information about

probabilities into weights in evaluating an act, independent of the high or low likelihood of an event or

other characteristics of the choice set. We expand on our model’s interpretation on how this additional

factors influence ambiguity attitude in the next subsections.

5.1 Ambiguity Attitudes and the Choice Set

As it happens with Salience Theory of Choice Under Risk, our model also incorporates the context of a

decision, interpreted as the influence of choice set characteristics in the DM’s choice. STR assimilates

how the state-contingent outcomes and the contrast of that outcomes across acts may affect a DM’s

choice, as exemplified in our lottery example in Section 3.2. We now incorporate the amount of possible

states of the world to the context of Decision Under Ambiguity, represented by the cardinality of the

state-space (|Si|) in our model, for discrete state-spaces. This addition makes our model able to explain

the widely reproduced likelihood insensitivity effect: people do not sufficiently discriminate between

different levels of likelihood of an ambiguous event, transforming subjective likelihood towards a naive

equal distribution among events (Dimmock et al., 2012).

Therefore, it is useful to see how changing the cardinality of the choice set may change the DM’s

choice in a modified version of our running example. Suppose now we get a second urn, that is equal

to the one in our running example, except that we substitute the green from our running example for

black balls, and inform the DM about that. All the remaining assumptions remain the same as in our

running example. From now on, we call this second urn the (−g) urn.
Consequently, now the DM knows for sure that there are no green balls in the −g urn, and now any

payoffs contingent on the ball drawn from this second urn being green (Eg,−g) become meaningless. We

represent the new state-space, that considers both urns as S = {Er, Ey, Eb, Eg, Er,−g, Ey,−g, Eb,−g},
where all events with the −g indicate events associated with the ball drawn from the second urn. We

also make the following changes in the choice set: (i) add a new act to the choice set (fα,−g), contingent

on the ball drawn from the second urn; (ii) modify the acts in our running example, so that both pay

$0 when a green ball is drawn from the original urn. We call this modified version of the acts f0,xg=0

and fα,xg=0
11. Thus, the choice set is now F = f0,xg=0, fα,xg=0, fα,−g. The payoff matrix of the acts

is then given below:

With this new set of information about the second urn, the DM also knows that there is between

3 and 9 black balls in the urn. The plausible probabilities of Er,−g and Ey,−g remain the same and

Eg,−g is a null-event. So, the set Π−g of non-null first-order distributions for the second urn are:

It is easy to see that fα,−g outcomes are contingent on ambiguous events, since she has somewhere

11This example can be seen as an adaptation of a thought experiment due to Takashi Hayashi (Ahn, 2008), that - to
the best of our knowledge - may be one of the first ones to explicitly pose the problem of how probability estimates of
relevant events depend on the choice set.
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Red Yellow Black Green Red - Urn −g Yellow - Urn −g Black - Urn −g)
Er Ey Eb Eg Er,−g Ey,−g Eb,−g

f0,xg=0 100 0 0 0
fα,xg=0 0 100 0 0
fα,−g 0 100 0

Table 8: Example 1 - an Ellsberg-like ambiguity example.

πr πy πb

Π1,−g 3/12 0 9/12
Π2,−g 3/12 1/12 8/12
Π3,−g 3/12 2/12 7/12
Π4,−g 3/12 3/12 6/12
Π5,−g 3/12 4/12 5/12
Π6,−g 3/12 5/12 4/12
Π7,−g 3/12 6/12 3/12

Table 9: Non-null first-order probability distributions in our running example (Example 4.1).

between 0 and 1/2 probability of winning $100 and somewhere between 1/2 and 1 probability of

getting nothing. Observe that Eµ(EΠ(πy) = Eµ(EΠ−g (πy,−g) = 1/4, and the marginal distribution

Π−g(πy) Ud(Π), both the same as in our main running example. This new example is then constructed

exactly in a way that the choice set changes without the first and second-order probability of non-zero

outcomes changing, so that we can analyze concretely how the model responds to a change in the

cardinality of the relevant partition of the state-space for each act. Note that, since the events in the

original urn are uncorrelated with the ones in urn −g, now S0,xg=0 = Sα,xg=0 = {Er, Ey, Eb, Eg} and

S0,−g = {Er,−g, Ey,−g, Eb,−g}. For clarity, we represent those partitions in the figure below, for the

case that Π = Π4 (i.e., 1/4 probability for Er, Ey, Eb and Eg) in the original urn and Π−g = Π4,−g in

the −g urn (i.e., 1/4 probability for Er,−g and Ey,−g and probability 1/2 for Eb,−g).

Applying the DM evaluation function to this new setting, we get the following results:

V (f0,xg=0) = Ψ(µEr
, |S0,xg=0|) ω v(100) + (Ψ(µ(Ey), |S0,xg=0|) ω v(0)

+(Ψ(µ(Eb ∨ g), |S0,xg=0|) ω v(0)

= Ψ(µEr
, |S0,xg=0|) ω v(100)

V (fα,xg=0) = Ψ(µEy
, |Sα,xg=0|) ω v(100) + (Ψ(µ(Er), |Sα,xg=0|) ω v(0)

+(Ψ(µ(Eb ∨ g), |Sα,xg=0|) ω v(0)

= Ψ(µEy , |Sα,xg=0|) ω v(100)

V (fα,−g) = Ψ(µEy,−g , |Sα,−g|) ω v(100) + Ψ(µ(E(r,−g) ∨ (b,−g)), |Sα,xg=0| ω v(0)

= Ψ(µEy,−g
, |Sα,−g|) ω v(100)

First, note the salience is the same ω in each state of the final equation (since it envolves a $100

payoff in one of the acts and null payoffs for the other ones). Then, the DM’s choice hinge on the relation
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(a)

(b)

(c)

Figure 2: Variations on the partition of the state space in Section 5.1 example, a two-urn Ellsberg
decision problem between acts f0,xg=0, fα,xg=0, fα,−g. Subfigure (a) shows the partition of the state-
space S into states that are relevant in determining the outcomes of f0,xg=0, fα,xg=0, while subfigure (b)
shows the relevant partition for the outcomes of fα,−g. Since the states in (a) and (b) are uncorrelated,
we can represent the entire state-space of the choice problem with the intersections of the events in
subfigure (c).
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between Ψ(µEr , |S0,xg=0|), Ψ(µEy , |Sα,xg=0|), Ψ(µEy,−g , |Sα,−g|). Note that the marginal distributions

are such that µEy = µEy,−g . Then, our property P6 comes into play. Since |Sα,xg=0| < |Sα,−g| to
determine that Ψ(µEy , |Sα,xg=0|) ≤ Ψ(µEy,−g , |Sα,−g|) and, thus, fα,−g ≿ fα,xg=0. On the other hand,

the preference between fα,−g and f0,xg=0 depends on the specific form of the Ψ function, since two

effects working in opposite directions are in play: (i) on one hand, |S0,xg=0| < |Sα,−g|, which means

that the naive distribution that affects weighting for |Sα,−g| is larger, by P6; (ii) on the other hand,

the marginal distribution µ(Er, |Sα,−g|) is a mean-preserving spread of µ(Ey,−g, |Sα,−g|). By P2, that

means that the DM has more precise information about the probability of Er than Ey,−g, and then

should weight Er more. Therefore, depending on the sensibility of the DM’s weighting to information

imprecision and to likelihood insentitivity, the DM’s preferences may either be f0,xg=0 ≿ fα,−g or

f0,xg=0 ≾ fα,−g.

We can observe these relations applying our parametric ψ function to this example:

ψ(µEr
, |S0,xg=0|) = Eµ[Er](1−γ·σµ(Er))

(
1 + η

|S0,xg=0|

)γ·σµ(Er)

=

(
1

4

)(1−γ·0)(
1 + η

4

)(γ·0)

=
1

4

ψ(µEy
, |Sα,xg=0|) = Eµ[Ey](1−γ·σµ(Ey))

(
1 + η

|S0,xg=0|

)γ·σµ(Ey)

=

(
1

4

)(1−γ/3)(
1 + η

4

)(γ/3)

ψ(µEy,−g
, |Sα,−g|) = Eµ[Ey,−g](1−γ·σµ(Ey,−g))

(
1 + η

|S0,xg=0|

)γ·σµ(Ey,−g)

=

(
1

4

)(1−γ/3)(
1 + η

3

)(γ/3)

First, note that in our parametric function, for any γ ∈ (0, 2), fα,−g ≻ fα,xg=0 and f0,xg=0 ≻ fα,xg=0

unequivocally. The preference relation between fα,−g and f0,xg=0 than depends on the parameters

for aversion to information precision γ and likelihood insensitivity η. Specifically, for any γ > 0,

η ∈ (−0.25, 1) =⇒ fα,−g ≻ f0,xg=0 and η ∈ (−1,−0.25) =⇒ f0,xg=0 ≻ fα,−g.

Comparing this with the use of our parametric model in our running example, we can see that now

the DM is more prone to overweight Ey,−g in the for given η and γ > 0 parameters, since the last term

of V (fα) is now (1+η)/3)γ/3 instead of (1+η)/4)γ/3. We can interpret that as the DM changing what

is his naive probability distribution, now that only three events relevant to the acts are possible - so

that the naive probability distribution would be each event occurring with 1/3 chance. That means

that a given expected probability of an event is more likely to be perceived as a low-probability event,

which has its’ weight increased by likelihood insensitivity, in our model.

To sum up, our model considers that the choice set affects probability weighting by the presentation

of a set of possible (non-null) states of the world related to the outcome of the bet. Property P6

makes sure that, if there are more possible events associated with the results of a bet, then likelihood

insensitivity skews the weighting of an event down (as we saw Ψ(µEy
, |Sα,xg=0|) ≤ Ψ(µEy,−g

, |Sα,−g|)
in our example). That is, the more possible states of the world are presented as relevant to a bet, more
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this information is interpreted as a lesser probability of any one of the states of the world being true,

which is the essence of the likelihood insensitivity effect observed in the literature.

5.2 Ambiguity Attitudes and Second-Order Probabilities

In our model, as it is usual in second-order belief models of decision under ambiguity (Etner et al., 2012),

second-order probabilities µ represent the (im)precision of event probability information available to the

DM. Since µ is defined on a set of first-order probability distributions of events, the marginal compound

probability distribution has finite expected value. Its’ standard deviation is taken a measure of the

imprecision of the available information. Other than that, µ here is purposely is defined in a broad

sense, since many factors may influence the available information about the likelihoods of events, such

as related historical data, the framing of the decision problem, and so forth. Furthermore, the model

that we present is static, in the sense that it represents a one-shot decision under ambiguity. Eliciting

second-order belief formation processes and incorporating dynamic updating of beliefs in our model is

an important venue for future research.

