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Abstract 

This study addresses the application of artificial intelligence models to predict the energy deactivation curves of 
adsorption beds composed of 17 different types of activated carbons, throughout the operating cycles of a vehicle fuel 
tank. Using simulated data from the adsorption of methane, ethane, propane and butane, the pore size distribution (PSD) 
was used as a way to characterize the activated carbons. The charge/discharge tank model, together with the Ideal 
Adsorbed Solution Theory (IAST), was solved iteratively in the gPROMS software to obtain data over 200 operating 
cycles. The Latin Hypercube Sampling (LHS) technique was used to determine efficient combinations of the molar 
fractions of the natural gas components, used in the calculations. Subsequently, artificial neural networks (ANNs) were 
trained and evaluated to predict the energy deactivation curves of the adsorption beds, whose architectures were optimized 
using the Particle Swarm Optimization (PSO) methodology. The results indicate that the ANN trained with the 
characterization data of PSD presented satisfactory performance, standing out as an effective approach in predicting this 
phenomenon. Therefore, the proposed model is capable of predicting the energetic deactivation curves for a wide range 
of activated carbons, when the PSD is known. 
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1. Introduction 

Recently, there has been a significant increase in 
the search for more efficient and sustainable 
alternatives for storing gases, such as hydrogen and 
natural gas, in the global energy context. The use of 
porous media, such as adsorption beds, to store these 
gases has emerged as a promising and viable option 
[1]. Among the porous materials used, activated 
carbons deserve special mention, as they have 
demonstrated significant efficiency in gas 
adsorption capacity [2]. 

Activated carbons are extremely porous 
materials, obtained through the activation of carbon-
rich precursors. Their porous structure provides a 
considerable internal surface area, enabling 
effective selective adsorption of gases and 
molecules [3]. 

Adsorption is influenced by several variables, 
including temperature, pressure, physicochemical 
properties of the adsorbent, and characteristics of the 
fluid to be stored [4]. Modeling and predicting the 

behavior of these variables pose persistent 
challenges, given their nonlinear nature and the 
interdependence between them. The inherent 
complexity of activated carbon systems demands the 
continuous development of more sophisticated 
mathematical models and prediction algorithms 
capable of accurately capturing the nuances of 
molecular interactions. 

Artificial Neural Networks (ANNs), which are 
inspired by the neural structure of the human brain, 
have proven to be powerful tools for modeling 
complex systems and predicting variables in large, 
multidimensional data sets [5]. Through machine 
learning algorithms, these networks have the ability 
to recognize patterns and establish nonlinear 
relationships between the input and output variables 
of the adsorption process. This ability allows ANNs 
to extract valuable information from data sets from 
experimentation or computational simulation, 
resulting in accurate, reliable predictions with lower 
computational cost when faced with the need to 
solve highly complex systems of equations [6]. 



 
 

The application of ANNs to predict gas 
adsorption on activated carbons considerably 
expands this approach. The combination of the 
learning capacity of ANNs with the adjustable 
properties of activated carbons enables the creation 
of advanced and accurate prediction models. 

This work presents an innovative approach in the 
field of gas storage for vehicular applications, 
highlighting the use of artificial neural networks 
optimized by PSO (Particle Swarm Optimization). 
From the models obtained, it is possible to make 
predictions of the energy delivered at the fuel tank 
outlet for different types of activated carbons, in 
addition to those used in this work, characterized 
from the PSD. 

 
2. Models and methods 

2.1 Molecular models 

The activated carbons were represented using the 
slit-pore model, as illustrated in Figure 1. In this 
representation, each pore consists of two graphene 
layers, each with an area of 40 × 40 Å². The 
Lennard-Jones (LJ) parameters assigned to the 
carbon atoms were σ = 3.4 Å and ε/kB = 24.6 K, 
where kB represents the Boltzmann’s constant. This 
combination of parameters has previously been used 
by our group to simulate the adsorption of heavy 
alkanes from natural gas on carbonaceous materials, 
as mentioned in previous works [3,7,2]. 

Adsorption isotherms were calculated using the 
Grand Canonical Monte Carlo (GCMC) method. A 
truncated Lennard-Jones potential without tail 
correction was applied. A cutoff radius of 12.8 Å 
was considered. The Lorentz-Berthelot mixing rule 
was used to calculate the solid-fluid force field 
parameters. At least 105 cycles were performed, 
each consisting of N steps, where N is the number 
of molecules in the system, with 𝑁 ≥ 20. All 
simulations incorporated random insertion, deletion, 
rotation, and translation movements of selected 
molecules, with equal probabilities. Peng-Robinson 
equation of state was employed to convert pressure 
to fugacity and to calculate the excess adsorbed 
amount from the absolute amount. 

 
 

 
 
 
 
 
 
 

Fig. 1. Graphene slit-pore model. 
 

To properly perform the adsorption isotherm 
calculations, we adopted an approach using the pore 
size distribution (PSD), calculated from 
experimental and simulated N2 isotherms at 77 K. 
Our PSD consists of 22 pore sizes as applied in 
previous works [8,3,7]. 
 
2.2 Experimental planning 

The Latin Hypercube Sampling (LHS) technique 
was used to determine the combinations of molar 
fraction values of the four natural gas components. 
These combinations were used in the calculations of 
the energy delivered at the fuel tank outlet in each 
operating cycle, which is the variable of interest in 
this study, representing the adsorbent capacity of the 
beds over successive loading and unloading cycles. 
This statistical approach is frequently used in 
experiments and computational simulations to 
efficiently sample the parameter space of a 
mathematical model. 

