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Abstract

Real-time information has the potential to improve market outcomes in wholesale electric-
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machine learning techniques to evaluate the real-time information firms use when forming
their bidding decisions. We find that aggregate market-level variables emerge as important
predictors, while detailed firm-specific information does not lead to a material improvement
in predicting firms’ bidding decisions. These results suggest that firm-specific information,
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may not be required to promote efficient market outcomes.
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1 Introduction

Supply and demand must be balanced at every moment to ensure a reliable and stable supply
of electricity. Historically, this was achieved by calling upon fossil-fueled power plants.
Increasing concerns over the environmental implications of greenhouse gas emissions has
motivated the enactment of policies to decarbonize the electricity sector. This has led to
the rapid deployment of renewable resources (IEA 2022). However, this has also heightened
concerns over market uncertainty due to the unique characteristics of renewable resources.1

In a setting with uncertain market conditions, the release of near real-time informa-
tion may allow firms to adjust their behavior to the changing market environment (Kuhn
and Vives 1994). Consequently, information disclosure can have an important impact on
both competition and market efficiency in the electricity sector. On one hand, the existing
literature has highlighted that increased transparency and public information can increase
competition under certain conditions (Holmberg and Wolak 2018). In contrast, concerns
have been raised that the availability of a high degree of granular information released in
real-time can facilitate coordinated behavior (von der Fehr 2013; Brown and Eckert 2022).
With these countervailing impacts of information disclosure, it is critical to balance informa-
tion revelation to promote market efficiency while avoiding disclosing too much information
that could facilitate coordination.

A challenge in evaluating arguments to increase information or limit its availability to
facilitate collusion is a lack of a clear understanding of the information employed by firms.
In this paper, we use data from Alberta’s wholesale electricity market to fill this gap. In
this market, firms submit price-quantity bids in an hourly uniform-price multi-unit auction.
Generators can adjust their offers up to two hours before the hour in which the market clears.
Firms have access to a wide array of information, including the real-time market price,
current generation of every individual asset, import/export intertie availability, province-
level demand, and forecasted pool prices, among numerous other factors.

In the presence of a vast quantity of information available to firms when they make their
decisions, an important question is: what information do they use? For example, do firms rely
primarily on real-time information about aggregate market conditions such as realized and
forecasted demand and prices, or do they leverage detailed firm-level information such as the
availability of their rivals’ specific assets? If firms rely primarily on market-level information,

1. For a detailed analysis of renewable resource intermittency and uncertainty, see Weber and Woerman
(2022).
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then this raises questions as to whether firms need disaggregated real-time information of
specific rivals which could potentially be used to facilitate coordinated outcomes.

We leverage machine learning techniques to parse out the observable pieces of information
that best predict how firms make their bidding decisions. Machine learning is ideally suited
for this setting, where many factors could be used in complex and varying ways to inform
firms’ bidding decisions over time. We use detailed data from Alberta’s wholesale electricity
market for the year 2021 to predict the pricing decisions of large strategic firms and evaluate
the most useful factors in this prediction. We focus on the bids of coal and natural gas
generators that are most likely to be used to bid strategically.2 We break our analysis into
two specifications. First, we only include aggregate market-level variables observable in near
real-time, such as the realized and forecasted market demand and price, available capacity by
fuel type, and a firm’s private information such as its lagged bids. Second, we disaggregate
a number of factors into firm-specific variables such as firm-level capacity availability and
observed output, unit-level outages, and firm-specific ancillary service (AS) output.

We are interested in addressing the following questions. Do we observe a sizable increase
in the prediction of firms’ pricing decisions when we allow machine learning algorithms to
consider rival firm-specific information? If the price prediction quality increases, this sug-
gests that firms actively use this disaggregated real-time information to make their bidding
decisions. If not, this suggests that the market-level information is primarily used to facilitate
firms’ responses to a changing market environment.

We use both individual and grouped Permutation Importance (PI) techniques to better
understand the key factors used in forming a firm’s pricing decisions (Altmann et al. 2010;
Plagwitz et al. 2022). When forecasts are made based on several input variables of different
sources, the PI quantifies the variables – individually or grouped – that best contribute to
the machine-learning algorithm’s ability to form accurate forecasts by randomly shuffling
the variable’s values and observing the resulting impact on the quality of predictions. The
use of grouped permutation importance in prediction policy problems, especially in time-
series forecasting with a large set of explanatory variables, is not fully explored. The stan-
dard approach involves adding individual variable importance scores within the same group
(Medeiros et al. 2021; Albuquerque, Cajueiro, and Rossi 2022; Masini, Medeiros, and Mendes
2023).3 Although this procedure provides insights into the explanatory power of individual

2. The remaining units in the market largely consist of wind and solar units whose supply is exogenous
and gas-fired cogeneration facilities associated with large industrial firms where electricity is a by-product
of a behind-the-meter industrial process. These units systematically bid at a price of $0/MWh.

3. For linear models, these studies utilize the sum of the absolute values of the predictors’ coefficients to
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variables, it may result in misleading interpretations when these variables are highly corre-
lated. Grouped permutation importance addresses this issue by simultaneously randomizing
all variables within the same group, providing valuable insights and interpretation (Molnar
et al. 2020; Au et al. 2022).

In our analysis, no single algorithm emerges as superior at predicting price changes, with
both random forest and lasso yielding the best performance, depending on firm, specification,
and performance measure. Regardless of the precise machine learning algorithm used, we
find no appreciable increase in the performance of the price prediction when we include rival
firm-specific information. Instead, it tends to introduce additional noise and variance into
the predictions. This suggests that firms rely primarily on market-level data to determine
their pricing dynamics rather than leveraging firm-specific information.

Our grouped permutation importance analysis with the random forest algorithm indicates
the most important market-level predictors of price changes are wholesale market demand
and price variables, supply and generation unit availability by fuel type, and lagged changes in
the firm’s own price variable. The first two capture core metrics that determine the level and
nature of available supply and demand, while the latter indicates persistence in firms’ own
pricing decisions. The individual permutation importance analysis reinforces these findings
and demonstrates that factors such as forecasted and observed market demand are among
the most valuable individual variables in forming price predictions. Hour-of-day also plays a
role in both the individual and grouped permutation importance analyses. This is consistent
with the observation that firms systematically adjust their bids at certain times of the day
(e.g., in peak and off-peak hours). Finally, for both permutation importance approaches, the
inclusion of firm-specific rival variables has no material impact on the key variables used in
the price predictions by the algorithms.4

Our analysis contributes to ongoing policy debates over information disclosure. Our re-
sults suggest placing a lower priority on the release of real-time firm-specific information
(such as available unit-specific capacity or generation), as such dis-aggregated information
does not serve as an important determinant of firms’ bidding decisions. Further, this type
of information may be used to facilitate coordinated behavior leading to elevated market
prices. Our analysis indicates that key market-level factors related to forecasted and real-

measure their relative importance.
4. The grouped and individual permutation importance analysis for the lasso algorithm place more im-

portance on a firm’s own lagged pricing variables and hourly indicates, and less on market-level generation
availability by fuel type and market demand variables. Despite these differences, we continue to find that
adding rival firm-specific information does not result in a material improvement in the price prediction.
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ized demand, as well as market-level generation availability by fuel type, are key pieces of
information used by the firms in our sample. With the goal of taking a balanced approach
to information and data transparency in an uncertain environment, our results suggest that
regulators should focus on providing real-time market-level information to participants.

The paper proceeds as follows. Section 2 provides a summary of our contributions to
the literature. We describe the key features of Alberta’s wholesale market in Section 3.
Section 4 summarizes the data and variables used in our analysis. The empirical methods are
presented in Section 5. Section 6 presents the results of our empirical analysis. Conclusions
are discussed in Section 7.

2 Literature Review

Our paper contributes to several distinct strands of the literature. There exists a literature
on the potential benefits of increased information transparency in electricity markets. Holm-
berg and Wolak (2018) develop a multi-unit auction model in which firms have asymmetric
information about costs and argue that increased transparency of cost data, financial market
outcomes, and historical bid and production data is likely to increase the competitiveness of
wholesale electricity markets.

Empirically, Bergheimer, Cantillon, and Reguant (2023) consider the context of the New
Zealand wholesale electricity market, where each half-hourly spot market is preceded by
a 36-hour pre-dispatch market period, during which firms can update their bids. Market-
clearing prices and quantities are established and reported every two hours for the upcoming
half-hour. The authors demonstrate that pre-dispatch prices and quantities are informative
regarding ultimate outcomes. They argue that pre-dispatch outcomes provide valuable infor-
mation to participants, allowing generators to schedule their assets more effectively, leading
to efficiency gains. In another recent example, Bunn and Kermer (2021) develop an analyti-
cal model of an electricity balancing market and calibrate the model to the Austrian context
to examine arbitrage behavior and the role of time delays and information transparency. The
authors conclude that the more timely release of information on system imbalance forecasts
and wind and solar generation can reduce system costs.

In contrast, it has been argued in von der Fehr (2013) that increased information trans-
parency can facilitate coordination among firms. The high-frequency release of firm-level
information (such as bids), for example, could allow firms to quickly detect deviations of
rivals from cooperative behavior. Such granular firm-specific high-frequency information

5



could allow firms to communicate through patterns or signals in their bids or other choice
variables.