We are also able to separate in our model how ambiguity attitudes are affected by events with

different expected probability (”likelihood”) of happening. Here, we represent the likelihood of an

event assessed by the expected probability of the event, given the second-order probabilities µ, for any

non-null event. With that, we are able to separate any over/under-weighting of states in decision-

making due to lack of information about states and their probability (ambiguity itself, represented by

the Ψ function) and due to salience of the known information of outcomes, represented by the salience

function ωis and its covariance with the known state-contingent outcomes (Bordalo et al., 2012) - as

the STR model already does.

However, we note that second-order distribution by itself does not elicit a DM’s ambiguity attitude.

Only together with |Si| and the specific parametric form of Ψ can µ indicate if a state of the world

is considered as a highly or lowly likely. It is this comparison of the likelihood of the event with

characteristics of the state-space that may pinpoint if a given expected probability of an event is

considered high or low - and that in turn imply if likelihood insensitivity causes over or under-weighting

of a given state of the world, as we will see in the next section. However, once the low/high likelihood

of the event is determined, the properties of our model make sure that low likelihood events are

overweighted and high likelihood events are underweighted. Again, this is in agreement with the

experimental evidence on likelihood insensitivity (Trautmann & Van de Kuilen, 2015).

It is useful to see how changing the assumptions on µ may change the DM’s choice in a modified

version of our running example. But now, the DM has the additional information that there are either

0 or 6 yellow balls in the urn, i.e., µ∗(Π2) = µ∗(Π3) = µ∗(Π4) = µ∗(Π5) = µ∗(Π6) = 0. Now, only

Π1 and Π7 are plausible (non-null) elements of ∆(S), i.e., Π = {Π1,Π7}, where Π1 = (πEr
= 3

12 , πy =

0, πb =
6
12 , πg = 3

12 ) and Π7 = (πEr = 3
12 , πy = 6

12 , πb = 0, πg = 3
12 ). We again assume that the DM

assumes that Π1 and Π7 are equally likely, that is, µ∗(Π1) = µ∗(Π7) = 1/2.

Comparing this new µ∗ with our running example distribution µ, observe that E∗
µ(Π(Ey)) =

Eµ(Π(Ey)), that is, the expected probability of event Ey is the same in both cases12, but σ(µ∗(Π(Ey))) >

σ(µ(Π(Ey)). However, note that µ and µ∗ are non-degenerate distributions, so that property P2 does

not apply, even though µ∗(Π(Ey)) is a mean-preserving spread of µEy . What we can affirm based in

our model is that ||Ψ(µ∗(Π(Ey)))−Eµ(Π(Ey))|| > ||Ψ(µ(Π(Ey)))−Eµ(Π(Ey))||, where ||x|| denote the
absolute value of x. That is, Ψ(µ∗(Π(Ey))) is farther from the expected probability of Ey or, in other

12In fact, the expected probability is the same for all events considered, but we focus on Ey because it is the relevant
one to our conclusions.
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words, the probability weighting distortion is larger, even though it is not possible to affirm if it goes

in the direction of overweighting or underweighting without further assumptions. So, even though the

DM has narrowed the possible first-order probability distributions down to just two alternatives (versus

7 possibilities in our running example), it is not obvious that state Ey becomes more over-weighted (or

underweighted) under µ∗. That happens because our model predicts that, given a choice set and two

probability distributions with the same expected probability, more information about the second-order

probability distribution only increases the weighting of the event if: (i) the expected probability of the

event is a certain likelihood insensitivity indifference point (where Ψ(µ(E)) = Eµ(E) for some event

E); (ii) the new information imply a decrease in the standard deviation of the second-order probability

of the event happening.

We can also observe how that works in our parametric function ψ applied to the example:

ψ(µ(Π(Er))) =
1

4

ψ(µ(Π(Ey))) = Eµ[Ey](1−γ·σµ(Ey))

(
1 + η

|Sα|

)γ·σµ(Ey)

=

(
1

4

)(1−γ/6)(
1 + η

4

)(γ/6)

What this example highlights is that - for a given expected probability of an event - new information

only mitigates probability weighting ”distortions” (ψ farther from the expected probability of the

event) depend on the relationship between sensitivity to information imprecision γ and likelihood

insensitivity parameter η. Specifically, for any γ > 0, η ∈ (−1, 0) =⇒ ψ(µ∗(Π(Ey))) < ψ(µ(Π(Ey)))

and η ∈ (0, 1) =⇒ ψ(µ∗(Π(Ey))) > ψ(µ(Π(Ey))). There has been recent evidence in favor of

underweighting for additional information that increases standard deviation for bets involving gains

(Chew et al., 2017), that can be accommodated in our parametric example with η ∈ (−1, 0). However,

further empirical and experimental evidence is needed for this to be a stylized fact, and so we construct

our model in a way that can predict both behaviours.

5.3 Ambiguity Attitudes and the Outcome Domain

According to the evidence in the literature (Trautmann & van de Kuilen, 2017; other FONTS), one of

the factors that influences ambiguity attitude is the outcome domain - interpreted as whether a given

bet involves gains or losses, with respect to a reference point. Tipically, this is tested experimentally

comparing individuals choices when presented with a choice set involving a risky lotteries of the form

xE00 and an ambiguous lottery involving xEα0, where E0 is a risky event (i.e., the objective probability

of E0 happening is known to the decision-maker), and Eα is an ambiguous event. The tests involve

tipically the cases where x > 0 and x < 0 and the same value of expected probabilities for E0 and Eα.

If an individual chooses xEα0 over xE00, we conclude that the individual is ambiguity seeking, and,

conversely, if she chooses xE00 over xEα0 she is ambiguity averse.

A stylized fact drawn from this literature is that there are some regularities in the most common

ambiguity attitude behavior of individuals, that are a function of the expected probability of the event

for which the outcome of an act is contingent and the outcome domain of the act’s results. The

ambiguity attitude in each case is portrayed in the table below:
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Domain

Expected Probability Loss Gain

Low Ambiguity Aversion Ambiguity Seeking
Mid/High Ambiguity Seeking Ambiguity Aversion

Table 10: Ambiguity Attitudes and Effects on Value Function - Unsureness Aversion Theory

One of the main advantages of our model’s interpretation of the probability weighting function

and the way DM’s transform the available information to form their decision weights on events is

that we can account for different ambiguity attitudes for different expected probabilities. That is

possible because we separate how people interpret information on probabilities of events from other

regularities involving how people evaluate acts and outcomes. That has similarities to how Prospect

Theory axiomatizes its’ probability weighting function (Kahnemann e Tversky, 1979; Prelec, 1998;

Wakker, 2010), but here we can make specific predictions about how these behaviors relate to events

with different levels of ambiguity, and choice sets that have different implications in terms of how

bottom-up attention may affect the DM’s choice.

Concretely, by assumption A1 we have that the value function v(x) can be normalized as v(0) = 0.

By monotonicity of v, for any positive xis, v(x
i
s) > 0 and v(−xis) < 0. Therefore, the evaluation of

acts is such that a higher value of probability weighting increases the value of the act when x > 0 and

decreases the value of the bet when x < 0. To see how that works, consider a modified version of our

running example, now with negative payoffs.

Red (p = 3/12) Yellow (p ∈ [0, 6/12]) Black (p ∈ [0, 6/12]) Green (p = 3/12)

f−0 -100 0 0 -150
f−α 0 -100 0 -150

Table 11: An Ellsberg-like ambiguity example (Example 1). We also refer to the example of this table
as the running example, throughout the text.

Now we have the following evaluations of each act, under our model:

V (f−0) = Ψ(µ(Er)) ω v(−100) + Ψ(µ(Eg)) ωg v(150)

V (f−α) = Ψ(µ(Ey)) ω v(−100) + Ψ(µ(Eg)) ωg v(−150)

Since v(−150) < v(−100) < 0, now Ψ(µ(Er)) ≥ Ψ(µ(Ey)) imply a worse evaluation of the risky act

V (f−0), reversing the result obtained in our previous example. Therefore, Ψ(µ(Er)) ≥ Ψ(µ(Ey)) would

indicate ambiguity seeking behavior (f−α ⪰ f−0), the opposite of the ambiguity aversion (f0 ⪰ fα)

obtained in our running example.

Moreover, as detailed in Section 5.2, our model also predicts that weighting of more ambiguous

events is farther from their expected probability, but if that distortion is an over or under-weighting

depends on the specific parameters of the model. Therefore, we are also able to accommodate for the

stylized fact that overweighting is more typical for low expected probability events and underweighting

is more typical for mid to high likelihood events, as summed up in table 10. We show that in our
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parametric ψ function evaluation of acts below.

ψ(µ(Π(Er))) =
1

4

ψ(µ(Π(Ey))) =

(
1

4

)(1−γ/4)(
1 + η

4

)(γ/4)

Again, in this specific example the preferences depend on the γ and η parameters. Specifically, for

any γ > 0, η ∈ (−1, 0) =⇒ f−α ≻ f−0 and η ∈ (0, 1) =⇒ f−0 ≻ f−α.

Since the ambiguity attitudes also change for different expected likelihoods of events, it is also

useful to consider an additional example where we change the expected likelihoods, but nothing else.

Consider the following example: let there be an urn with 100 balls, that can be either yellow or black.

The DM knows that there are either 100 yellow balls (and no black balls) or 100 black balls (an no

black balls). That is, Π = {Π1,Π2}, where Π1(Ey) = 1,Π1(Eb) = 0 and Π2(Ey) = 0,Π2(Eb) = 1. We

analyze in the graphs below various values of µ′(Π1(Ey)) = a, with a ∈ [0, 1]. Note that our example

is constructed so that E′
µ(Π(Ey)) = µ′(Π1(Ey)), and we assume that the partition of the state-space

that is relevant is P = {Ey, Eb}, so that |Si| = 2 for any non-constant act fi. In that example, then

the value of our parametric ψ(Ey) for an act zEy0 with z ̸= 0 is given by:

ψ(µ(Π(Ey))) = (Ey)
(
1−γ·

√
Ey(1−Ey)

)(
1 + η

2

)(
γ·
√

Ey(1−Ey)
)

where we simplify the notation so that Ey = E′
µ(Π(Ey)). We also note that, in our example,

µ follows a Bernoulli distribution, and since E′
µ(Π(Ey)) = µ′(Π1(Ey)), we can express the typical√

p(1− p) standard deviation of a Bernoulli distribution as
√
Ey(1− Ey)). We show in the graph

below in the x axis different values of Ey implied by different µ′ in agreement with our example

settings, while in the y axis we have values of the ψ function for different values of η and α.