 
2.3 Loading and unloading tank model 

The system proposed for the tank operates in an 
iterative manner, alternating between high pressure 
levels during the injection of natural gas into the fuel 
tank, which has a defined composition, and reduced 
pressure during depressurization throughout the 
operation of the vehicle's engine, where there is 
variation in composition. 

Tank operating pressure ranges have previously 
been reported by the United States Department of 
Energy (DOE) [10] to be between 1 and 35 bar and 
by the United States Advanced Research Projects 
Agency for Energy [11] between 5.8 and 65 bar, 
taking into account a reasonable practical 
application. The operating temperature of the tank 
was kept constant at room temperature (298 K), and 
data from the curves representing the energetic 
deactivation of the adsorption bed were collected 
over 200 operating cycles. 

  



 
 

According to the Ideal Adsorbed Solution Theory 
(IAST), the phase equilibrium in the adsorption 
process is characterized by the equality of fugacity 
between the adsorbed phase and the gas phase. This 
can be compared to the liquid-vapor equilibrium, as 
expressed in Raoult's Law, represented in Eq. 1. 

𝑓𝑖 = 𝑃. 𝜑𝑖. 𝑦𝑖 = 𝑓𝑖
0. 𝑥𝑖                   (1) 

 
The simplifications adopted for the development 

of the tank model included the following 
assumptions: 

• It is feasible to assume isothermal operation of 
the tank, since the loading (adsorption) and 
unloading (desorption) processes occur at a speed 
that allows disregarding thermal effects. 

• The model is defined by lumped parameters, 
which means that it does not consider spatial 
variations in its properties, such as pressure and 
concentration. 

• The equality between adsorption and desorption 
in the gaseous and adsorbed phases occurs 
instantaneously, that is, the presence of an infinite 
mass transfer coefficient is assumed. 

The set of equations related to the loading and 
unloading tank model, as well as to IAST, was 
solved iteratively in the gPROMS software. 

 

2.4 Artificial Neural Network (ANN) 

The input variables in the ANN include 
descriptors related to the tank operating cycles, such 
as the loading and unloading pressure ranges, the 
molar fractions of the natural gas components, and 
the PSD. The output variable is the values related to 
the energy deactivation of the adsorption bed. All 
data were normalized using the min-max function. 

A total of 14 activated carbons were used in the 
neural network training process, with another 3 
reserved to evaluate its predictive capacity: NORIT, 
DESOREX, and PRA50. 

The metrics selected to evaluate the accuracy of 
the ANN models during training were the 
coefficient of determination (R²), the mean square 
error (MSE) and the mean relative error (MRE). The 
approach adopted consisted of applying the cross-
validation methodology with 5 folds (k-folds), in 
which the total set of 336 curves is divided into 5 
permuted subsets, with 80% and 20% of the curves 

allocated for training and testing, respectively. Thus, 
the criterion for optimizing the ANN parameters 
was established to increase the average of the 5 R² 
values obtained for the training set and the R² value 
obtained for the test set, in addition to reducing the 
standard deviation between these values, in order to 
avoid overfitting. This approach aims to ensure the 
generalization of the model and avoid excessive 
adjustments to the training data. Due to the 
significant presence of outliers in the first 10 cycles 
of the curves calculated by gPROMS, these data 
were excluded from the training/validation sets in 
the data processing stage. Consequently, the 
predictions were directed exclusively to cycles 11 to 
200. 

The training algorithm used was backpropagation 
and the optimization of the hyperparameters of the 
ANN models was conducted using the Particle 
Swarm Optimization (PSO) methodology. The 
essence of PSO lies in the simulation of a set of 
particles moving through the search space in an 
optimization problem. Each particle represents a 
possible solution, and its movement is influenced by 
the individual performance history and the best 
global solution found by the set [12]. 

 
3. Results 

Table 2 presents the average values obtained for 
the performance evaluation metrics of the models 
for the training curves and for the validation curves. 

 
Table 2. Performance evaluation metrics. 

 R² MRE 

Training 0.959 0.46% 

Validation 0.983 0.51% 

 

It can be observed that the performance metrics 
agree with each other, demonstrating high R² values 
and low MRE values. 

Figure 2 presents the parity graph obtained for the 
total set of validation points and their respective 
predictions. Figure 3 shows the predicted energy 
delivered at the tank outlet curve (dashed orange) for 
NORIT in the pressure range 1-35bar and the 
simulated curve (blue). 

 



 
 

Fig. 2. Prediction results for ANN.  
 

Fig. 3. Predicted curve for NORIT at 1-35 bar. 
 
The accuracy of the models remained consistent, 

reinforcing the robustness of the approaches used. 
This is particularly important as it suggests that the 
models can be applied with confidence under 
different conditions. The low variability in the mean 
relative errors (< 1%) and the high R² values 
indicate not only a good fit of the models to the 
theoretical data, but also an excellent generalization 
capacity to new data and under different pressure 
conditions. 

 
4. Conclusions 

 
The use of artificial intelligence (AI) models in 

conjunction with the pore distribution methodology 
(PSD) is a pioneering step in this study. AI proved 
to be effective in predicting the variable of interest, 
emerging as an alternative to solving complex 
systems of differential equations that require higher 
computational costs. The characterization of 
activated carbons with the PSD for training ANN 
models demonstrated effectiveness in predicting the 
values related to the energy deactivation curves of 

the adsorption beds, achieving high accuracy and 
precision. Thus, the models obtained can predict the 
performance for different types of activated carbons 
used in adsorption beds and in different operating 
conditions of the fuel tank. 
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