The latter concern was the focus of policy attention in Alberta. In August 2013, the
Alberta Market Surveillance Administrator (MSA) released a report alleging that certain
firms were using patterns in their bids into the wholesale market, which operates as an hourly
uniform price auction (MSA 2013). At that time, the complete set of bids by suppliers for
the hour was made public at the end of the hour, but with the identity of the associated firm
and generating asset removed, in a publication called the Historical Trading Report (HTR).
The MSA argued that by ‘tagging’ their bids, firms could reveal themselves to rivals as the
source of certain bids, and indicate their intent to maintain high prices. These allegations led
to a hearing of the Alberta Utilities Commission, which ordered an end to the public release
of the HTR (AUC 2017). Patterns in bids in the Alberta market over the time period of the
allegations are documented in Brown, Eckert, and Lin (2018). Brown et al. (2023) employ
machine learning methods to evaluate whether firms could identify their rivals through de-
identified bids. The authors find that before the release of the MSA’s August 2013 report,
the firm associated with a bid could be predicted with a high degree of accuracy; after the
report, accuracy decreased considerably. Brown and Eckert (2022) show that firms employing
patterns could have increased profits through unilateral deviations and that for one firm, the
potential for profitable deviations was greater on days when tagging was observed.

The use of patterns in prices or other public information to facilitate possible coordination
has been documented in other industries. In the case of airlines, see Borenstein (1998)
regarding airline fare codes; Aryal, Ciliberto, and Leyden (2022) consider whether airline
managers employed keywords in their quarterly earnings calls to signal to rivals a willingness
to reduce the number of seats being offered. In the case of retail gasoline, Lewis (2015)
finds in U.S. markets that price endings of 5 and 9 are associated with higher and more
stable prices, and suggests that such price endings may be used to establish focal prices.
Price leadership and signaling through station-level gasoline prices released publicly through
Western Australia’s Fuelwatch price transparency program is discussed in Byrne and Roos
(2019). In other settings, see Christie and Schultz (1999) for the case of odd-eight quotes
in Nasdaq stocks, and Abrantes-Metz, Villas-Boas, and Judge (2011) for a discussion of the
distribution of the second digit of the Libor rate.

The current analysis contributes to both strands of the literature that emphasize the
countervailing effects of information disclosure (i.e., efficiency versus coordination). Focusing
on the Alberta electricity market over the year 2021, we provide empirical evidence on
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aggregate market-level information that assists firms in making their bidding decisions while
evaluating the extent to which firms use rival firm-level disaggregated information that may
facilitate coordination. Despite the end of the HTR, bidders continue to have access to large
amounts of high-frequency data, including real-time generation and available capacity for
individual generation units; hence, although the potential for signaling has been reduced,
the use of public information to facilitate coordination, for example by allowing the quick
detection of deviations, remains.5 To the best of our knowledge, we provide the first empirical
evaluation of the types of information firms use when making their bidding decisions in the
electricity sector. This work has the potential to help inform regulations on how to strike
the right balance on information disclosure.

Finally, our paper contributes to the large literature on forecasting electricity prices;
see Murthy et al. (2014) and Sapio (2021) for reviews of time series and econometric ap-
proaches, Jedrzejewski et al. (2022) for an overview of machine learning approaches, and
Sai et al. (2023) for a recent example applying machine learning techniques.6 An important
distinction between the existing literature and the current paper is that a key challenge
faced by the existing literature is forecasting prices in a setting where stable market-level
electricity prices are interrupted by large price spikes. These challenges are less relevant in
our analysis, which focuses on the prices at which firms offer specific assets into the market,
rather than forecasting the equilibrium market price.

3 Alberta’s Wholesale Electricity Market

Alberta’s wholesale electricity market operates as an hourly uniform-priced multi-unit auc-
tion. Firms offer up to seven price-quantity blocks for each generating asset for each hour.
Offers can be adjusted up to two hours in advance of the hour. Prices are restricted to lie
between $0 and $999.99. The Alberta Electric System Operator (AESO) calls upon (dis-
patches) generation units throughout the hour to meet demand, in increasing order of offer
price. The price of the last block dispatched is the System Marginal Price (SMP); the time-
weighted average SMP over the hour is the pool price for the hour. Generators are paid the
pool price each hour for the energy they generate.

Alberta has an “energy-only” market design, meaning that generators earn revenues only

5. There is a large literature discussing the role of information in detecting deviations from collusive
strategies and the implications this has on facilitating collusive outcomes (e.g. see Green and Porter (1984)
and Harrington and Skrzypacz (2007)).

6. Machine learning and statistical methods are reviewed and compared in Lago et al. (2021).
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from supplying electricity.7 As a result, firms are permitted to exercise unilateral mar-
ket power through economic withholding (i.e., submitting bids in excess of their short-run
marginal cost).8 Alberta’s wholesale market clears with a single price; there are no nodal
or zonal pricing mechanisms. Finally, there is no day-ahead market, only an hourly spot
market.

During our sample period, Alberta’s wholesale market was moderately concentrated; the
five largest firms accounted for 70% of the generation capacity in the province as of January
2021. At the start of 2021, 32% of Alberta’s generation capacity was coal-fired, 44% was
natural gas fueled (including cogeneration facilities), while wind farms accounted for 11% of
the provincial capacity. The remaining capacity was distributed across solar, hydro, biofuel,
and storage facilities (MSA 2021).9 Alberta has a small amount of imports and exports that
arise through interties to British Columbia, Montana, and Saskatchewan.

A large amount of information about the market is available to participants in real or near-
real time. Throughout the hour, the AESO posts numerous market-level factors, including
the current market demand, measures of supply adequacy reflecting the amount of unused
generation capacity available, imports/exports to each neighboring jurisdiction, generation
and available capacity by fuel type, and the system marginal price. The AESO also posts
forecasted pool prices for the next two hours and the realized pool price immediately after
the hour closes. Forecasted demand for the entire day and the first six hours of the following
day are posted at midnight.

The AESO also publishes a certain degree of firm-level information in real-time, including
the current generation from each generating unit. Further, output providing certain AS
products referred to as “contingency reserves” are reported in real-time at the unit level. In
addition, generation units going on outage and returning online are published through the
AESO’s “event log”. While firms have a sizable amount of information on the generation
output from specific units, during our sample period hourly price-quantity bids of individual
generating units were not released in real-time but were made available with a 60-day lag in
the AESO’s Merit Order Snapshot.

7. In contrast, a number of other restructured markets have capacity payment mechanisms that provide
supplementary revenues based on each generation unit’s capacity value (Holmberg and Tangerås 2023).

8. The proposed logic of permitting certain types of unilateral market power in the wholesale market is to
facilitate long-run investment in generation capacity via fixed cost recovery. Entry is expected to discipline
the market to avoid excessive rents in the long-run. For a detailed discussion of Alberta’s wholesale market
design, see Brown, Eckert, and Shaffer (2023).

9. Over 2021, several coal generators were converted to gas generators. By April 2022, the percentage of
coal-fueled capacity had fallen to 8%, while the percentage of natural gas-based (non-co-generation) capacity
had increased from 12% to 29%.
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While firms are required to submit their wholesale market bids the day before market
clearing, firms can adjust their price-quantity bids up to 2 hours before the market clears.
This allows firms to incorporate information released by the AESO in near real-time. To
illustrate the precise timing of information disclosure and how it can be incorporated into
firms’ bids, consider the following example of offers submitted by firms for the hour running
from 8:00 - 9:00 AM (denoted as Hour Ending 9, HE9). Because bids can only be changed up
to 2 hours before the hour, the latest that bids for HE9 can be changed is 6:00 AM (the start
of HE7). This implies that only real-time information released before 6:00 AM (HE7) can be
incorporated into bids for HE9. More generally, any information revealed on or before HE
t− 3 can be incorporated into the bids for HE t. The timing in which firms can incorporate
information revealed in real-time will play an important role in our empirical methodology
detailed below.

4 Data

4.1 Data Sources

Our analysis uses publicly available data for the year 2021 from the AESO. We employ data
from the hourly Energy Merit Order, which indicates all price-quantity bids in each hour
for each generation unit. These data are released publicly with a 60-day lag, meaning that
they are not available in real-time to the firms; however, these data can be used to construct
output and capacity availability measures by fuel type and the unit, which are observable
to firms in real-time. We use hourly metered volumes data to estimate wind and solar
output. Hourly ancillary service market data are collected to provide information on total
and unit-level AS quantities. The AESO also provides data on hourly realized and forecasted
market-level demand and prices, as well as export and import intertie capacity limits and
supply levels. We collect temperature data from Environment and Climate Change Canada
for the two major cities in the province, Edmonton and Calgary.

Table 1 provides the summary statistics for a number of key market-level outcome vari-
ables. We observe a mean pool price of $101.95/MWh with a high standard deviation.10

Looking at the price distribution, we can see that the pool price distribution is rightward
skewed. Wind and solar output reflect a modest share of total market demand. Similarly,
Alberta is a net importer, with imports exceeding exports. Import and export quantities

10. Throughout our analysis, all prices are in Canadian dollars.

9



are small relative to market demand, demonstrating that the majority of demand is met by
within-province generation.

Table 1: Summary Statistics – Key Market-Level Variables
Mean Std. Dev. 25th percentile 50th percentile 75th percentile

Pool Price ($/MWh) 101.95 138.98 43.15 57.34 82.09
Market demand (MWh) 9,727.72 792.11 9,165.00 9,654.00 10,342.00
Wind Supply (MWh) 700.01 508.41 236.69 613.26 1,152.28
Solar Supply (MWh) 260.64 78.89 165.00 289.00 325.00
Import Supply (MWh) 473.88 244.37 265.00 460.00 693.00
Export Supply (MWh) 15.02 56.14 0.00 0.00 0.00

4.2 Price Variable

Our objective is to understand the factors that predict individual firms’ short-term pricing
decisions and evaluate whether disaggregated firm-specific factors improve these predictions
beyond just using market-level variables. We focus on the four large strategic firms operating
in Alberta’s wholesale market: Capital Power, ENMAX, Heartland, and TransAlta, who in
January 2021 accounted for 13%, 9%, 15%, and 25% of Alberta’s capacity, respectively.11

For each of these firms, their bidding decisions are driven by cost-based factors and strategic
decisions regarding market power (i.e., to bid in excess of their marginal costs). The remain-
ing firms in the market consist of over 40 smaller (“fringe”) producers, who typically offer
into the market at short-run marginal cost.