In graph 3, we can see that for lower values of Ey, typically ψ is above the 45°line, which means

that there is an overweight of these low expected probability events. On the other hand, for higher

expected probabilities, the ψ function has values below the 45°line, which indicate underweighting.

We can interpret the point where the ψ line and the 45°line cross as the point that determines what

is a ”low” and what is a ”high” likelihood event. The specific value that determines that inversion in

the ambiguity attitude, as we described in table 10, is a question for the empirical and experimental

literature, and the choice of parameters and functional forms of our model will depend on the results

obtained in future research on the matter.

It is important to highlight that, in our parametric example ψ, the point that determines what

is a high or low likelihood depends on how the DM responds to likelihood insensitivity, i.e., how she

considers the information on the amount of states of the world in her naive probability calculations,

and how these affect probability weighting. That is represented in the model by η, where lower values

of η indicate that the DM needs a really low expected probability to consider it a ”low likelihood” case

(for which she is tipically ambiguity averse for bets on gains and ambiguity seeking for bets on losses).

And, conversely, higher values of η mean that there is overweighting of events up to a higher value of

Ey. On the other hand, γ indicates the level of distortion due to the DM’s sensibility to information
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(a)

(b)

Figure 3: Variations in the ψ parametric function for Example 5, as a function of the expected
probability of the ambiguous event Ey. Subfigure (a) shows the effect of varying η in the probability
weighting function (with fixed γ = 1), while subfigure (b) shows the effect of varying γ (with fixed
η = 0). Finally, the gray dashed line represents the 45°line, that is the weighting f ψ for unambiguous
events.
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imprecision, but not what is the indifference point that separates the region of overweighting and

underweighting of probabilities. In graph 3 (b) we can see that the point where ψ crosses the 45°line
remains the same for different values of γ, exemplifying rhis statement.

The careful reader will also note that these graphs have similarities with the inverse S-shaped prob-

ability weighting curves of the original Prospect Theory of Kahnemann & Tversky (1979), designed to

explain behavior for choices under risk. This is not by accident: there the prediction was also an over-

weighting of small probability events, and underweighting of high-probability events13. However, the

interpretation and implications here are vastly different: in our model we are saying that more impre-

cise information about the probability of an event (higher σ(µ(E))) mean that the DM use information

about the choice set |Si| to modify the weighting that results only from a bayesian interpretation of

the available information on the expected probability of the event (Eµ(Π(E))). So, it is not only the

expected probability that changes the weighting of ambiguous events, as in some adaptations of the

Prospect Theory and Cumulative Prospect Theory Model (Wakker, 2010), but the choice set and the

degree of information imprecision (represented by σ(µ(E))) that determines the probability weighting

for ambiguous events. Moreover, as we saw in previous examples and in Figure 1, it may be that for

some events only high or only low probabilities are deemed plausible by the DM14.

Since now we posed how the interaction between the outcome domain and expected probabilities

influence the value of our Ambiguity Adjustment Function, we turn to how these same outcomes may

affect salience, and that in turn may affect the results of our model.

5.4 Ambiguity Attitude, Salience and Context-Dependence

As we saw in section 3.2, the STR model proposes that salience is a characteristic that relates how the

evaluation of an act by a DM is affected by the contrast of an outcome of an act fi contingent on a

state s obtaining and the outcomes associated with s that would have been obtained if other acts fj in

the choice set were chosen. In the STR model interpretation, the weighting of each state in evaluating

acts is dependent on how salient the state is, where a salient state is one with highly contrasting,

prominent, or surprising payoffs for the acts in the choice set. In other words, the outcomes of the

choice set shape the DM’s perception of the state-space (Bordalo et al., 2012).

In our extension of Salience Theory for Decision Under Ambiguity, the same principle is also present.

However, its’ not only the information about acts’ outcomes that shape the DM’s perception of the

state-space, but also information on the probabilities of each event happening, how (im)precise is that

information and what the partition of the choice set implies in terms of how many relevant events are

deemed possible to occur. Therefore, our model does incorporate information about the choice set

that is not contained in the outcome set in how the DMs evaluate acts. Again, that inclusion is crucial

for models of decision under ambiguity, since the separation of an ambiguous and an unambiguous

event depends on the precision of the DM’s assessment of the likelihood of the event, no matter the

outcomes associated. So, extending the psychological reasoning of bottom-up attention15 influencing

act evaluation through the information about the state-spaces induced by the available information of

the choice set is a natural extension of the same principle to deal with decision under ambiguity.

13We note that more recent developments of both the original Prospect Theory and Cumulative Prospect Theory
(Kahneman & Tversky, 1993) also make the probability weighting function flexible enough so that over or underweighting
are possible for every probablity value, be it high or low, depending on the specific functional form and parameters chosen
(Wakker, 2010). On the other hand, that flexibility also means that meaningful predictions about the DM’s behavior
for choice under risk are too dependent on the specific parameters chosen, which we argue can be too general a result to
give meaningful predictions about economic agents’ behavior, at least for Decision-Making under Ambiguity.

14This last consequence of our model is explored in more detail in section ??
15I.e., stimuli that attract the decision-maker attention automatically and involuntarily (Bordalo et al., 2021).

27



We interpret the empirical evidence on likelihood insensitivity as the bottom-up attention driver

of the empirical and experimental findings on ambiguity attitude (see Table 10). This is so because

our model regards likelihood insensitivity as the DM’s response to the information about which of the

events that are relevant to the outcome of the acts in the choice set are plausible. Therefore, likelihood

insensitivity is not separate from the fourfold pattern of ambiguity attitude, but part of what explains

that attitude. Postulate P6 is instrumental for that to hold in the axiomatic description of our model.

Furthermore, it is only natural that we also do not assume transitivity of preferences, since that

is an assumption of the STR model. That is one of the main difference between salience theory and

some of the concurring approaches, such as Cumulative Prospect Theory, Choquet Expected Utility

(Wakker, 2010) and other approaches based on the Expected Utility framework (Klibanoof et al.,

2005; Gul e Pesendorfer, 2013). However, we do imply that, for a fixed choice set, there is consistency

on how the DM weights each event. Postulate P1 makes sure there is some monotonicity to that

interpretation, insofar as increasing the probability of an event unequivocally increases its’ weight.

Also, ceteris paribus, property P2 implies the DM gives less weight to events with more imprecise

information. Property P5 makes sure that, for a fixed choice set, events with the same information

about their probability of happening are weighted the same. More, postulate P4 makes sure that only

events that are relevant to the outcomes in a choice set matter, so that the way the choice set shapes

the state-space is what matters for the ambiguity adjustment function.

Another important issue that property P4 deals with is that ambiguity is a property of events (

Machina, 2009) that not necessarily correspond to states in a state-space. Since the ambiguity of an

event is considered to be a function of the dispersion of its’ second-order probability distribution, the

degree of ambiguity of an event is nonlinear, therefore calculating it separately for each state-space

and calculating it directly for an event that is equivalent to the union of these states is not equivalent.

In our paremetric example ψ, that is why we define ψs = 1/|E|ψE for any state s ∈ E ∈ Pi for an act

fi. That way, we calculate the ambiguity adjustment function based on the ambiguity of the relevant

event E. But, when plugging into a value function - that may imply different salience levels for states

s ∈ E - we divide the probability weighting equally among the states, so that the ambiguity level is

not distorted by that. In Section 5.5 we explore that nonseparability of events issue for decision under

ambiguity in greater detail.

Another question that perpasses the Salience Theory literature is whether a continuous (Bordalo et

al., 2013; 2020) or a rank-based salience function (Bordalo et al., 2012) is desirable. Recently, Lanzani

(2022) axiomatized STR, and argued that for representing preferences among acts with outcomes

associated with correlated events, using continuous salience functions is desirable. Moreover, the

continuous version of the salience function has been the most used one in the empirical literature

(Dertwintel-Kalt et al., 2021; Nielsen et al., 2021). Considering that, and the fact that correlation of

events’ probabilities plays a highly important role in decision under ambiguity, we consider here the

continuous version of salience weighting as the standard for our model.

Finally, we note that at this moment there is no conclusive evidence in the literature that indicate

salience is entangled with ambiguity weighting in a way that they could be nonseparable. Therefore,

we assume that salience and ambiguity weighting can be separated in our function representing the

DM’s preferences. Nevertheless, verifying if this kind of entaglement exists and if it is economically

relevant is an important direction for future research.
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5.5 Correlated Acts and Machina Reversals

Machina (2009) makes an important observation about Decision Under Ambiguity Models based on

an Ellsberg-urn thought experiment: to determine the level of ambiguity of an event, and how that

affects the DM’s preferences, events are nonseparable. That means that - differently from what happens

with the expected probability of an event, for example - the way we partition the state-space when

determining preferences among acts is important and may cause preference reversals.

Here we present Machina’s example: consider an urn with 101 balls, that can be either red, yellow,

black or green16. The DM knows that 50 balls are either red or yellow, and the remaining 51 balls

are either black or green. The payoffs associated with acts f0,m, f1,m, f2,m, f3,m are given in the tables

below:

50 Balls 51 Balls
Red Yellow Black Green

f0,m 8000 8000 4000 4000
f1,m 8000 4000 8000 4000

Table 12: Machina (2009) Ellsberg Urn first example, to illustrate how event correlation affect ambi-
guity perception.

50 Balls 51 Balls
Red Yellow Black Green

f2,m 12000 8000 4000 0
f3,m 12000 4000 8000 0

Table 13: Machina (2009) Ellsberg Urn second example, to illustrate how event correlation affect
ambiguity perception.

f0,m is contingent on unambiguous acts, that is, the DM knows that she has a probability 50/101

of getting $8000 and probability 51/101 of getting $4000. Also, considering that she has symmetric

information about how the 50/101 (51/101) probability is distributed among Red and Yellow (Black

and Green) events, the expected probability of outcomes $8000 and $4000 should be the same for f0,m

and f1,m. However, since the events associated with f1,m outcomes are ambiguous, and considering

the experimental evidence already posed in this paper, for a choice-set F = {f0,m, f1,m} it should be

expected that f0,m ≻ f1,m.

Now consider acts f2,m and f3,m. These acts are obtained by a common outcome shift from f0,m

and f1,m, shifting $4000 from the Green event outcome to the Red Event outcome. If events were

fully separable for decision under ambiguity, this shift should not reverse preferences, and one should

expect f2,m ≻ f3,m for a choice set F = {f2,m, f3,m}. But this shift reverses the ambiguity properties

of the upper (f0,m, f2,m) to the lower (f1,m, f3,m) acts in the choice set (Machina, 2009). Different from

f0,m, now not only f2,m is an ambiguous act, but the expected payoff for the more likely event that

either a black or a green ball is drawn is now less than for f3,m. Therefore, it should be within reason

that the DM has f3,m ≻ f2,m. The pair of preferences f0,m ≻ f1,m and f3,m ≻ f2,m is incompatible

with both Subjective Expected Utility Theory and models of Rank-Dependent Preferences, such as

Rank-Dependent Utility and Cumulative Prospect Theory.

16In Machina (2009), balls are labeled with numbers 1 through 4. That, however, is inconsequential for the results of
the example.
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What this example highlights is that there is a tradeoff between having more precise information

about the probabilities of relevant events. f0,m ≻ f1,m is reasonable exactly because f0,m is contingent

on unambiguous events - therefore their outcomes are dependent on events for which the DM has

more precise information. That is true even though from the available information to the DM it

is reasonable for her to have a higher expected payoff for f1,m, since the group of balls with higher

expected probability (black or green, with 51/101) has on average a higher average payoff. On the other

hand, when the outcomes are shifted so that the advantage in terms of precision on event probability

vanishes, then the shifted top lottery (f2,m) now does not seem that much attractive, in comparison

with the higher expected payoff of the bottom lottery (f3,m).

Our model is well-suited to deal with those types of reversals. Postulate P4 makes sure that the

ambiguity adjustment function reflects correctly the ambiguity of events in the Act-Induced Parti-

tion of the state-space, and that key property makes sure that the degree of ambiguity of an event

is measured for events in that act-induced partition. That reflects the fact that, even though the

expectation operator is linear - and therefore the expected probability of an union disjoint events can

be linearly added without any issues, that is not the case for dispersion measures of a probability

distribution. Therefore, it is only natural that events should be nonseparable with respect to their

degree of ambiguity, and how this ambiguity level reflects in the the DM’s preferences.

For concreteness, let’s apply our general V (f) to the Machina example. We denote the salience

of each state with subscripts that have the payoffs of the acts for some state, i.e., ω(12000,12000) <

ω(8000,8000) < ω(4000,4000) < ω(8000,4000). First, we analyze f0,m and f1,m:

V (f0,m) =
Ψ(µ(Er ∨ y)

2
ω(8000,8000) v(8000) +

Ψ(µ(Er ∨ y)

2
ω(8000,4000) v(8000)

+
Ψ(µ(Eb ∨ g)

2
ω(8000,4000) v(4000) +

Ψ(µ(Eb ∨ g)

2
ω(4000,4000) v(4000)

= v(8000)(Ψ(µ(Er ∨ y)) · ω(8000,8000) +Ψ(µ(Er ∨ y)) · ω(8000,4000))

+v(4000)(Ψ(µ(Eb ∨ g)) · ω(4000,8000) +Ψ(µ(Eb ∨ g)) · ω(8000,4000))

V (f1,m) = Ψ(µ(Er) ω(8000,8000) v(8000) + Ψ(µ(Ey) ω(8000,4000) v(4000)

+Ψ(µ(Eb) ω(8000,4000) v(8000) + Ψ(µ(Eg) ω(4000,4000) v(4000)

= v(8000)(Ψ(µ(Er) · ω(8000,8000) +Ψ(µ(Eb) · ω(8000,4000)) + v(4000)(Ψ(µ(Ey) · ω(8000,4000)

+Ψ(µ(Eg) · ω(4000,4000))

Assume the DM interprets the lack of knwoledge about how much of 50 (51) balls is red and yellow

(black and green) as an uniform probability of each possible combination being the true one. Then,

by property P2, since µ(Ej |P1,m) is a mean preserving spread for all events j = r, y, b, g, i.e., given

the Act-Induced Partition of f0,m, the relevant events for the outcomes of this act have more precise

information on probability distribution and same expected probability. Therefore, Ψ(µ(Er ∨ y) ≥
Ψ(µ(Er) + Ψ(µ(Ey) and Ψ(µ(Eb ∨ g) ≥ Ψ(µ(Eb) + Ψ(µ(Eg). Thus, since all outcomes are positive,

f0,m ⪰ f1,m. Now we evaluate acts f2,m, f3,m:
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V (f2,m) = Ψ(µ(Er) ω(12000,12000) v(12000) + Ψ(µ(Ey) ω(8000,4000) v(8000)

+Ψ(µ(Eb) ω(8000,4000) v(4000) + Ψ(µ(Eg) ω(0,0) v(0)

= Ψ(µ(Er) ω(12000,12000) v(12000) + ω(8000,4000)(Ψ(µ(Ey) · v(8000) + Ψ(µ(Eb) · v(4000))

V (f3,m) = Ψ(µ(Er) ω(12000,12000) v(12000) + Ψ(µ(Ey) ω(8000,4000) v(4000)+

Ψ(µ(Eb) ω(8000,4000) v(8000) + Ψ(µ(Eg) ω(0,0) v(0)

= Ψ(µ(Er) ω(12000,12000) v(12000) + ω(8000,4000)(Ψ(µ(Ey) · v(4000) + Ψ(µ(Eb) · v(8000))

Now the act-induced partitions are the same for f2,m and f3,m, and the preferences depend on

the relation Ψ(µ(Ey) and Ψ(µ(Eb). By the monotonicity implied by postulate P1 on second-order

probability distributions, and the fact that it is clear that the expected probability of Eb is higher

than Ey, Ψ(µ(Eb) ≥ Ψ(µ(Ey) and the DM is expected to have f3,m ≻ f2,m, as suggested by Machina

(2009).

Applying our parametric function to this example we can see again this pattern:

V (f0,m) = v(8000)(Ψ(µ(Er ∨ y)) · ω(8000,8000) +Ψ(µ(Er ∨ y)) · ω(8000,4000))

+v(4000)(Ψ(µ(Eb ∨ g)) · ω(4000,8000) +Ψ(µ(Eb ∨ g)) · ω(8000,4000))

=

(
25

101

)
(ω(8000,8000)v(8000) + ω(8000,4000)v(8000))

+

(
25.5

101

)
(ω(8000,4000)v(4000) + ω(4000,4000)v(4000))

V (f1,m) = v(8000)(Ψ(µ(Er) · ω(8000,8000) +Ψ(µ(Eb) · ω(8000,4000))

+v(4000)(Ψ(µ(Ey) · ω(8000,4000) +Ψ(µ(Eg) · ω(4000,4000))

=

((
25

101

)1−γ·σ(Ud(0,50/101))(1 + η

4

)γ·σ(Ud(0,50/101)
)
(ω(8000,8000) v(8000) + ω(8000,4000) v(4000))

+

((
25.5

101

)1−γ·σ(Ud(0,51/101))(1 + η

4

)γ·σ(Ud(0,51/101)
)
(ω(8000,4000) v(8000) + ω(4000,4000) v(4000))

V (f2,m) = Ψ(µ(Er) ω(12000,12000) v(12000) + ω(8000,4000)(Ψ(µ(Ey) · v(8000) + Ψ(µ(Eb) · v(4000))

= Ψ(µ(Er) ω(12000,12000) v(12000)

+ω(8000,4000)

((
25

101

)1−γ·σ(Ud(0,50/101))(1 + η

4

)γ·σ(Ud(0,50/101))

· v(8000)

)

+ω(8000,4000)

((
25.5

101

)1−γ·σ(Ud(0,51/101))(1 + η

4

)γ·σ(Ud(0,51/101))

· v(4000)

)
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V (f3,m) = Ψ(µ(Er) ω(12000,12000) v(12000) + ω(8000,4000)(Ψ(µ(Ey) · v(4000) + Ψ(µ(Eb) · v(8000))

= Ψ(µ(Er) ω(12000,12000) v(12000)

+ω(8000,4000)

((
25

101

)1−γ·σ(Ud(0,50/101))(1 + η

4

)γ·σ(Ud(0,50/101))

· v(4000)

)

+ω(8000,4000)

((
25.5

101

)1−γ·σ(Ud(0,51/101))(1 + η

4

)γ·σ(Ud(0,51/101))

· v(8000)

)

for any γ > 0 and η ∈ (−1, 0) it is assured that f0,m ≻ f1,m and f2,m ≺ f3,m, satisfying the

Machina reversal.

6 Related Literature

We now briefly relate our model to other previously developed models in the literature, focusing on

the most used models for decision under ambiguity and on other second-order belief models.

6.0.1 Smooth Ambiguity Preferences

One of the most popular second-order belief models for Decision Under Ambiguity is the Smooth

Ambiguity Preferences model (Klibanoff et al., 2005). It avoids the problem of nondifferentiability

typical of previous models, such as the α-maxmin model (Gilboa & Schmeidler, 1989). Besides, it also

considers the whole first and second-order distributions - not only the most optimistic or pessimistic

scenarios - in the DM’s evaluation of an act. Taking Savage’s Subjective Expected Utility as a starting

point, and with preliminaries that are similar to our own model, in the case of a finite set of states

s ∈ S and a finite set of second-order probabilities (”scenarii”) represented by µ, the value function

that represents the DM’s preferences is:

V SAP (fi) =
∑
θ∈Θ µ(θ)Φ(πθ(s) u(xs))

In other words, the preference criterion can be read as two-layer expected utility: first, the decision-

maker evaluates the expected utility with respect to all possible priors π ∈ ∆(S), so that the DM has

then a set of first-order expected utilities indexed by θ. Then, the DM takes an expectation of these

utilities, ”distorted” by a Φ function (Etner et al., 2012). Φ, in turn, determines the ambiguity attitude

of the DM, in the folllowing sense: if Φ were linear, the compound lottery representing the decision

under ambiguity would just reduce to an Expected Utility problem; for concave Φ, the DM weighs

more ”bad” πθ(s)u(xs) in its’ evaluation of results, and thus is ambiguity averse; if Φ is concave, the

DM gives more weight to ”good” πθ(s)u(xs), and so she is ambiguity seeking.