Within the larger firms, while some types of generating assets are sometimes offered above
short-run marginal cost, others, such as renewable capacity and cogeneration, appear not to
be used for strategic purposes, and have offer prices exhibiting little variation. Therefore,
for each of the large strategic firms, we identify generating assets that offer bids in excess
of short-run marginal cost, and that are potentially economically withheld in the exercise of
market power.12 These plants include coal generators (some of which converted to natural
gas over the sample period), and natural gas plants. For each hour and large firm, we
compute the quantity-weighted offer price on bids above marginal cost for these units. This
approach allows us to focus on bids driven in part by strategic factors.

11. As noted in Section 3, while there are five “large” firms in Alberta’s wholesale market, one (Suncor)
operates only cogeneration units, and as a result can be viewed as a price-taking firm.

12. Details on marginal cost estimation, and a list of assets used to compute the price variable of each firm,
can be found in Appendix C.
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Table 2: Summary Statistics of Volume-Weighted Prices ($/MWh) - Strategic Assets
Mean Std. Dev. 25th percentile 50th percentile 75th percentile

Capital Power 396.06 168.06 291.39 388.68 504.95
ENMAX 163.30 101.47 73.79 152.91 228.77
Heartland 265.01 138.46 152.04 237.08 375.32
TransAlta 266.76 198.25 96.10 201.86 416.00

Table 2 provides summary statistics for the firm-specific quantity-weighted price variables
on these strategic units that will serve as the dependent variable in our subsequent analysis.
We can observe considerable dispersion in the price levels within and across firms. These
prices far exceed estimates of the firm-level short-run marginal costs of these assets which
systematically lie below $100/MWh.

Because our focus is on price adjustments in response to high-frequency real-time infor-
mation, we are interested in predicting changes in prices. One empirical challenge that we
face is that we observe relatively “sticky” pricing decisions at the firm level. That is, firms
often only adjust their prices at periodic intervals throughout the day. To reduce the number
of zero first differences in our price variable, we reduce the frequency of data to every three
hours.13 Specifically, we use evenly spaced data from hours ending 1, 4, 7, 10, 13, 16, 19,
and 22.14 This allows us to keep a time-series structure that captures the strategic pricing
dynamics of each firm over the day. This time frame encompasses relevant changes over the
on-peak and off-peak hours and provides eight evenly-spaced observations within each day.

We define our dependent (target) variable as the first difference in the logarithm of
prices for every three hours. The transformation of price levels into logarithms and the
computation of the first difference is a standard procedure to remove non-stationarity in
time-series forecasting. See Hamilton (2020) for details.

4.3 Market and Firm-Level Predictors

A large array of market and firm-level factors are observable by firms in real-time. A primary
objective of our analysis is to evaluate the extent to which firms supplement market-level
variables with firm-specific variables when making their bidding decisions. To address this

13. In time-series modeling, a large number of zeros can lead to data sparsity, which often results in biased
parameter estimates, decreased model sensitivity, and difficulties in adequately fitting the model, either
through overfitting to zeros or underfitting impactful non-zero trends. See Syntetos and Boylan (2005),
Perumean-Chaney et al. (2013), and Petropoulos et al. (2022) for detailed discussions.

14. Alberta’s system operator denotes hours by the time at which the hour ended. For example, Hour
Ending 1 (or HE1) refers to the hour from 12:00 - 1:00 AM.
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question, we consider two specifications. In the first specification, we only include market-
level variables that are observed in real-time. In a second specification, we decompose
several key categories into firm-level factors to determine if our prediction of a firm’s bidding
decisions improves materially. To simplify the discussion, we start with the variables used
in Specification I and group these variables into eight categories. Tables A.1 and A.2 in
Appendix A provide a detailed list of the predictors used in specifications I and II.

First, we consider a firm’s own lagged price variables. We often observe that firms adjust
their bids in certain hours and hold prices at those levels for several hours. Consequently, it
is important to control for lagged values of the dependent variable to capture that a firm’s
current pricing decisions are a function of how they bid in previous periods.

Second, a firm may adjust its bids depending on the capacity and supply available from its
generation units. To control for this flexibly, we include lagged values of a firm’s generation
output and capacity availability in aggregate (across all units) and separated by generation
technology. In addition, we include a firm’s own Ancillary Services output to capture how
much supply the firm has committed in other markets.

Third, we include a range of market-level generation supply and capacity availability
variables. These variables capture observed output (in MWhs) and capacity availability
(in MWs) measures broken down by coal, dual-fuel (gas/coal) units, combined cycle (CC)
gas, simple cycle gas cogeneration, biomass/other, hydroelectric, wind, solar, and battery
storage. We also include a market-level generation unit outage (in MWs) measure. These
variables aim to determine if firms adjust their bids based on observed variations in market-
level generation factors (e.g., large changes in natural gas CC unit availability), suggesting
that only reporting real-time technology-specific measures is sufficient to inform bidding
decisions.

Fourth, we include variables to capture wholesale market demand, the hourly pool price,
and price variation captured by the distribution of the SMPs throughout the hour. More
specifically, we include realized and forecasted market demand and pool price measures to
capture backward-looking and forward-looking values. Market demand is expected to have
a central impact on wholesale market outcomes, and pool prices directly capture realized
and anticipated equilibrium outcomes. We compute the standard deviation and coefficient
of variation of the SMPs throughout the hour. These measures allow us to capture the slope
of the industry supply curve in the neighborhood of market demand. For example, if the
SMP has limited variation over the hour, then we are more likely to be at a flat portion
of the supply curve. This could indicate a limited scope for market power. If the SMP
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has considerable variation, then market-clearing is at a steep vertical section on the supply
curve. Such information has the potential to impact bidding behavior.

Fifth, we include export and import quantities and intertie capacity availability measures
for each neighboring jurisdiction. Sixth and seventh, we include hour dummies and temper-
ature variables for Edmonton and Calgary, the two largest cities in the province. These
variables aim to capture systematic time and temperature-based variation that could impact
bidding decisions. Finally, for our eighth category, we include total AS market output to
capture the quantity of reserves procured by the AESO.15

In Specification II, we adjust two of the eight categories of variables to include detailed
firm-specific values that firms could readily observe in the information published by the
AESO. For this analysis, the third category summarized above now includes rival firm-
specific supply and capacity availability measures. These variables are provided separately
for each other large strategic firm, and the remaining firms are aggregated as the “fringe”. We
include supply and available capacity measures in aggregate by firm and broken down by fuel
type for each rival firm. This increases the dimensionality of information considerably but
allows us to evaluate if firms are looking at the availability of capacity and supply (output)
from specific technologies of certain firms when making their bidding decisions.

We also adjust the eight categories to provide information on the firm-specific AS market
output. This captures the fact that firms could determine which specific rivals are supplying
output in the AS market and foregoing the ability to supply this output to the wholesale
market.

As described in Section 3, we need to account for the fact that firms can only incorporate
information revealed on or before hour ending t − 3 due to the rules on bid adjustments
running up to market-clearing. In addition, as noted in Section 4.2, we have eight evenly-
spaced observations within each day, split into 3-hour intervals. Consequently, we include
data on the predictor variables summarized above from hours t − 3, t − 6, and t − 9 in
our analysis to consider how information released in near real-time impacts firms’ strategic
bidding decisions in hour t. Two exceptions apply. We include additional lags on the firm’s
own lagged price variable to provide a more flexible relationship between a firm’s prior pricing
decisions and current bidding behavior, with lags at 6, 9, 12, 15, 18, 21, and 24 hours. In
addition, for the forecasted market demand variable, we use demand forecasts for HE t, t+3,
and t + 6 to account for the fact that firms have this forward-looking information available

15. Supplying output to certain ancillary services products limits generators’ abilities to provide this output
in the wholesale market. Brown, Eckert, and Silveira (2023) develop a model to demonstrate the strategic
linkages between the provision of output in AS and wholesale markets.
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when they make their bidding decisions for HE t.16

We apply a data standardization procedure in the set of predictors. Generally, machine
learning algorithms benefit from this approach as it can improve their predictive power.17

To reach that aim, we first apply a logarithm transformation to all the numerical variables
in our set of predictors and take the first difference to achieve a stationary distribution.18,19

We follow Gelman and Pardoe (2007) and standardize all the numerical variables by dividing
them by two times their standard deviation. In data settings with both numerical and dummy
variables, this procedure allows all the variables to have a similar scale and magnitude and,
therefore, has the potential to improve the performance of our machine-learning models.

5 Empirical Methods

In this section, we present the models that will be used to predict the quantity-weighted
bids for the four strategic firms in Alberta. We generate the results of our forecasting
exercises using a rolling window that includes six months of training data with eight evenly-
spaced observations within each day, split into 3-hour intervals. In other words, we begin
by training the model using data from January to June 2021 in order to make predictions
for t+3. Illustratively, with the information available in HE22 of the last day of June, we
first make predictions for HE1 of the first day of July, then advance three hours, retrain the
model, and forecast for HE4. We continue this step-by-step process, and as a result, our
findings are based on predictions made from July to December 2021.

Section 5.1 begins with a simple random walk model to serve as a benchmark for our more
sophisticated machine learning models. Section 5.2 presents the ridge and lasso regularized
linear models, which are techniques used to help control the complexity of the forecasting
model and enhance its predictive performance, especially in situations where there are poten-
tially many predictor variables with varying levels of importance. Section 5.3 introduces two
non-linear regression-tree-based machine learning methods – random forest and XGBoost.

16. While the AESO provides a day-ahead pool price forecast, this information is only released for hour
t+1 and t+2. Firms are unable to build in this information into their bids for hour t+3. This differs from
the demand forecasts which are posted publicly for the entire day. As a result, unlike the demand forecast,
we do not include forward-looking measures on the day-ahead pool price forecast.

17. In particular, regularization machine learning algorithms, such as lasso and ridge, require data stan-
dardization procedures to ensure their correct functioning. See Hastie et al. (2009) for details.

18. The exception is for our hourly dummy variables, which are included as indicator variables.
19. It is worth mentioning that the majority of the variables are non-stationary. Overall, the Augmented

Dickey-Fuller unit root test indicates that 81% (75%) of the variables are non-stationary at a significance
level of 0.01 (0.05).
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These methods are known for their ability to provide a mix of accuracy, flexibility, inter-
pretability, and robustness. Section 5.5 presents the Permutation Importance (PI) technique
we use for assessing the most informative explanatory variables. Section 5.4 introduces the
evaluation metrics used to assess the predictive power of our machine learning models.

5.1 Random Walk

The random walk model forecasts all horizons as the last value observed for the variable as
in ŷt+h = yt, where h is the forecast horizon. This model is commonly used as a bench-
mark in time series forecasting analyses due to its simplicity and intuitive nature. In our
approach, this naive model provides a baseline for comparison against the machine learning
models we apply, allowing us to evaluate the effectiveness of the algorithms in capturing the
nuanced patterns and dynamics present in the data. By contrasting the predictions of our
machine learning models with those of the random walk, we can assess the extent to which
machine learning methods enhance forecasting accuracy and offer valuable insights beyond
the simplistic (and naive) random walk approach.

5.2 Regularized Linear Models

Time-series forecasting of the target variable yt+h with linear models have the following
functional form:

yt+h = β0 +Xtβ̂ + εt+h, (1)

where β0 is the intercept and β̂ is the vector containing the estimates of the model coefficients.
The matrix Xt represents the set of predictors, and its dimension is given by T × n, where
T is the number of observations and n is the number of predictors, respectively. The error
term is given by εt+h.

Typically, linear regression models depend on OLS estimates of β̂ to minimize the sum
of squared residuals:

β̂ = argmin
β

[
T∑
t=1

(yt+h − β0 −Xtβ)
2

]
. (2)

When the explanatory variables are highly correlated, the least-squares estimate may
become sensitive to random errors, producing a large variance and affecting the accuracy
and interpretation of the coefficient estimates.

In addition, another source of poor prediction accuracy is its low bias combined with high
variance. Balancing bias and variance is key to improving the overall prediction accuracy. In
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many cases, it may be necessary to tolerate bias to lower variance and increase the predictive
performance (Hastie et al. 2009).

Intending to overcome these drawbacks, regularized linear models add penalty terms to
eq.(2) as follows:

β̂ = argmin
β

[
T∑
t=1

(yt+h − β0 −Xtβ)
2 + p(β, λ)

]
. (3)

We can describe the regularization term p as a function of the coefficients β, and a tuning
parameter λ ≥ 0 to penalize overfitting. As β0 depends on the starting value of the target
variable, it is not considered in the regularization function. In the following subsections, we
introduce the regularization functions and the main features of the ridge and lasso regression
methods – two algorithms widely used in prediction policy problems (Medeiros et al. 2021;
Silveira et al. 2022).

5.2.1 Ridge

Ridge Regression is a method that aims at reducing the mean error by increasing bias
and reducing the variance of OLS estimators to deal with heavily correlated regressors and
increasing the reliability of the estimates. The ridge regression method penalizes the OLS
estimators by introducing the squared ℓ2 norm of the coefficients in eq.(3):

p(β, λ) = λ||β||22 = λ
n∑

i=1

β2
i . (4)

The ℓ2 norm penalizes complexity, and the coefficients are rarely set to zero – i.e., the so-
lution to the minimization problem is not sparse (Hoerl and Kennard 1970). Typically, ridge
regression fits best in circumstances where the least squares estimates have high variance.

5.2.2 Lasso

The Least Absolute Shrinkage and Selection Operator (lasso) regularizes the coefficients in
eq.(3) by introducing the ℓ1 norm:

p(β, λ) = λ||β||1 = λ
n∑

i=1

|βi|. (5)

The regularization term in eq.(5) provides a sparse solution. In other words, the lasso
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algorithm concomitantly performs shrinkage and variable selection (Tibshirani 1996).20

5.3 Nonlinear Models

We introduce in this section the random forest and Gradient Tree Boosting algorithms.
These are well-known regression tree-based (nonlinear) methods applied in machine learning
time-series forecasting.

Regression trees are a powerful tool for approximating unknown nonlinear functions us-
ing localized predictions and recursive partitioning of the covariate space. Izenman (2008)
explains that the tree-building process begins with the root node and proceeds as follows.
Each node within the tree corresponds to a specific region in the covariate space. This region
represents a subset of the entire set of predictor variables. The core principle is that each
node aims to approximate the relationship between explanatory variables (the predictors)
and the variable we want to predict (the target variable). We can achieve this approxima-
tion by calculating a single value, which represents the average of the target variable for all
observations included within that particular node. The algorithm iteratively seeks the best
way to split non-terminal nodes into two child nodes based on a chosen criterion, often using
a boolean condition on predictor values as a threshold. As the tree grows, nodes divide into
child nodes until predefined stopping criteria are met. When a node no longer splits, it is
referred to as a “terminal node” or “leaf.” The output value for any data point falling into
a terminal node is the average of the target variable values for all the observations within
that specific leaf node.

The are many ways to control the size of the tree, but the most common is the maximal
depth of the tree. We can find the correct choice of this parameter using a cross-validation
approach.21 While deep trees can overfit the data, shallow trees may not be enough to
recognize patterns in the data structure.

5.3.1 Random forest (RF)

Random forests for regression are specialized ensemble models (combination of models) that
average multiple individual regression tree models (Breiman 2001). To enhance its predictive
power it is crucial to ensure that the constituent trees exhibit a low correlation with each

20. In the context of the Lasso, shrinkage refers to the process of reducing the magnitudes of the coefficients
towards zero by adding a penalty term to the regression objective function.

21. Cross-validation refers to a technique used to assess how well a machine learning model generalizes its
predictions to unseen data, i.e., observations not used during the training phase.
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other. Achieving this requires the implementation of two distinct strategies: (1) to bootstrap
the sample, which involves creating different trees by training them on multiple subsets of
the training data generated through random sampling with replacement. (2) to consider a
random subset of variables rather than considering all available variables in the construction
of a specific tree. The growing process of each tree typically involves recursive binary splitting
of the data based on a selected feature and threshold that minimizes a splitting criterion
such as the mean squared error. The final prediction of the random forest is achieved by
taking the average of all the trees.

Random forests can perform notably well in representing and recognizing complex rela-
tions in the data set. Besides, it requires simple fine-tuning adjustments, contrary to methods
like deep neural networks (Athey and Imbens 2019).

5.3.2 Gradient Tree Boosting

Gradient-boosting tree models (Friedman 2001) are another category of specialized ensemble
models for regression. While they share the ensemble concept with random forests, gradient
boosting takes a different approach. Instead of constructing independent trees, it forms a
sequence of trees in which each new tree seeks to correct the errors made by the previous
ones. Gradient-boosting tree models iteratively optimize the underlying tree structures. The
goal is to find the best approximating parameters for each tree, including the parameters
associated with splitting regions and the combination of each tree in the sequence of models.
This optimization is achieved by minimizing a chosen loss function, often the square loss
function, which quantifies the difference between the predicted and the actual target values.
With each iteration, a new tree is built to focus on the residual errors of the ensemble up
to that point. It effectively learns to improve upon the mistakes of the preceding trees. The
process continues until a predefined number of iterations is reached or until the loss function
reaches a satisfactory minimum. In our paper, we use a specific implementation known as the
XGBoost algorithm (Chen and Guestrin 2016) that is a scalable efficient gradient-boosting
solution.

5.4 Evaluation Metrics

When evaluating the overall performance and accuracy of machine-learning regression models
on time-series data, it is important to use metrics that account for the temporal nature of
the data. In this section, we introduce some common evaluation metrics for time-series
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forecasting.

Mean absolute error (MAE)

MAE is scale-independent and provides a straightforward measure of the average absolute
difference between predicted and actual values and is less sensitive to extreme outliers com-
pared to squared error metrics. Also, MAE treats all deviations equally, regardless of the
magnitude of the error.

MAE =
1

n

n∑
i=1

|yi − ŷi|

Mean absolute scaled error (MASE)

MASE is a scale-independent metric. In our setting, MASE calculates the mean absolute
error of each ML algorithm (MAEML) divided by the mean absolute error of the Random
Walk (naive) forecast (MAERW ). MASE < 1 indicate that the evaluated machine learning
algorithms perform better than the Random Walk forecast.

MASE =
MAEML

MAERW

Mean squared error (MSE)

MSE measures the average of squared errors between predicted and actual values

MSE =
1

n

n∑
i=1

(yi − ŷi)
2.

As the MSE formula reveals, the squared errors can be heavily influenced by extreme values,
making the mean squared error less robust in the presence of outliers.

5.5 Variable Importance Measures

In prediction policy problems, it is vital to pinpoint the specific predictors that play a key role
in enhancing the effectiveness of machine learning algorithms in detecting patterns within
a dataset. This not only enhances interpretability but also provides valuable insights for
the use of data-driven approaches to guide public policy decisions (Kleinberg et al. 2015;
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Athey and Imbens 2019; Doumpos et al. 2023; Wallimann, Imhof, and Huber 2023; Silveira
et al. 2023; Brown et al. 2023).

Within our research, we employ Permutation Importance (PI) to highlight the pivotal
variables that influence firms’ offer prices. Using PI allows for a fair comparison between
different models, whether linear or nonlinear. Essentially, PI is a technique that quantifies
a variable’s influence on a model’s predictive capacity by randomly shuffling the variable’s
values and observing the resulting impact on the quality of predictions (Altmann et al. 2010).