In that way, the decision criterion proposed by Klibanoff et al. (2005) involves both an expected

utility evaluation of the possible first-order probability distributions and a pessimistic, neutral or

optimistic criterion given by the Φ function. Even though the authors allow for different Φ for different

supports of Π (i.e., for different sets of first-order probability distributions), when aplying the model

one still has to assume a DM ambiguity attitude through the choice of the Φ function.

Particularly, even though the Smooth Ambiguity Preferences Model provides an interesting exten-

sion of the Subjective Expected Utility framework to analyze decision under ambiguity, it still does not

imply any specific prediction about DM’s ambiguity attitudes, nor what may influence that ambiguity
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attitude. Moreover, since Φ is defined on a classic SEU-like function, one cannot use the model to

assume difference in probability weighting that is independent of the outcome xs and its’ associated

utility function, unless if using a rather ad hoc approach for defining the Φ function differently for

many different supports of Π. Therefore, it is hard to use this framework to predict the fourfold pat-

tern of ambiguity attitudes empirically observed. Concretely, we can see that this usually implies that

experimenters testing the Smooth Ambiguity Preferences model put an additional assumption on the

Φ function to test the theory - and therefore on ambiguity attitudes (Conte & Hey, 2013; Attanasi et

al., 2014; Gneezy et al., 2015).

On the other hand, our model takes advantage of the great growth in experimental and empirical

evidence in recent decades to actually predict how ambiguity attitudes change as a function of the

expected probability of events the outcome domain, and other specific contextual information about

a given choice set. Even though assumptions about the parametric form of our model still need to be

chosen and calibrated according to empirical results - as it is usual for any such model - ambiguity

attitudes result from specific properties implied in our model, instead of being just assumed ex ante

as in the Smooth Ambiguity approach. So, not only we can accommodate for different ambiguity

attitudes depending on the context, we specifically predict which factors affect ambiguity attitude in

a choice problem.

We also retain the interesting properties of continuity and differentiability of the act evaluation

function V , for a given choice set F and beliefs µ based on the available information to the DM.

6.0.2 Choquet Expected Utility and Cumulative Prospect Theory

Rank-dependent theories, meaning models that rely on the valuation of acts according to the ranking

of outcomes by the DM, have also been employed for decision under ambiguity problems. Choquet

Expected Utility and Cumulative Prospect Theory, proposed by Schmeidler (1989) and Tversky & Kah-

neman (1992) respectively and later generalized and adapted for decision under ambiguity (Chateneuf

& Faro, 2009; Chateneauf, Eichberger & Grant (2007); Wakker, 2010), are two such models.

If taken in full generality, both models can accommodate the fourfold pattern empirically observed,

depending on the ambiguity parameters of the Cumulative Prospect Theory probability weighting

function (Wakker, 2010). For Choquet Expected Utility, the relevance of each prior assigned in a

Confidence Function such as that of Chateneuf & Fato (2009) may also accommodate those factors.

However, there may be a large number of free parameters involved, so that for empirical applications

a calibration of these parameters is required. Again, the models are general enough so that calibrating

their free parameters may result in the fourfold pattern, but without that specific calibration we do

not have a priori meaningful predictions about ambiguity attitude and how they change over time.

Moreover, phenomena such as Machina reversals cannot be predicted by these rank-dependent

models. That is so because they both assume a form of event separability - that Machina (2009) calls

tail-separability - which means that terms involving upper tail (better outcomes), mid-tail (average

outcomes) and lower tail (worse outcomes) are separable, in a way that their degree of ambiguity is

also separable. Therefore, tail-outcome shifts that affect ambiguity but do not affect the ranking of

event-contingent outcomes cannot be accomodated by these rank-dependent models (Machina, 2009;

Wakker, 2010), differently from what happens in our model.

Therefore, our model is able to deal with the nonlinearity of the degree of ambiguity based on the

event-partition induced by the choice set, while that cannot be accounted for in the rank-dependent

models of decision under ambiguity. This way of integrating context - interpreted as characteristics of

the choice set, and not only of the specific act or outcome being evaluated - in the act evaluation is
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the way to account for that nonseparability of events adopted by our model.

6.0.3 Contraction Second-Order Belief Model

Gajdos et al. (2008) propose a model that contains an idea of how DM’s use objective information on

the probability of events that is similar to the one contained in our model. The authors give axiomatic

foundations for a preference foundation that considers two criterion: (i) a Bayesian criterion, where

information is summarized by the available information on probability distribution of events that is

independent on the outcomes; (ii) a pessimistic criterion, so that the DM takes into account the

distribution giving the lowest expected utility possible. The evaluation of an act can be represented

by the function below:

V CM (fi) = minΦ∈ΦCM (µ(Π)) Eµ(Π) u(fi)

where ΦCM (µ(Π)) is a subjective set of second-order priors estimated from the available information

on event likelihood, and Eµ(Π) is the vector of expected probabilities of each event associated with an

outcome of act fi. The ΦCM function concept is similar to our Ψ transformation of the second-order

subjective second-order probability distribution - the idea that objective information about ambiguous

event probabilities is somehow distorted in the DM’s evaluation of an act. There are, however, some

important differences between our model and the Contraction Model. First, we do not assume the

pessimistic criterion for the evaluation of acts, but consider that the state-space partition induced by

the act and the choice set is what determines if a DM is ”optimistic” or ”pessimistic” about ambiguous

prospects and events. In that way, ambiguity seeking behavior as a function of expected probability

of events is easily accomodated by our model, while there is no clear effect of the expected probability

of an ambiguous event on ambiguity attitude in the Contraction Model.

Second, we consider the whole set of priors in the DM’s evaluation - not only the most pessimistic

scenario. In that way, the dispersion of the second-order priors matter, and not only what is the

subjective probabilities associated with the most pessimistic scenario. This kind of nuance in the

DM’s reaction for different degrees and forms of ambiguity is corroborated by recent experimental

evidence (Chew et al., 2017).

7 Conclusion

Our article explores how contextual characteristics of decision under ambiguity may influence decision-

maker’s preferences. We argue that, when faced with highly imprecise information on the probabilities

of each outcome (or event associated with outcomes) for different courses of action involving uncer-

tainty, then the DM uses other information from the choice set, such as the number of possible (and

relevant) events that can happen to ”fill the gap” of information about the probabilities of each event

with a naive equal probability distribution for each event. This bottom up stimuli distorts the weight-

ing of different event-outcome pairs, in a phenomenon called likelihood insensitivity by the literature.

Likelihood insensitivity, in turn, causes the DM to overweight (underweight) low (high) likelihood

ambiguous events, causing the fourfold ambiguity attitude observed in the literature.

However, our postulates also imply some ways in which decision-maker’s are consistent when dealing

with ambiguous events. Property P1 makes sure that, for a given expected probability of an event,

any monotonic increase in probability increases the weighting of an event. For example, an event that

has between 10% and 11% of happening is going to be weighted more than an unambiguous event with
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10% chance of happening. Property P2 makes sure that people weight coherently events based on the

(im)precision of available information on their probability, for a given value of expected probability.

That is, for a given level of expected probability, adding noise to second order probabilities (i.e.,

making an event more ambiguous) either monotonically increases or decreases the weighting of the

event. Postulate P3 makes sure probability weighting functions are continuous. Postulate P4 assures

that only the ambiguity of events that are relevant to the acts’ outcomes matter in event weighting,

while P5 states that events weighting depend exclusively on the available information on probabilities

and information on the amount of possible events that can affect the outcomes of acts. Finally, P6

introduces likelihood insensitivity as a function of this amount of relevant events (the Act-Induced

Partition). It introduces how a naive equal probability of each relevant event is used by the DM to

classify an event as a low or high-likelihood, and then to adjust their weighting through likelihood

insensitivity, to generate the fourfold pattern of Ambiguity Attitudes.

This model specification contrast with previous ones as we define postulates not about preferences

over acts themselves, but about the DM’s interpretation of available information on outcome/event

probabilities and the context of the decision, given by choice set information.

For future research, some interesting questions arise: (i) is there a limit to how many events-

outcomes can be considered by a decision-maker when calibrating his weighting of events with a naive

probability distribution: That is, if there are 100 events relevant to an act’s outcome, is the cutoff to

define a ”low” expected probability of an event less than the cutoff when there are 99 relevant events?

Or is there a limit to this cutoff point? Is there an interaction between sensitivity to salience and

sensitivity to distortions in probability weighting? In other words, are people who are more affected

by bottom up salience are also more affected by bottom up Contextual-Ambiguity distortions in event

weighting? These questions will certainly provide great insights to calibrate and apply the proposed

model many different puzzles related to decision under ambiguity.

Appendix A: Proofs of Propositions

The ψ(µ(Π(s))) is defined as follows:

ψ(µ(Π(s))) =
1

|Eis|
(
Eµ(Π(Eis))

)1−γ·σµ(Π(Ei
s))
(
1 + η

|Si|

)γ·σµ(Π(Ei
s))

&η ∈ (−1, 1), γ ∈ (0, 2) (2)

Lemma 1: Assume Nontriviality (A2). Then, the ψ function is: (i) Well-defined. (ii) Continuous on

µ(Π(s))

Proof:

To prove (i), first, note that, the marginal probability Π(Eis) ∈ [0, 1] is a bounded random variable.

Then, assuming nontriviality - so that a distribution µ can be well-defined on Π(Eis), by the bounds

on Π(Eis), µ(Π(Eis)) has finite variance and expectation. Therefore, Eµ(Π(Eis) and σµ(Π(Eis)) are

well-defined for every s ∈ Eis ∈ Pi. |Eis| is the cardinality of the event Eis ∈ Pi that contains state

s. By the fact that an Act-Induced Partition is a partition of a non-empty finite and discrete S, Eis

is non-empty and finite. Therefore, |Eis| ∈ N : |Eis| > 1 is constant for a given act fi and state s.

Similarly, by the definition of partition of a set, since Si is a partition of S, Si is finite and non-empty

and |Si| ∈ N : |Si| ≥ 1. Therefore, every term in the function is well defined in the real numbers, and

thus ψ is well-defined.
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To prove (ii), see that since Eµ(Π(E)) and σµ(Π(E)) are sums and products of continuous functions

(i.e., probabilities), they are continuous functions of µ(Π(s)). Thus, ψ(µ(Π(s))) a continuous function

of µ(Π(s)).

Lemma 2: Let Π(Eis) ∈ [0, 1] be a discrete bounded random variable, A(Π(Eis)) its’ σ-algebra

and µ a probability distribution measure defined on the measurable space (Π(Eis),A(Π(Eis))). Then,

maxσµ(Π(E
i
s)) =

1
2 .