The process of PI involves the following steps: first, training the model with all input
variables and evaluating its performance on test data; then, shuffling the values of a single
input variable in the test data while keeping others constant and reassessing the model’s
performance on the shuffled data; next, comparing the original and shuffled performance
metrics to determine the impact, i.e., the increase in prediction error; and finally, ranking
the variables based on this impact, where larger increases in prediction error signify greater
importance. For example, a variable with a PI of 0.1 denotes a 0.1 increase in the model’s
prediction error when its values are shuffled. In other words, this metric can be used to
compare variables within the same model, as it allows both variable selection and the iden-
tification of the most crucial variables for precise predictions.

The individual permutation importance technique has been used as a way to increase
our ability to understand and explain the results generated by machine learning models
(Genuer, Poggi, and Tuleau-Malot 2010; Aras and Lisboa 2022; Ji et al. 2022; Silveira et
al. 2022; Silveira et al. 2023; Brown et al. 2023). However, this approach has its limitations.
In a database with a large number of predictors, some of them may be highly correlated,
causing collinearity issues that can compromise the accurate measurement of each predictor’s
individual contribution to the model’s performance. As a result, individual permutation
importance may not fully reflect the combined impact of correlated predictors on the model
(Gregorutti, Michel, and Saint-Pierre 2017; Lundberg et al. 2020; Mi et al. 2021; Molnar
et al. 2023).

Group-based permutation importance involves assessing the importance of groups of vari-
ables rather than individual variables, providing a more comprehensive view of the impor-
tance of predictor groups, especially in situations where predictors exhibit strong correlations.
The process begins by defining groups of related variables based on domain knowledge or
patterns observed in the data. Then, similar to individual variable permutation importance,
the values of the variables within a group are shuffled simultaneously, and the model’s per-
formance is evaluated based on these shuffled values. By comparing the model’s performance
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with the original unshuffled data, we can determine the impact of shuffling variables within
a group on the quality of predictions (Au et al. 2022; Plagwitz et al. 2022). This approach
allows us to understand the combined influence of related variables within a group. Ad-
ditionally, it provide a more detailed view of how the categories of predictors – and their
underlying specifications we presented in Section 4.3 – may improve the prediction of firms’
bidding decisions. In other words, by applying the grouped permutation importance, we gain
deeper insights into how predictors influence machine-learning models and uncover potential
synergistic effects among variables within a group, giving a more extensive understanding
of the collective impact of the categories of variables of specifications 1 and 2 on predictive
performance.

We define eight different categories in our group-based permutation importance approach.
These eight categories were determined by grouping variables based on that capture similar
market dynamics. Many of these variables are moderately to highly correlated. The cate-
gories include the following. “Own Firm Lagged Price Variables” controls for lagged values
of the dependent variable to capture the influence of previous bidding on current pricing de-
cisions. “Other Own Firm Lagged Variables” includes lagged values of a firm’s outputs and
capacity availability, separated by generation technology. “Wholesale Market Demand and
Price Variables” captures measures that potentially impact bidding behavior. “Supply and
Availability by Fuel Type” comprises market-level generation supply and capacity availability
variables to determine if firms adjust their bids based on observed variations. “Imports and
Exports” consists of import and export quantities and intertie capacity availability measures
for neighboring jurisdictions. “AS Market” includes the total Ancillary Services market out-
put to capture the quantity of reserves procured by the AESO. “Temperature” and “Hour”
comprise temperature variables for Edmonton and Calgary and hour indicators, respectively,
aiming to capture time and temperature-based variations impacting bidding decisions. By
applying grouped permutation importance one group at a time, we can discern which sets of
variables contribute most significantly to our understanding of bidding behaviors and pricing
decisions in the market.

6 Results

Table 3 presents the values of the evaluation metrics for each model. Note, first, that all
the evaluated ML algorithms perform better than the random walk, indicating that the
data provided to the algorithms are useful in predicting price changes. There are limited
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differences in the performance across algorithms for all four firms; while the non-linear tree-
based algorithms (random forest and XGBoost) yield lower MAE and MASE scores than
Lasso and Ridge for all four firms and both specifications, the MSE suggests that Lasso
exhibits stronger performance for three of the firms. Throughout our results, we will focus
on the results from the random forest algorithm and briefly summarize results from the Lasso
algorithm. Additional results for the other algorithms will be presented in the Appendix to
demonstrate that our key conclusions are robust.

Table 3: MAE, MASE and MSE
Capital Power ENMAX Heartland TransAlta

MAE MASE MSE MAE MASE MSE MAE MASE MSE MAE MASE MSE

Random Walk 0.494 - 0.587 0.633 - 0.843 0.259 - 0.177 0.463 - 0.537

Specification I
Lasso 0.289 0.585 0.195 0.295 0.466 0.166 0.167 0.645 0.076 0.313 0.677 0.211
Ridge 0.304 0.615 0.195 0.301 0.476 0.167 0.188 0.723 0.080 0.337 0.729 0.231
RF 0.282 0.571 0.211 0.279 0.441 0.179 0.153 0.591 0.075 0.283 0.612 0.217
XGBoost 0.286 0.579 0.204 0.285 0.450 0.178 0.170 0.656 0.078 0.296 0.639 0.216

Specification II
Lasso 0.298 0.603 0.193 0.301 0.476 0.169 0.164 0.633 0.077 0.323 0.698 0.218
Ridge 0.315 0.637 0.200 0.314 0.496 0.175 0.197 0.761 0.084 0.348 0.752 0.240
RF 0.283 0.573 0.211 0.284 0.449 0.181 0.152 0.587 0.076 0.282 0.610 0.217
XGBoost 0.277 0.561 0.200 0.286 0.452 0.173 0.172 0.664 0.080 0.294 0.635 0.215

Notes. MAE, MASE, and MSE are calculated based on the first difference in the logarithm of prices over
three hours. The best fit for each metric among the four models is indicated in bold.

Table 3 does not indicate a large performance improvement when disaggregated firm-
level supply and available capacity variables are used. While Specification II does result in
slightly lower errors for some firms and performance measures, these differences are small and
not consistent across algorithms or performance measures. Our analysis suggests that the
disaggregated information does not provide a considerable increase in information to predict
firms’ pricing decisions. Instead, it tends to introduce more noise and greater variance into
the predictions. In forecasting models, variance is a source of error. Therefore, our results
show that the additional variance resulting from using firm-level and more disaggregated data
usually leads to greater predictive error. In addition, this suggests that firms rely primarily
on market-level data rather than firm-specific information on rivals’ generation units when
setting prices.

In addition to providing common evaluation metrics for time-series forecasting, we also
examine how the analysis performs in predicting each firm’s pricing decisions by looking at
actual and forecasted price levels. Figure 1 provides a time-series plot of the actual and
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predicted quantity-weighted offer price (i.e., our main target variable) using the random
forest algorithm and Specification I.22 While there is considerable variation in the firms’
pricing behavior both over the entire sample and within a given month, we can see that our
analysis can track the observed pricing patterns reasonably well.23

Figure 1: Price Level Forecast - Random Forest

Figure 2 presents the distribution of the differences between the actual and predicted
price variable for each firm using the random forest algorithm and Specification I.24 While
the range is broad, the vast majority of observations lie closely centered around 0. This
continues to demonstrate that our analysis captures firms’ pricing dynamics on their strategic
offers (i.e., offers in excess of marginal cost).

22. There is a gap in Figure 1 for Capital Power and smaller gap for TransAlta. This is due to the fact that
our analysis focuses on the bids of generation units that exceeded short-run marginal cost (recall Section
4.2). Capital Power and TransAlta did not have bids above their marginal cost during these periods.

23. See Figure B.1 in Appendix B for the price level forecasts for all the four firms using Lasso.
24. See Figure B.2 in Appendix B for the distribution of the differences using Lasso.
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Figure 2: Histogram - Random Forest

To gain insight into which variables are more important for prediction, we now consider
the grouped permutation importance measures. We use box plots to illustrate the distri-
bution of an increase in prediction error when the original value of individual and grouped
variables is replaced by random counterparts. The box represents the interquartile range,
i.e., it describes how spread out the variable importance is, and the line within the box in-
dicates the median. Outliers can highlight variables with exceptional individual or grouped
importance over the sample period. Thus, the box plots allow us to visualize variations in
importance levels and compare between different variables – either individually or grouped.

Figure 3 presents the grouped permutation importance based on the predictions made
by the random forest algorithm. The Figure presents results for both Specifications I and II
to evaluate the extent to which the inclusion of firm-specific variables impacts the analysis.
Random forest primarily uses a combination of information derived from the own-firm-lagged
variables representing a firm’s previous bidding behavior, wholesale market demand and price
variables, and supply and availability variables by fuel type. In addition, hourly indicators
have an important impact on the predictions for three of the four firms. This is consistent
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with daily patterns in prices, in which bids are raised for peak hours and lowered in off-
peak hours. In contrast, variables related to imports and exports, ancillary services, or
temperature appear to play only a minor role in prediction.

Figure 3: Box Plot of Grouped Permutation Importance - Random Forest

Comparing the results for Specifications I and II, we observe a modest increase in the
importance of the supply and available capacity variables. However, recall from Table 3
that this does not translate into a substantial improvement in predictive performance. This
continues to suggest that firms rely primarily on aggregate market-level variables to respond
to supply and demand dynamics when making their bidding decisions.