Proof:

Note that σµ(Π(Eis)) is a measure of dispersion of Π(Eis) under the µ distribution. Since Π(Eis)

is bounded, it the maximum dispersion is achieved when the probability mass is concentrated in

its’ extremes, i.e., when Π(Eis) = 0 and Π(Eis) = 1, each with probability 1/2. In this case,

maxσµ(Π(E
i
s)) =

√
1
2 (0− 1/2)2 + 1

2 (1− 1/2)2 = 1
2 .

ψ satisfies property P1

Proof:

By the Lemma, ψ is well-defined and continuous on its’ arguments.

First, define:

g(µ(Π(s))) = Eµ(Π(s))1−γ·σµ(Π(s)) h(µ(Π(s))) =

(
1 + η

|Pi|

)γ·σµ(Π(s))

Then, by the product rule:

∂ψ(µ(Π(E)))

∂µ(Π(s))
=
∂g(µ(Π(s)))

∂µ(Π(s))
· h(µ(Π(s))) + g(µ(Π(s))) · ∂h(µ(Π(s)))

∂µ(Π(s))

Applying the chain rule to g:

∂g(µ(Π(s)))

∂µ(Π(s))
=

∂g

∂Eµ(Π(s))
· ∂Eµ(Π(s))
∂µ(Π(s))

+
∂g

∂σµ(Π(s))
· ∂σµ(Π(s))

∂µ(Π(s))
(3)

And the chain rule applied to h gives:

∂h(µ(Π(s)))

∂µ(Π(s))
=

∂h

∂σµ(Π(s))
· ∂σµ(Π(s))

∂µ(Π(s))
(4)

Now, we need to compute the partial derivatives of g and h with respect to Eµ(Π(s)) and σµ(Π(s)),

and the partial derivatives of Eµ(Π(s)) and σµ(Π(s)) with respect to µ(Π(s)). After computing these

derivatives and substituting them back into the expressions for ∂g(µ(Π(s)))
∂µ(Π(s)) and ∂h(µ(Π(s)))

∂µ(Π(s)) , we can

simplify the resulting expression for ∂ψ(µ(Π(s)))
∂µ(Π(s)) .

To compute the partial derivatives of g and h with respect to Eµ(Π(s)) and σµ(Π(s)), we first

differentiate g with respect to Eµ(Π(s)):
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∂g

∂Eµ(Π(s))
= (1− γ · σµ(Π(s)))Eµ(Π(s))−γ·σµ(Π(s))

Next, we differentiate g with respect to σµ(Π(s)):

∂g

∂σµ(Π(s))
= −γ · Eµ(Π(s))1−γ·σµ(Π(s)) · log(Eµ(Π(s)))

Now, we differentiate h with respect to σµ(Π(s)):

∂h

∂σµ(Π(s))
= γ ·

(
1 + η

|Pi|

)γ·σµ(Π(s))

· log
(
1 + η

|Pi|

)
Next, we compute the partial derivatives of Eµ(Π(s)) and σµ(Π(s)) with respect to µ(Π(s)).

For Eµ(Π(s)):

∂Eµ(Π(s))

∂µ(Π(s))
= πi(s)

For σµ(Π(s)):

∂σµ(Π(s))

∂µ(Π(s))
=

1

2
√∑N

i=1 p(πi)(πi(s)− Eµ(Π(s)))
· (πi(s)− Eµ(Π(s)))

Substituting these derivatives back into the expressions for ∂g(µ(Π(s)))
∂µ(Π(s)) and ∂h(µ(Π(s)))

∂µ(Π(s)) and simpli-

fying, we get:

∂ψ(µ(Π(s)))

∂µ(Π(s))
= (πi(s)− γ · log(Eµ(Π(s))) · (πi(s)− Eµ(Π(s)))) · g(µ(Π(s))) · h(µ(Π(s)))

The final step is to show that this expression for ∂ψ(µ(Π(s)))
∂µ(Π(s)) is positive. Since γ ∈ [0, 2) and

η ∈ (−1, 1), the terms involved in the expression are all positive or non-negative. Therefore, the

expression for the derivative will be positive. As γ ∈ [0, 2), η ∈ (−1, 1), and πi(s) ∈ [0, 1], the terms

involved in the expression are all positive or non-negative. Thus, the expression for the derivative,
∂ψ(µ(Π(s(s)))
∂µ(Π(s)) , is positive.

Step 2: Define the probability distributions involved in the property (P1), and show how λ affects

the compound probability distribution.

Let µ1(Π(s)), µ2(Π(s)), and µi(Π(s)) be the compound probability distributions defined in the

property (P1). We can define the following probability distributions:

µ′
1(Π(s)) = λµ1(Π(s)) + (1− λ)µi(Π(s)) µ′

2(Π(s)) = λµ2(Π(s)) + (1− λ)µi(Π(s))

Step 3: Prove the property (P1) using the results from steps 1 and 2.
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We want to show that:

ψ(µ1(Π(s))) ≥ ψ(µ2(Π(s))) ⇔ ψ(µ′
1(Π(s))) ≥ ψ(µ′

2(Π(s)))

We have shown in step 1 that ψ(µ(Π(s))) is a continuous and increasing function of µ(Π(s)). Since

µ1(Π(s)) ≥ µ2(Π(s)), we can apply the continuous and increasing property of the function ψ:

ψ(µ1(Π(s))) ≥ ψ(µ2(Π(s))) ⇔ ψ(µ′
1(Π(s))) ≥ ψ(µ′

2(Π(s)))

Now, consider the compound probability distributions µ′
1(Π(s)) and µ′

2(Π(s)):

µ′
1(Π(s)) = λµ1(Π(s)) + (1− λ)µi(Π(s)) µ′

2(Π(s)) = λµ2(Π(s)) + (1− λ)µi(Π(s))

Since λ ∈ (0, 1), the compound probability distributions are convex combinations of µ1(Π(s)),

µ2(Π(s)), and µi(Π(s)). Therefore, the compound probability distributions are also continuous and

increasing functions of µ(Π(s)). Moreover, due to the convexity of the combination, we have that:

µ′
1(Π(s)) ≥ µ′

2(Π(s)) ⇔ λµ1(Π(s)) + (1− λ)µi(Π(s)) ≥ λµ2(Π(s)) + (1− λ)µi(Π(s))

Applying the continuous and increasing property of the function ψ to the compound probability

distributions, we have:

ψ(µ′
1(Π(s))) ≥ ψ(µ′

2(Π(s))) ⇔ ψ(λµ1(Π(s)) + (1− λ)µi(Π(s))) ≥ ψ(λµ2(Π(s)) + (1− λ)µi(Π(s)))

ψ satisfies property P2

We will prove the property (P2) for the given function ψ(µ(Π(s))) in the following steps:

Show that the function ψ(µ(Π(s))) is continuous and differentiable with respect to µ(Π(s)). Derive

expressions for the partial derivatives
∂σµ(Π(s))
∂µ(Π(s)) and

∂Eµ(Π(s))
∂µ(Π(s)) . Analyze how the partial derivatives

affect the inequality conditions. Show that the conditions for property (P2) hold. Step 1: Continuity

and differentiability of ψ(µ(Π(s)))

The given function ψ(µ(Π(s))) is a composition of continuous functions: power functions, products,

and sums. Therefore, ψ(µ(Π(s))) is continuous. Furthermore, since all the functions involved are

differentiable, ψ(µ(Π(s))) is also differentiable.

Step 2: Deriving expressions for partial derivatives

We first compute the partial derivatives of Eµ(Π(s)) and σµ(Π(s)) with respect to µ(Π(s)).

For Eµ(Π(s)), we have:

∂Eµ(Π(s))

∂µ(Π(s))
=

∂

∂µ(Π(s))

(
N∑
i = 1p(πi)× πi(s)

)
= πi(s)

For σµ(Π(s)), we have:
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∂σµ(Π(s))

∂µ(Π(s))
=

∂

∂µ(Π(s))

√√√√ N∑
i=1

p(πi)(πi(s)− Eµ(Π(s)))2

We will not explicitly compute the partial derivative of σµ(Π(s)) with respect to µ(Π(s)), as it is

not necessary for our analysis.

Step 3: Analyzing the effect of partial derivatives on the inequality conditions

Since ψ(µ(Π(s))) is continuous and differentiable, the conditions in property (P2) can be analyzed

using the partial derivatives. We need to show that the following inequality holds:

ψ(λ µ1(E) + (1− λ) µ3(E)) ≥ ψ(λ′ µ1(E) + (1− λ′) µ3(E))

if and only if

ψ(λ µ2(E) + (1− λ) µ4(E)) ≥ ψ(λ′ µ2(E) + (1− λ′) µ4(E))

Step 4: Showing the conditions for property (P2) hold

We will use the given function definition and the partial derivative expressions to analyze the

inequalities.

Since γ ∈ [0, 2), the exponent γ · σµ(Π(s)) is non-negative. Therefore, the function ψ(µ(Π(s))) is

non-decreasing with respect to σµ(Π(s)). Additionally, since η ∈ (−1, 1), the expression ( 1+η|Pi| )
γ·σµ(Π(s))

is always positive. Therefore, the sign of the inequality will depend on the term Eµ(Π(s))1−γ·σµ(Π(s)).

Consider the inequality:

ψ(λ µ1(E) + (1− λ) µ3(E)) ≥ ψ(λ′ µ1(E) + (1− λ′) µ3(E))

Using the definition of ψ(µ(Π(s))), this inequality can be expressed as:

Eλµ1 + (1− λ)µ3(Π(s))1−γ·σλµ1+(1−λ)µ3(Π(s)) ≥ Eλ′µ1 + (1− λ′)µ3(Π(s))1−γ·σλ
′µ1+(1−λ′)µ3(Π(s))

Now, consider the inequality:

ψ(λ µ2(E) + (1− λ) µ4(E)) ≥ ψ(λ′ µ2(E) + (1− λ′) µ4(E))

Similarly, using the definition of ψ(µ(Π(s))), this inequality can be expressed as:

Eλµ2 + (1− λ)µ4(Π(s))1−γ·σλµ2+(1−λ)µ4(Π(s)) ≥ Eλ′µ2 + (1− λ′)µ4(Π(s))1−γ·σλ
′µ2+(1−λ′)µ4(Π(s))

Given that ψ(µ1(E)) > ψ(µ2(E)) and ψ(µ3(E)) > ψ(µ4(E)), we can infer that:

39



Eµ1(Π(s))1−γ·σµ1(Π(s)) > Eµ2(Π(s))1−γ·σµ2(Π(s))

and

Eµ3(Π(s))1−γ·σµ3(Π(s)) > Eµ4(Π(s))1−γ·σµ4(Π(s))

ψ satisfies property P3

To prove Property (P3), we will proceed in the following steps:

State and prove a lemma that describes the relationship between the partial derivatives of σµ(Π(s))

and Eµ(Π(s)) with respect to µ(Π(s)). Analyze the impact of these partial derivatives on the function

ψ(µ(Π(s))). Demonstrate that the function satisfies Property (P3) using the findings from steps 1 and

2. Step 1: Lemma and its proof

Lemma: For any s ∈ S, the partial derivatives of σµ(Π(s)) and Eµ(Π(s)) with respect to µ(Π(s))

are as follows:

(i)
∂Eµ(Π(s))
∂µ(Π(s)) = πi(s)− Eµ(Π(s)). (ii)

∂σµ(Π(s))
∂µ(Π(s)) = (πi(s)− Eµ(Π(s)))2 − σ2

µ(Π(s)).