Figure 4 presents the grouped permutation importance analysis using the Lasso algo-
rithm. Different from the random forest algorithm, the results using Lasso indicate that this
algorithm places considerably more importance on lagged own-price variables and hourly
indicators; the importance of market price and demand and supply and availability variables
is reduced compared to Figure 3. This is possibly driven by the linear nature of the Lasso
algorithm, which may be less able to exploit these variables than one that permits their
effect to be non-linear.25 Despite these differences, we continue to observe only modest dif-
ferences between Specifications I and II when disaggregated firm-level variables are included.
This continues to support the conclusion that firms rely primarily on aggregate market-level

25. See Figures B.3 and B.4 in Appendix B for the results obtained with both the XGBoost and ridge
models, respectively.
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variables when forming their pricing decisions.

Figure 4: Box Plot of Grouped Permutation Importance - Lasso

We now carry out our individual permutation importance analysis to explore the contri-
bution of each individual variable in the price prediction algorithm. While the individual
permutation importance approach faces challenges when variables are highly correlated (re-
call the discussion in Section 5.5), it can provide useful insights to the extent that it can
identify the importance of individual variables that were previously nested within groups in
the grouped permutation importance approach.

Figure 5 shows the ten variables that most increased the random forest’s prediction error
after having their values replaced by randomly shuffled counterparts for both Specifications
I and II. Focusing on Specification I, for two of the four firms, the single most important
variable for prediction is the forecast of the Alberta internal load (demand) for the current
hour (ForecastAIL F0); for Capital Power and Heartland, this variable has the second highest
permutation importance score. Overall, we notice that Alberta’s internal load variables
represent two to three of the top ten variables by permutation importance for our four firms.
Additionally, lagged target variables (i.e., lagged price variables) or hourly dummy variables
account for six of the top ten most important variables for all four large firms.

The combination of lagged prices, hourly indicators, and market demand forecast vari-
ables suggests that daily pricing patterns and changes in observed or expected load are the
most important variables for predicting offer price adjustments. Other individual variables
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in the top ten for at least one of the firms include the actual pool price, SMPs coefficient of
variation, and dual fuel supply. Observed price levels and the price variance measure may
be used to provide information about the shape of the market supply curve, supplementing
the important market demand variables. The importance of dual fuel supply could be cap-
turing the fact that these are recent coal-to-gas converted units that are often setting the
market-clearing price (i.e., are on the margin) in peak hours during our sample period.

Figure 5: Box Plot of Top 10 Explanatory Variables - Random Forest

Figure 5 demonstrates that the conclusion regarding the relative importance of daily
patterns, observed demand, and demand forecasts carries over to Specification II, where
lagged own-price variables, hour dummies, and market demand variables account for seven
up to nine of the top ten variables, depending on the firm.26 In fact, only a single rival
firm-specific variable shows up in the top 10 looking across all four firms; ENMAX’s supply

26. From Figure B.5 in the Appendix B, we can see that the predictions made by XGBoost are based on
patterns similar to those used by random forest.
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from combined cycle (CC) gas units is the 10th most important single variable for Heartland.
This continues to support the fact that the consideration of firm-specific variables does not
have a substantive impact on the price predictions or conclusions drawn from the analysis.

Figure 6: Box Plot of Top 10 Explanatory Variables - Lasso

Comparatively, we see through Figure 6 that for both specifications I and II, lasso ex-
tensively uses lagged price predictors combined with hourly indicators and other own-firm-
specific lagged variables to predict price changes.27 This parallels the findings in Figure 4
when using the grouped permutation importance approach. As suggested above, this could
be driven by the linear nature of the lasso algorithm. Overall, analyzing the 10 individual
variables with the highest permutation importance, we can see that the algorithms are ca-
pable of assimilating, albeit in subtly different ways, the daily patterns of wholesale prices.
Further, the inclusion of disaggregated firm-specific variables in Specification II does not
have a considerable impact on the key variables with the highest permutation importance.

27. Figure B.6 in Appendix B displays the box plots of the top ten variables for the ridge model.
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Figure 7: Box Plot of Finer Group Analysis - Random Forest

The analysis above indicates that while the “Wholesale market demand and price” and
“Supply and availability by fuel type” groups are important for prediction in the random
forest algorithm, the only variables in these categories to show up consistently in the top ten
as shown in Figure 5 are measures of forecasted and observed AIL. However, other variables
in these categories may not have high individual permutation importance scores if they are
highly correlated with other variables in the same group. To explore this further, focusing on
the random forest algorithm for Specification I, we divide the supply/availability variables
into groups based on technology, with each group containing the lags of the available and
supply variables for that specific technology. The market demand and price variables are
divided into three groups; “Volatility” includes lags of both SMP standard deviation and
coefficient of variation, “Pool Price” consists of lags of day-ahead and actual pool price vari-
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ables, and “AIL” is made up of lags and leads of both forecast and actual AIL variables.
This approach represents an intermediate strategy where we retain the grouped structure
of variables but with a more granular subdivision. This enables us to harmonize the broad
overview offered by the grouped permutation importance method with the need for cor-
rectly addressing multicollinearity issues inherent in the individual permutation importance
method.

The results of the grouped permutation importance for these finer groups are shown in
Figure 7. For all four firms, the AIL variables are the most important, while pool price
levels and volatility measures play a minor role in prediction. Of the supply and availability
categories, ENMAX specifically highlights simple cycle gas (Gas SC) as significant among
other technologies, while no single technology stands out for the other firms.28 Hence, this
analysis suggests that the previous finding, that AIL variables are the primary driver of
prices, is robust to collinearity concerns, while no single technology seems to be important
for forecasting.

7 Conclusion

An important consideration in the design of restructured wholesale electricity markets is the
degree of transparency in the market and the amount of information available to market
participants in real or near-real time. While on the one hand, a high degree of information
availability can promote efficient market outcomes by allowing firms to respond optimally to
supply and demand circumstances, there is also a potential that large amounts of firm-level
information could facilitate coordination among firms.

In this paper, we use data from Alberta’s wholesale electricity market for 2021 to consider
which information best predicts firm-level offer prices and the reliance of firms on market-
level vs disaggregated firm-level data. Specifically, we use machine learning algorithms to
predict changes in the bid prices of the four largest firms, over a three-hour period, focusing
on those assets that are used for economic withholding. We ask whether these algorithms
are more successful in predicting price adjustments when they have access to data on the
generation and available capacity of specific rival firms, compared to when only market-
level generation and capacity data are included. Furthermore, we explain and interpret the

28. Figure B.7 in Appendix B shows box plots of the detailed group analysis for the other evaluated
algorithms. Similar to the random forest algorithm, the AIL variables are important predictors for the
forecasts made with all the algorithms, especially for XGBoost. Furthermore, technologies such as Coal, Gas
SC, and Dual Fuel may also impact the predictions made with both lasso and ridge regression.
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main factors that drive firms’ bidding behavior using Permutation Importance techniques
on individual and grouped data. This technique is proving to be a valuable supplementary
tool for addressing prediction policy problems and is playing a significant role in dispelling
the notion that machine learning models are “black boxes.”

In general, we find that firm-specific information does not improve the prediction per-
formance of our algorithms, suggesting that firms primarily make use of market-level infor-
mation when formulating price changes. We find that hour indicators and lagged own-price
changes are important predictors, suggesting strong daily patterns in price adjustments.
Group-level permutation importance scores applied to the results for the non-linear tree-
based algorithms indicate that variables in the market demand and price category and the
supply and available capacity category are important predictors. Dividing these latter cate-
gories into smaller groups suggests that key predictors of firm-level price changes are measures
of Alberta Internal Load, the primary measure of electricity demand in Alberta. We find
limited indication that the supply or availability of specific technologies are important for
prediction. Finally, our results suggest that certain categories of variables (ancillary ser-
vices, imports and exports, own non-price lagged variables) are not important for predicting
changes to firm-level prices.

In terms of policy implications, our results suggest that a focus on providing firms with
more disaggregated firm-level real-time information may be misguided. Our results indicate
that firms rely primarily on market-level information, particularly on market demand, when
choosing bids; as a result, the potential gains from more disaggregated data may be low
relative to the increased risk of coordination. Rather, it may be more beneficial to provide
more accurate information on market-level indicators such as observed and forecasted load
and market prices. This may involve improving forecast methodologies for demand and
the pool price. While our results do not indicate that wind and solar supply/availability
measures are of particular importance for predicting price changes, one might expect this to
change as these technologies represent a higher proportion of total generation capacity. In
this event, improved wind and solar generation forecasting methods may be of value.
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Appendix A Additional Tables

Table A.1: Set of Explanatory Variables used in Specification I
Capital Power (CP) ENMAX (EN) Heartland (HT) TransAlta (TA)

Own firm lagged CP_price_log_diffL6, CP_price_log_diffL9, EN_price_log_diffL6, EN_price_log_diffL9, HT_price_log_diffL6, HT_price_log_diffL9, TA_price_log_diffL6, TA_price_log_diffL9
price variables CP_price_log_diffL12, CP_price_log_diffL15, EN_price_log_diffL12, EN_price_log_diffL15, HT_price_log_diffL12, HT_price_log_diffL15, TA_price_log_diffL12, TA_price_log_diffL15,

CP_price_log_diffL18, CP_price_log_diffL21, EN_price_log_diffL18, EN_price_log_diffL21, HT_price_log_diffL18, HT_price_log diffL21, TA_price_log_diffL18, TA_price_log_diffL21,
CP_price_log_diffL24 EN_price_log_diffL24 HT_price_log_diffL24 TA_price_log_diffL24

Other own firm AS_Output_CP, Avaliablemw_CP, AS_Output_EN, Avaliablemw_EN, AS_Output_HT, Avaliablemw_HT, AS_Output_TA, Avaliablemw_TA,
lagged variables Coal_avail_CP, Coal_supply_CP, Dispatchedmw_EN, Gas_CC_avail_EN, Cogen_Total_avail_HT, Coal_avail_TA, Coal_supply_TA,