Proof:

(i) Using the definition of Eµ(Π(s)), we have:
∂Eµ(Π(s))
∂µ(Π(s)) = ∂

∂µ(Π(s))

∑N
i = 1p(πi)× πi(s).

Since the only term involving µ(Π(s)) is p(πi)× πi(s), the derivative is:
∂Eµ(Π(s))
∂µ(Π(s)) = πi(s)− Eµ(Π(s)).

(ii) Using the definition of σµ(Π(s)), we have:
∂σµ(Π(s))
∂µ(Π(s)) = ∂

∂µ(Π(s))

√∑N
i=1 p(πi)(πi(s)− Eµ(Π(s)))2.

We can rewrite σ2
µ(Π(s)) as:

σ2
µ(Π(s)) =

∑N
i=1 p(πi)(πi(s)− Eµ(Π(s)))2.

Taking the derivative with respect to µ(Π(s)), we get:
∂σ2

µ(Π(s))

∂µ(Π(s)) = (πi(s)− Eµ(Π(s)))2 − σ2
µ(Π(s)).

Step 2: Analyze the impact of partial derivatives on ψ(µ(Π(s)))

From the given function definition, we can observe that:

Eµ(Π(s)) is increasing with respect to µ(Π(s)). σµ(Π(s)) is a non-decreasing function of µ(Π(s)).

Step 3: Demonstrate Property (P3)

Let µi, µj , µk be such that ψ(µi(Π(E))) > ψ(µj(Π(E))). We need to show that there exists a

λ ∈ (0, 1) such that:

ψ(µi(Π(E))) > ψ(λ µk(Π(E))+(1−λ) µj(Π(E))). ψ(λ µk(Π(E))+(1−λ) µi(Π(E))) > ψ(µj(Π(E))).

Consider the function ψ(µ(Π(E))) and its partial derivatives. We know that
∂Eµ(Π(E))
∂µ(Π(E)) = πi(E) −

Eµ(Π(E)) and
∂σµ(Π(E))
∂µ(Π(E)) = (πi(E)− Eµ(Π(E)))2 − σ2

µ(Π(E)).

Now, we want to analyze the impact of these partial derivatives on the function ψ(µ(Π(E))). We

can write the function as:

ψ(µ(Π(E))) = Eµ(Π(E))1−γ·σµ(Π(E))

(
1 + η

|Pi|

)γ·σµ(Π(E))

Taking the derivative of ψ with respect to µ(Π(E)), we have:
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∂ψ(µ(Π(E)))

∂µ(Π(E))
=

(
1− γ · σµ(Π(E))

Eµ(Π(E))
· ∂Eµ(Π(E))

∂µ(Π(E))
+

γ

|Pi|
· ∂σµ(Π(E))

∂µ(Π(E))

)
· ψ(µ(Π(E)))

Since ψ(µ(Π(E))) > 0, the sign of the derivative depends on the term inside the parentheses.

Now, we know that Eµ(Π(E)) is increasing with respect to µ(Π(E)), and σµ(Π(E)) is a non-

decreasing function of µ(Π(E)). Thus, for any 0 < λ < 1, we have:

Eλ µk(Π(E)) + (1− λ) µi(Π(E))(Π(E)) < Eµi(Π(E)) and Eλ µk(Π(E)) + (1− λ) µj(Π(E))(Π(E)) >

Eµj(Π(E)). σλ µk(Π(E))+(1−λ) µi(Π(E))(Π(E)) < σµi(Π(E)) and σλ µk(Π(E))+(1−λ) µj(Π(E))(Π(E)) >

σµj (Π(E)).

Since σµ(Π(E)) is non-decreasing with respect to µ(Π(E)), we can find λ ∈ (0, 1) such that the

term inside the parentheses of the derivative expression is positive for λ µk(Π(E)) + (1− λ) µi(Π(E))

and negative for λ µk(Π(E))+ (1−λ) µj(Π(E)). This implies that the derivative of ψ with respect to

µ(Π(E)) is positive for λ µk(Π(E))+(1−λ) µi(Π(E)) and negative for λ µk(Π(E))+(1−λ) µj(Π(E)).

Therefore, we have:

ψ(µi(Π(E))) > ψ(λ µk(Π(E)) + (1 − λ) µj(Π(E))) since the derivative of ψ is negative for

λ µk(Π(E))+(1−λ) µj(Π(E)). ψ(λ µk(Π(E))+(1−λ) µi(Π(E))) > ψ(µj(Π(E))) since the derivative

of ψ is positive for λ µk(Π(E)) + (1− λ) µi(Π(E)). Thus, we have shown that there exists a λ ∈ (0, 1)

satisfying the conditions of Property (P3).

ψ satisfies property P4

To prove property (P4) for the given function ψ(µ(Π(s))), we will proceed with the following steps:

Prove that ψ(µ(Π(s))) is strictly increasing in Eµ(Π(s)) and strictly decreasing in σµ(Π(s)). Show

that the convex combination of probability measures, λ µk(Π(s))+(1−λ) µj(Π(s)), leads to an increase

in Eµ(Π(s)) and a decrease in σµ(Π(s)). Apply the results of steps 1 and 2 to verify property (P4).

Step 1: Prove that ψ(µ(Π(s))) is strictly increasing in Eµ(Π(s)) and strictly decreasing in σµ(Π(s)).

First, we take the partial derivative of ψ(µ(Π(s))) with respect to Eµ(Π(s)):

∂ψ(µ(Π(s)))

∂Eµ(Π(s))
= (1− γ · σµ(Π(s)))Eµ(Π(s))−γ·σµ(Π(s))

(
1 + η

|Pi|

)γ·σµ(Π(s))

Since γ ∈ [0, 2), and σµ(Π(s)) is non-negative, the term (1 − γ · σµ(Π(s))) is positive. Moreover,

since Eµ(Π(s)) and the term inside the parentheses are also positive, the partial derivative is positive.

Thus, ψ(µ(Π(s))) is strictly increasing in Eµ(Π(s)).

Next, we take the partial derivative of ψ(µ(Π(s))) with respect to σµ(Π(s)):

∂ψ(µ(Π(s)))

∂σµ(Π(s))
= −γ · Eµ(Π(s))1−γ·σµ(Π(s))

(
1 + η

|Pi|

)γ·σµ(Π(s))(
ln(Eµ(Π(s)))− ln

(
1 + η

|Pi|

))
Since γ ≥ 0, and all the other terms inside the parentheses are positive, the partial derivative is

negative. Thus, ψ(µ(Π(s))) is strictly decreasing in σµ(Π(s)).

Step 2: Show that the convex combination of probability measures, λ µk(Π(s))+ (1−λ) µj(Π(s)),

leads to an increase in Eµ(Π(s)) and a decrease in σµ(Π(s)).

Let µi = λ µk + (1− λ) µj . Then,
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Eµi(Π(s)) =
∑

i = 1Np(πi)× πi(s) = λ

N∑
i=1

pk(πi)× πi(s) + (1− λ)

N∑
i=1

pj(πi)× πi(s)

Since ψ(µi(Π(s))) > ψ(µj(Π(s))), it follows that Eµi(Π(s)) > Eµj(Π(s)). Thus, the convex combi-

nation of probability measures leads to an increase in Eµ(Π(s)).

To show that the convex combination leads to a decrease in σµ(Π(s)), we first note that the variance

of a convex combination of probability measures is:

σ2
µi
(Π(s)) = λ2σ2

µk
(Π(s)) + (1− λ)2σ2

µj
(Π(s)) + 2λ(1− λ)Covµk,µj (Π(s))

Since σ2
µk
(Π(s)) and σ2

µj
(Π(s)) are non-negative, and by the Cauchy-Schwarz inequality, Covµk, µj(Π(s))

2 ≤
σ2µk(Π(s))σ

2
µj
(Π(s)), we have:

σ2
µi
(Π(s)) ≤ λ2σ2

µk
(Π(s)) + (1− λ)2σ2

µj
(Π(s))

Thus, the convex combination of probability measures leads to a decrease in σµ(Π(s)).

Step 3: Apply the results of steps 1 and 2 to verify property (P4).

From Step 1, we know that ψ(µ(Π(s))) is strictly increasing in Eµ(Π(s)) and strictly decreasing in

σµ(Π(s)). From Step 2, we showed that the convex combination of probability measures, λ µk(Π(s))+

(1− λ) µj(Π(s)), leads to an increase in Eµ(Π(s)) and a decrease in σµ(Π(s)).

Now, let’s consider ψ(λ µk(Π(s)) + (1 − λ) µj(Π(s))). Since the convex combination increases

Eµ(Π(s)) and decreases σµ(Π(s)), it follows that:

ψ(µi(Π(s))) > ψ(λ µk(Π(s)) + (1− λ) µj(Π(s)))

Similarly, for ψ(λ µk(Π(s)) + (1 − λ) µi(Π(s))), the convex combination also increases Eµ(Π(s))

and decreases σµ(Π(s)), which implies:

ψ(λ µk(Π(s)) + (1− λ) µi(Π(s))) > ψ(µj(Π(s)))

Thus, property (P4) holds for the given function ψ(µ(Π(s))). We have shown that for all µi, µj , µk

satisfying ψ(µi(Π(s))) > ψ(µj(Π(s))), there exists λ ∈ (0, 1) such that:

ψ(µi(Π(s))) > ψ(λ µk(Π(s))+(1−λ) µj(Π(s))) and ψ(λ µk(Π(s))+(1−λ) µi(Π(s))) > ψ(µj(Π(s)))

ψ satisfies property P5

To prove Property (P5) for the given function ψ(µ(Π(s))), we will follow these steps:

Prove (i): Show that if µ(Π(E)) = µ(Π(E′)), then ψ(µ(Π(E))) = ψ(µ(Π(E′))) for all events

E,E′ ∈ Pi. Prove (ii): Show that for every event E ∈ Pi
⋂
Pj , there exists a unique y ∈ R such that

ψ(µ(Π(E))) = y. Proof:
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Prove (i): Given that µ(Π(E)) = µ(Π(E′)), we want to show that ψ(µ(Π(E))) = ψ(µ(Π(E′))).