Dispatchedmw_CP, Gas_CC_avail_CP, Gas_CC_supply_EN, Gas_SC_avail_EN, Cogen_Total_supply_HT, Dispatchedmw_TA, Dual_Fuel_avail_TA,
Gas_CC_supply_CP, Gas_SC_avail_CP, Gas_SC_supply_EN, Wind_avail_EN, Dispatchedmw_HT, Dual_Fuel_avail_HT, Dual_Fuel_supply_TA, Gas_Steam_avail_TA,
Gas_SC_supply_CP, Wind_avail_CP, Wind_supply_EN Dual_Fuel_supply_HT, Gas_SC_avail_HT, Gas_Steam_supply_TA, Hydro_avail_TA,
Wind_supply_CP Gas_SC_supply_HT, HT_Outage Hydro_supply_TA,

(Wholesale Market) Bio_Other_avail_Mkt, Bio_Other_avail_Mkt, Bio_Other_avail_Mkt, Bio_Other_avail_Mkt,
Supply and Availability Bio_Other_supply_Mkt, Bio_Other_supply_Mkt, Bio_Other_supply_Mkt, Bio_Other_supply_Mkt,
by fuel type Coal_avail_Mkt , Coal_supply_Mkt Coal_avail_Mkt , Coal_supply_Mkt Coal_avail_Mkt , Coal_supply_Mkt Coal_avail_Mkt , Coal_supply_Mkt

Cogen_Total_avail_Mkt, Cogen_Total_avail_Mkt, Cogen_Total_avail_Mkt, Cogen_Total_avail_Mkt,
Cogen_Total_supply_Mkt, Cogen_Total_supply_Mkt, Cogen_Total_supply_Mkt, Cogen_Total_supply_Mkt,
Dual_Fuel_avail_Mkt, Dual_Fuel_avail_Mkt, Dual_Fuel_avail_Mkt, Dual_Fuel_avail_Mkt,
Dual_Fuel_supply_Mkt, Dual_Fuel_supply_Mkt, Dual_Fuel_supply_Mkt, Dual_Fuel_supply_Mkt,
Gas_CC_avail_Mkt, Gas_CC_avail_Mkt, Gas_CC_avail_Mkt, Gas_CC_avail_Mkt,
Gas_CC_supply_Mkt, Gas_CC_supply_Mkt, Gas_CC_supply_Mkt, Gas_CC_supply_Mkt,
Gas_SC_avail_Mkt, Gas_SC_avail_Mkt, Gas_SC_avail_Mkt, Gas_SC_avail_Mkt,
Gas_SC_supply_Mkt, Gas_SC_supply_Mkt, Gas_SC_supply_Mkt, Gas_SC_supply_Mkt,
Gas_Steam_avail_Mkt, Gas_Steam_avail_Mkt, Gas_Steam_avail_Mkt, Gas_Steam_avail_Mkt,
Gas_Steam_supply_Mkt, Gas_Steam_supply_Mkt, Gas_Steam_supply_Mkt, Gas_Steam_supply_Mkt,
Hydro_avail_Mkt, Hydro_supply_Mkt, Hydro_avail_Mkt, Hydro_supply_Mkt, Hydro_avail_Mkt, Hydro_supply_Mkt, Hydro_avail_Mkt, Hydro_supply_Mkt,
Mkt_Outage, Solar_avail_Mkt, Mkt_Outage, Solar_avail_Mkt, Mkt_Outage, Solar_avail_Mkt, Mkt_Outage, Solar_avail_Mkt,
Solar_supply_Mkt, Storage_avail_Mkt, Solar_supply_Mkt, Storage_avail_Mkt, Solar_supply_Mkt, Storage_avail_Mkt, Solar_supply_Mkt, Storage_avail_Mkt,
Wind_avail_Mkt, Wind_supply_Mkt Wind_avail_Mkt, Wind_supply_Mkt Wind_avail_Mkt, Wind_supply_Mkt Wind_avail_Mkt, Wind_supply_Mkt

Wholesale Market Actual_AIL, Actual_Pool_Price, Actual_AIL, Actual_Pool_Price, Actual_AIL, Actual_Pool_Price, Actual_AIL, Actual_Pool_Price,
Demand and Price Coefficient_of_Variation, Coefficient_of_Variation, Coefficient_of_Variation, Coefficient_of_Variation,
Variables Day_Ahead_Pool_Price, Day_Ahead_Pool_Price, Day_Ahead_Pool_Price, Day_Ahead_Pool_Price,

Forecast_AIL, Std_SMP Forecast_AIL, Std_SMP Forecast_AIL, Std_SMP Forecast_AIL, Std_SMP

Imports and Exports BC_Export, BC_Import, BC_Export, BC_Import, BC_Export, BC_Import, BC_Export, BC_Import,
BC_ImportCapability, BC_ImportCapability, BC_ImportCapability, BC_ImportCapability,
MT_EXPORT, MT_Import, MT_EXPORT, MT_Import, MT_EXPORT, MT_Import, MT_EXPORT, MT_Import,
MAT_ImportCabability, MAT_ImportCabability, MAT_ImportCabability, MAT_ImportCabability,
SK_EXPORT, SK_Import SK_EXPORT, SK_Import SK_EXPORT, SK_Import SK_EXPORT, SK_Import

Hour he_1, he_4, he_7, he_10, he_13, he_1, he_4, he_7, he_10, he_13, he_1, he_4, he_7, he_10, he_13, he_1, he_4, he_7, he_10, he_13,
he_16, he_19, he_22 he_16, he_19, he_22 he_16, he_19, he_22 he_16, he_19, he_22

Temperature Temp_Calgary, Temp_Edmonton Temp_Calgary, Temp_Edmonton Temp_Calgary, Temp_Edmonton Temp_Calgary, Temp_Edmonton

AS Market AS_Market_Output AS_Market_Output AS_Market_Output AS_Market_Output
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Table A.2: Set of Explanatory Variables used in Specification II
Capital Power (CP) ENMAX (EN) Heartland (HT) TransAlta (TA)

Own firm lagged CP_price_log_diffL6, CP_price_log_diffL9, EN_price_log_diffL6, EN_price_log_diffL9, HT_price_log_diffL6, HT_price_log_diffL9, TA_price_log_diffL6, TA_price_log_diffL9
price variables CP_price_log_diffL12, CP_price_log_diffL15, EN_price_log_diffL12, EN_price_log_diffL15, HT_price_log_diffL12, HT_price_log_diffL15, TA_price_log_diffL12, TA_price_log_diffL15,

CP_price_log_diffL18, CP_price_log_diffL21, EN_price_log_diffL18, EN_price_log_diffL21, HT_price_log_diffL18, HT_price_log_diffL21, TA_price_log_diffL18, TA_price_log_diffL21,
CP_price_log_diffL24 EN_price_log_diffL24 HT_price_log_diffL24 TA_price_log_diffL24

Other own firm AS_Output_CP, Avaliablemw_CP, AS_Output_EN, Avaliablemw_EN, AS_Output_HT, Avaliablemw_HT, AS_Output_TA, Avaliablemw_TA,
lagged variables Coal_avail_CP, Coal_supply_CP, Dispatchedmw_EN, Gas_CC_avail_EN, Cogen_Total_avail_HT, Coal_avail_TA, Coal_supply_TA,

Dispatchedmw_CP, Gas_CC_avail_CP, Gas_CC_supply_EN, Gas_SC_avail_EN, Cogen_Total_supply_HT, Dispatchedmw_TA, Dual_Fuel_avail_TA,
Gas_CC_supply_CP, Gas_SC_avail_CP, Gas_SC_supply_EN, Wind_avail_EN, Dispatchedmw_HT, Dual_Fuel_avail_HT, Dual_Fuel_supply_TA, Gas_Steam_avail_TA,
Gas_SC_supply_CP, Wind_avail_CP, Wind_supply_EN Dual_Fuel_supply_HT, Gas_SC_avail_HT, Gas_Steam_supply_TA, Hydro_avail_TA,
Wind_supply_CP Gas_SC_supply_HT, HT_Outage Hydro_supply_TA

(All firms) Supply Availablemw_EN, Available_HT, Availablemw_CP, Available_HT, Availablemw_CP, Available_EN, Availablemw_CP, Available_EN,
and Availability Available_TA, Bio_Other_avail_Fringe, Available_TA, Bio_Other_avail_Fringe, Available_TA, Bio_Other_avail_Fringe, Available_HT, Bio_Other_avail_Fringe,
by fuel type Bio_Other_supply_Fringe, Coal_avail_TA, Bio_Other_supply_Fringe, Coal_avail_CP, Bio_Other_supply_Fringe, Coal_avail_CP, Bio_Other_supply_Fringe, Coal_avail_CP,