Let’s evaluate the function ψ(µ(Π(E))) and ψ(µ(Π(E′))):

ψ(µ(Π(E))) = Eµ(Π(E))1−γ·σµ(Π(E))

(
1 + η

|Pi|

)γ·σµ(Π(E))

ψ(µ(Π(E′))) = Eµ(Π(E′))1−γ·σµ(Π(E′))

(
1 + η

|Pi|

)γ·σµ(Π(E′))

Since µ(Π(E)) = µ(Π(E′)), it follows that Eµ(Π(E)) = Eµ(Π(E′)) and σµ(Π(E)) = σµ(Π(E′)).

Therefore, ψ(µ(Π(E))) = ψ(µ(Π(E′))), which proves part (i) of Property (P5).

Prove (ii): Let E ∈ Pi
⋂
Pj . We want to show that there exists a unique y ∈ R such that

ψ(µ(Π(E))) = y.

Since ψ(µ(Π(s))) is a continuous function of Eµ(Π(s)) and σµ(Π(s)), and both Eµ(Π(s)) and

σµ(Π(s)) are continuous functions of µ(Π(s)), it follows that ψ(µ(Π(s))) is a continuous function of

µ(Π(s)).

Now, consider the function ψ(µ(Π(E))):

ψ(µ(Π(E))) = Eµ(Π(E))1−γ·σµ(Π(E))

(
1 + η

|Pi|

)γ·σµ(Π(E))

Since ψ(µ(Π(s))) is a continuous function of µ(Π(s)), and given that E ∈ Pi
⋂

Pj , it follows that
there exists a unique µ(Π(E)) for the event E. This, in turn, determines unique values for Eµ(Π(E))

and σµ(Π(E)), as they are continuous functions of µ(Π(s)).

Now, let’s evaluate the function ψ(µ(Π(E))) again:

ψ(µ(Π(E))) = Eµ(Π(E))1−γ·σµ(Π(E))

(
1 + η

|Pi|

)γ·σµ(Π(E))

Since the values of Eµ(Π(E)) and σµ(Π(E)) are unique for the given µ(Π(E)), the value of

ψ(µ(Π(E))) is also unique for the given event E. Let this unique value be y ∈ R.
Thus, we have shown that for every event E ∈ Pi

⋂
Pj , there exists a unique y ∈ R such that

ψ(µ(Π(E))) = y. This proves part (ii) of Property (P5).

Proposition 2: ψ satisfies properties P1, P2, P3, P4, P5 and P6.

Proof:

In order to prove that a function ψ : µ → R+ that satisfies properties (P1), (P2), (P3), (P4),

(P5), and (P6). For degenerate µ, P6 is inconsequential. Therefore we only have to prove the case of

non-degenerate µ.

Apply properties (P5) and (P6) to establish the relationship between ψ(µ(Π(E))) and λEµ(Π(E))+

(1−λ) 1
|Pi| . Use the definitions of the expectations and standard deviations for the marginal compound

probabilities. Show that the desired result holds for any non-degenerate µ and event E ∈ Pi. Proof:
Then, we follow the steps below
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Step 1: Applying properties (P5) and (P6)

By Property (P5), for all events E,E′ ∈ Pi, if µ(Π(E)) = µ(Π(E′)), then ψ(µ(Π(E))) = ψ(µ(Π(E′))).

By Property (P6), if |Pi| < |Pj | and Ψ(µ1(Π(Ei))) ≥ Ψ(µ2(Π(Ei))), then Ψ(µ1(Π(Ej))) ≥
Ψ(µ2(Π(Ej))).

Step 2: Using the definitions of expectations and standard deviations for the marginal compound

probabilities

Given the definitions of Eµ(Π(s)) and σ(µ(Π(s))), we can rewrite them as:

Eµ(Π(s)) =
∑N

i = 1p(πi)× πi(s)

σ(µ(Π(s))) =
√∑N

i=1 p(πi)(πi(s)− Eµ(Π(s)))

Step 3: Showing that the desired result holds for any non-degenerate µ and event E ∈ Pi

Now, let’s assume that ψ satisfies properties (P1), (P2), (P3), (P4), (P5), and (P6). We want to

show that for any non-degenerate µ and event E ∈ Pi, there exists λ ∈ [0, 1] such that Ψ(µ(Π(E))) =

λEµ(Π(E)) + (1− λ) 1
|Pi| .

By applying properties (P5) and (P6), we know that there is a unique y ∈ R for which ψ(µ(Π(E))) =

y. Moreover, if |Pi| < |Pj |, then Ψ(µ1(Π(Ei))) ≥ Ψ(µ2(Π(Ei))) implies Ψ(µ1(Π(Ej))) ≥ Ψ(µ2(Π(Ej))).

Let λ =
Ψ(µ(Π(E)))− 1

|Pi|
Eµ(Π(E))− 1

|Pi|
.

We can rearrange this equation to obtain the desired result:

Ψ(µ(Π(E))) = λEµ(Π(E)) + (1− λ) 1
|Pi|

Now, we need to show that λ ∈ [0, 1].

Since Ψ is a function mapping to R+, we have Ψ(µ(Π(E))) ≥ 0.

Appendix B: An Example of Ambiguity Adjustment Function

A parametric example of an Ambiguity Adjustment Function, that satisfies properties (P1) through

(P5) is given by:

ψ′(µ(Π(E))) = Eµ(Π(E))1−α·σµ(Π(E))

where α ∈ (−2, 2). Here, α represents the DM’s ambiguity attitude, so that α < 0 indicates

ambiguity seeking behavior and α > 0 indicates ambiguity aversion. α = 0 is the case for an ambiguity

neutral DM. This function is very similar to the one case proposed in the Gajdos et al. (2008) model,

but without the ”pessimistic criterion” that the DM overweights not only the states where information

is more precise, but also the worst case scenarios in terms of utility. Here we only require that the DM

alters the weight of events that have more imprecise information about their probability, and that can

happen either for ”good” or ”bad” outcomes. This is also in the same spirit as Klibanoff et al. (2005)

Φ function, in that the function is convex(concave) whenever the DM is ambiguity seeking(averse), no

matter the outcome. But it also retains the same lack of meaningful predictions about what conditions

what determines ambiguity attitude: we can estimate values for α in different situations, but this initial

version of the model does not imply any meaningful predictions about how ambiguity attitudes may

change due to changes in the probability distributions of events, their outcome domains, and other

characteristics of the choice set.

That is the main reason for us to adopt a framework of elaborating postulates regarding how

decision-makers deal with event probabilities (and not directly stating anything about the preferences

of acts contingent on ambiguous events themselves), and also why we introduce postulate P6, resulting
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in a model that produces meaningful predictions about ambiguity attitudes that match the empirical

literature.

Appendix C: A Note on Continuous State-Spaces

In this paper we purposely focus on discrete state-space problem. When dealing with decision under

ambiguity, these seem to be the most relevant cases, since the simplification of the possible events and

their associated outcomes is a common way for individuals to deal with complex and/or incomplete

information about probabilities of events. Even in the experimental literature, it is usual to represent

continuous distributions, even some of the most known ones as the univariate normal distribution as

discrete approximations (Lian et al., 2019), since the continuous distribution information itself may be

too complex for the decision-maker to form meaningful scenarios that she can use in choosing from a

given set of acts. There has also been a long-standing literature on simplifying rules used by decision-

makers, when faced with complex decisions (Kahneman et al., 1982; Sundstroem, 1987), without losing

significant effectiveness in decision-making (Bruce & Johnson, 1996; Hertwig & Todd, 2003)

However, we also recognize that there may be instances where considering a continuous state-space

may be useful, specially to relate discrete and continuous spaces through measure theory. Therefore, we

alter postulates P5 and P6 to adapt the definitions of ambiguity adjustment function and the context-

based ambiguity adjustment function, but now for continuous finite state-spaces. Basically, now the

use of the cardinality of an Act-Induced Partition now does not make any sense (since cardinality is not

a good measure of how likely an event in a continuous state-space is). Instead, we use the Lebesgue

Measure to measure it. Below we adapt postulates P5 and P6 considering that, which we rename

postulates P5’ and P6’, respectively.

P5’(Belief Symmetry - Continuous State-Spaces) Let Pi =
⋃n
i=1Ei and Pj =

⋃n
j=1Ej be

act-induced partitions for some acts fi and fj , respectively. Then, the following holds:

(i) For all events E,E′ ∈ Pi, µ(E) = µ(E′) =⇒ Ψ(µ(E)) = Ψ(µ(E′)).

(ii) For every event E ∈ Pi
⋂
Pj and l(Pi) = l(Pj) (where l(A) denotes the Lebesgue measure

of a set A), there is a unique y ∈ R : Ψ(µ(E)) = y.

P6’(Partition Monotonicity - Continuous State-Spaces) For any non-degenerate probability

distribution µ1 and µ2 such that µ1(Π(Ei)) = µ2(Π(Ei)) for some Ei ∈ Pi and µ1(Π(Ej)) = µ2(Π(Ej))

for some Ej ∈ Pj , if l(Pi) < l(Pj), then Ψ(µ1(Π(Ei))) ≥ Ψ(µ2(Π(Ei))) implies Ψ(µ1(Π(Ej))) ≥
Ψ(µ2(Π(Ej))).

Analogously, we also redefine our parametric example function ψ′, but now adapted to a continuous

state-space:

ψ(µ(Π(E))) = Eµ[E](1−γ·σµ(E
i
s))

(
l(E) + η∑
i l(Ei)

)γ·σµ(E
i
s)

(5)

where l(E) is the Lebesgue measure of an event E ∈ Pi for an act fi being evaluated, and
∑
i l(Ei)

is the sum of lebesgue measures for all events Ei ∈ Pi, including the event E itself. The proof that

this function is a Context Ambiguity Adjustment Function (for continuous state-spaces) is analgous

to the discrete case proof of Appendix A.
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