Coal_supply_TA, Coal_avail_TA, Coal_supply_CP, Coal_avail_TA, Coal_supply_CP, Coal_avail_CP, Coal_supply_CP,
Cogen_NonZero_avail_Fringe, Coal_supply_TA, Coal_supply_TA, Cogen_NonZero_avail_Fringe,
Cogen_Total_avail_HT, Cogen_NonZero_avail_Fringe, Cogen_NonZero_avail_Fringe, Cogen_Total_supply_Fringe,
Cogen_Total_supply_Fringe, Cogen_Total_avail_HT, Cogen_Total_supply_Fringe, Cogen_Zero_avail_Fringe,
Cogen_Total_supply_HT, Cogen_Total_supply_Fringe, Cogen_Zero_avail_Fringe, Dispatchedmw_CP, Dispatchedmw_EN,
Cogen_Zero_avail_Fringe, Cogen_Total_supply_HT, Dispatchedmw_CP, Dispatchedmw_EN, Dispatchedmw_HT, Dual_Fuel_avail_HT,
Dispatchedmw_EN, Dispatchedmw_HT, Cogen_Zero_avail_Fringe, Dispatchedmw_TA, Dual_Fuel_avail_TA, Dual_Fuel_supply_HT,
Dispatchedmw_TA, Dual_Fuel_avail_HT, Dispatchedmw_CP, Dispatchedmw_HT, Dual_Fuel_supply_TA, Fringe_Outage_MWhs, Gas_CC_avail_CP,
Dual_Fuel_avail_TA, Dual_Fuel_supply_HT, Dispatchedmw_TA, Dual_Fuel_avail_HT, Fringe_Outage_MWhs, Gas_CC_avail_CP, Gas_CC_avail_EN, Gas_CC_avail_Fringe,
Dual_Fuel_supply_TA, Dual_Fuel_avail_TA, Dual_Fuel_supply_HT, Gas_CC_avail_EN, Gas_CC_avail_Fringe, Gas_CC_supply_CP, Gas_CC_supply_EN,
Fringe_Outage_MWhs, Gas_CC_avail_EN, Dual_Fuel_supply_TA, Gas_CC_supply_CP, Gas_CC_supply_EN, Gas_CC_supply_Fringe, Gas_SC_avail_CP,
Gas_CC_avail_Fringe, Gas_CC_supply_EN, Fringe_Outage_MWhs, Gas_CC_avail_CP, Gas_CC_supply_Fringe, Gas_SC_avail_CP, Gas_SC_avail_EN, Gas_SC_avail_Fringe,
Gas_CC_supply_Fringe, Gas_SC_avail_EN, Gas_CC_avail_Fringe, Gas_CC_supply_CP, Gas_SC_avail_EN, Gas_SC_avail_Fringe, Gas_SC_avail_HT, Gas_SC_supply_CP,
Gas_SC_avail_Fringe, Gas_SC_avail_HT, Gas_CC_supply_Fringe, Gas_SC_avail_CP, Gas_SC_supply_CP, Gas_SC_supply_EN, Gas_SC_supply_EN, Gas_SC_supply_Fringe,
Gas_SC_supply_EN, Gas_SC_supply_Fringe, Gas_SC_avail_Fringe, Gas_SC_avail_HT, Gas_SC_supply_Fringe, Gas_SC_supply_HT,
Gas_SC_supply_HT, Gas_SC_supply_CP, Gas_SC_supply_Fringe, Gas_Steam_avail_Fringe, Gas_Steam_avail_Fringe,
Gas_Steam_avail_Fringe, Gas_SC_supply_HT, Gas_Steam_avail_Fringe, Gas_Steam_avail_TA, Gas_Steam_supply_Fringe,
Gas_Steam_avail_TA, Gas_Steam_avail_TA, Gas_Steam_supply_Fringe, HT_Outage_MWhs, Hydro_avail_Fringe,
Gas_Steam_supply_Fringe, Gas_Steam_supply_Fringe, Gas_Steam_supply_TA, Hydro_supply_Fringe, Solar_avail_Fringe,
Gas_Steam_supply_TA, Gas_Steam_supply_TA, Heart_Outage_MWhs, Hydro_avail_Fringe, Hydro_avail_TA, Solar_supply_Fringe, Wind_avail_CP,
HT_Outage_MWhs, Hydro_avail_Fringe, Hydro_avail_TA, Hydro_supply_Fringe, Hydro_supply_TA, Wind_avail_EN, Wind_supply_CP,
Hydro_avail_Fringe, Hydro_avail_TA, Hydro_supply_Fringe, Hydro_supply_TA, Solar_avail_Fringe, Solar_supply_Fringe, Wind_supply_EN, Wind_supply_Fringe,
Hydro_supply_Fringe, Hydro_supply_TA, Solar_avail_Fringe, Solar_supply_Fringe, TA_Outage_MWhs, Wind_avail_CP,
Solar_avail_Fringe, Solar_supply_Fringe, TA_Outage_MWhs, Wind_avail_CP, Wind_avail_EN, Wind_avail_TA,
TA_Outage_MWhs, Wind_avail_EN, Wind_avail_TA, Wind_supply_CP, Wind_supply_CP, Wind_supply_EN,
Wind_avail_TA, Wind_supply_EN, Wind_supply_Fringe, Wind_supply_TA Wind_supply_Fringe, Wind_supply_TA
Wind_supply_Fringe, Wind_supply_TA

Wholesale Market Actual_AIL, Actual_Pool_Price, Actual_AIL, Actual_Pool_Price, Actual_AIL, Actual_Pool_Price, Actual_AIL, Actual_Pool_Price,
Demand and Price Coefficient_of_Variation, Coefficient_of_Variation, Coefficient_of_Variation, Coefficient_of_Variation,
Variables Day_Ahead_Pool_Price, Day_Ahead_Pool_Price, Day_Ahead_Pool_Price, Day_Ahead_Pool_Price,

Forecast_AIL, Std_SMP Forecast_AIL, Std_SMP Forecast_AIL, Std_SMP Forecast_AIL, Std_SMP

Imports and BC_Export, BC_Import, BC_Export, BC_Import, BC_Export, BC_Import, BC_Export, BC_Import,
Exports BC_ImportCapability, BC_ImportCapability, BC_ImportCapability, BC_ImportCapability,

MT_EXPORT, MT_Import, MT_EXPORT, MT_Import, MT_EXPORT, MT_Import, MT_EXPORT, MT_Import,
MAT_ImportCabability, MAT_ImportCabability, MAT_ImportCabability, MAT_ImportCabability,
SK_EXPORT, SK_Import SK_EXPORT, SK_Import SK_EXPORT, SK_Import SK_EXPORT, SK_Import

Hour he_1, he_4, he_7, he_10, he_13, he_1, he_4, he_7, he_10, he_13, he_1, he_4, he_7, he_10, he_13, he_1, he_4, he_7, he_10, he_13,
he_16, he_19, he_22 he_16, he_19, he_22 he_16, he_19, he_22 he_16, he_19, he_22

Temperature Temp_Calgary, Temp_Edmonton Temp_Calgary, Temp_Edmonton Temp_Calgary, Temp_Edmonton Temp_Calgary, Temp_Edmonton

AS Market EN_AS_Output, Fringe_AS_Output CP_AS_Output, Fringe_AS_Output CP_AS_Output, EN_AS_Output CP_AS_Output, EN_AS_Output
HT_AS_Ouput, TA_AS_Output HT_AS_Ouput, TA_AS_Output Fringe_AS_Ouput, TA_AS_Output Fringe_AS_Ouput, HT_AS_Output



Appendix B Additional Results

Figure B.1: Price level forecast - Lasso

Figure B.2: Histogram - Lasso
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Figure B.3: Box Plot of Grouped Permutation Importance - XGBoost

Figure B.4: Box Plot of Grouped Permutation Importance - Ridge
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Figure B.5: Box Plot of Top 10 Explanatory Variables - XGBoost

Figure B.6: Box Plot of Top 10 Explanatory Variables - Ridge
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Figure B.7: Box Plot of Finer Group Analysis
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Appendix C Marginal Cost Estimates and Assets Used

to Construct Price Variables

To construct our price variable to be predicted, we identify for each firm those generating
assets whose capacity is offered into the market at prices above short-run marginal cost. To
estimate unit-level marginal cost functions, we use daily natural gas price data from Alberta’s
Natural Gas Exchange (NGX) and weekly Powder River Basin coal price data provided by
the U.S. Energy Information Administration to serve as our fuel input prices.29 Generation
unit-level efficiency parameters were acquired from documents published by the Alberta
Market Surveillance Administrator, Alberta Utilities Commission, and CASA (2004).

We estimate the marginal cost of natural gas and coal units using the summation of
fuel costs, costs of environmental compliance, and variable operating and maintenance costs.
The fuel input costs are determined by the fuel price (natural gas or coal) multiplied by the
unit-specific efficiency (heat rate) parameters.30 Wind and solar units are assumed to have
zero marginal cost. Further, a sizable portion of Alberta’s market consists of cogeneration
facilities that generate electricity as a by-product of an on-site industrial process (e.g., oil
sands). We set the marginal cost of generation at their bid price, which is systematically
at a price of $0/MWh. There are a small number of biomass units in the province that
are operated by small fringe producers and have an on-site industrial process (e.g., forestry,
pulp mill). We assume that the small fringe of producers behave as perfectly competitive
producers and their bids reflect their marginal costs. Similar to the cogen facilities, these
units often bid a price of $0/MWh. Finally, there are several hydroelectric facilities that
represent a small portion of the market’s output (approximately 2% in 2021). The marginal
cost of these units reflects the opportunity cost of the stored energy. Hydro units often bid
their assets in at a price of $0/MWh or at high prices in excess of $900/MWh. These high
bids reflect in part regulatory and ecological constraints. We set the marginal cost of these
units to be equal to their bids. We anticipate the possible biases from this assumption to be
minimal given these units reflect a small portion of the market.

A descriptive analysis of asset-level price-cost markups indicates that the following assets
for each large firm are included as “strategic” assets:

29. Powder River Basin coal price data can be accessed at: https://data.nasdaq.com/data/EIA/COAL-us-
coal-prices-by-region. NGX gas price data were provided to the authors by the Alberta Market Surveillance
Administrator.

30. For a more detailed discussion of the estimation of unit-level marginal cost, see Brown, Eckert, and
Shaffer (2023).
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• TransAlta: Keephills 1 & 2, Sundance 4 & 6, Sheerness 1 & 2

• Heartland: Battle River 4 & 5, Poplar Hill 1, Sheerness 1 & 2, Valleyview 1 & 2

• Capital Power: Shepard, Cloverbar 1-3, Genesee 1 - 3

• ENMAX: Shepard, Summit-Crossfield 1-3, Cavalier, Calgary Energy Centre

Notice that a subset of the assets appear for multiple firms. This arises because these
units are co-owned with two firms having offer control over a certain percentage of the asset’s
capacity.
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