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Abstract

Affine term structure models generate sharp predictions about the time series evolution of bond yields. In

special, they tie the quadratic variation of yields to the cross-section of average yields. I derive these conditions in

a flexible jump-diffusion setting and use jump-robust estimators to formally test these restrictions. My approach

is more general than previous techniques because it does not constrain the dynamics of underlying factors under

the physical measure. I also show that two thirds of all unspanned volatility can be captured by a single factor. I

investigate if this factor is related to monetary policy surprises. I find that only forward-guidance-type shocks fuel

unspanned volatility, although such surprises can explain less than 10% of the unspanned volatility factor.
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1 Introduction

The so-called affine term structure models are prevalent in applied research. They are flexible and can generate

rich dynamics for bond yields. Additionally, the prices of different securities in such models are arbitrage-free by

construction, which has great theoretical appeal. They do generate, however, very sharp restrictions on how bond

prices - and yields - should behave over time. As Duffee (2002) points out, there is tension between fitting the

cross-section of yields at a given point in time and matching the time-series dynamics of bond prices.

One typical implication of such models is that, as long as we trade more yields than underlying risk factors, all

the movement of relevant state variables should be revealed (or “spanned”) by the cross-section of yields. When

underlying risk factors evolve as a Markovian process, this property implies that, for example, no state variable

other than the yield curve itself should help forecasting future yields and bond returns. This is a restriction on

the conditional first moment of yields. It has attracted attention from the empirical literature since it’s a testable

implication of such models (see Cochrane and Piazzesi (2005); Ludvigson and Ng (2009); Cooper and Priestley

(2009); Joslin et al. (2014); Cieslak and Povala (2015); Bauer and Hamilton (2018); Bianchi et al. (2021); Freire and

Riva (2023)).

The implications are not constrained to the conditional first moment, however. In fact, the spanning property

holds path-by-path, consequently tying together both the distribution of yields and the distribution of underlying

factors. Hence, from a theoretical point of view, it is natural to study the implication for second moments as well

- the variances and covariances of yields. From the applied perspective, one should also be worried about how

yield variances and covariances evolve since that is key for hedging fixed income portfolios.

In this paper, I derive implications for how the quadratic variation process of linear combinations of yields

should behave over time if the underlying model is indeed affine. These conditions are generalizations of the ones

presented by Andersen and Benzoni (2010). Such conditions will constrain the projection of the quadratic variation

process of yields into the cross-section of average yields, generating testable implications. More specifically, in a

an affine jump-diffusion setting, the diffusive part of the quadratic variation process of any linear combination of

yields must be perfectly described, or spanned, by the cross-section of average yields.

Testing such conditions when underlying factors evolve as a pure diffusion is straightforward since the re-

alized variance of yields can approximate the quadratic variation process arbitrarily well.1 When we allow for

jumps, such tight connection breaks since the variation that is due to jumps does not need to be connected to the

cross-section of bond prices anymore. Andersen and Benzoni (2010) design a testing procedure that bypasses this

issue. But they have to constrain the dynamics of the underlying factors both under the physical and the risk-

neutral measures. Additionally, they need to assume a certain martingale-like condition that might not always be

satisfied.

The approach I use relies on jump-robust estimators for the diffusive part of the quadratic variation process.

These estimators were introduced in Barndorff-Nielsen and Shephard (2004). Although perharps less efficient than

the approach used by Andersen and Benzoni (2010), my empirical implementation will not constrain the dynamics

of underlying factors under the physical measure. Additionally, I will not have to take a stance on the empirical

importance of the drift in yields at horizons like a day or a month.

1See Aı̈t-Sahalia and Jacod (2014) for a textbook treatment of theory of realized measures in the context of financial econometrics.
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I use a daily dataset of zero-coupon yields constructed by Liu and Wu (2021) to test the implications I derive.

I focus on three specific linear combinations of yields based on a Nelson-Siegel representation of the yield curve.

This representation is an empirically disciplined analogue of decomposition the yield curve into level, slope and

curvature factors. I find that the condition implied by affine term structure models for the volatility of yields fail

across the entire yield curve. Namely, the cross-section of average yields cannot explain the volatility we measure

non-parametrically on the data.

I further document that the volatility that cannot be explained by the cross-section of yields, which I call “un-

spanned volatility”, has a strong 1-factor structure. Such factor spikes during recessions and during moments of

financial turmoil, such as the great inflation from the 1970s, the Black Monday in 1987, the first round of Quantita-

tive Easing by the Federal Reserve in 2009, and Operation Twist in 2011. This single factor can explain two thirds

of all volatility the cross-section of average yields cannot for.

As a first step into understanding the underlying causes of unspanned volatility, I test whether monetary

policy surprises can account for such excess variation. And, importantly, what kind of monetary policy instru-

ment explains unspanned volatility. I use time series of monetary policy surprises identified by Swanson (2021)

to show that 1) overall volatility does increase when there monetary policy surprises, although the fraction of

overall volatility that is due to jumps stays constant over time; 2) it’s only forward-guidance-type shocks that fuel

unspanned volatility; 3) quantitavely, less than 10% of unspanned volatility can be explained by monetary policy

surprises.

The paper is organized as follows. Section 2 introduces the main mathematical setup and derives implications

from it. Section 3 briefly describes the two datasets I use. Section 5 tests introduces jump-robust estimators and

tests the implications derived in Section 2. Section 6 quantifies the fraction of total variation that is due to jumps.

Section 7 studies how much of unspanned volatility monetary policy can account for. Section 8.

2 Implications from Affine Term Structure Models

In this section, we derive implications for the volatilities of yields and, more generally, for any linear combination

of yields in the affine term structure setting. Later, we will interpret the Nelson-Siegel factors as a particular linear

combination of yields and all results will apply. We first concentrate on the pure diffusion case, and then we show

how to extend the implications when there are jumps.

2.1 Initial Setup

Assume that Xt is an N-dimensional Ito Process with dynamics under the risk-neutral measure given by:

dXt = K (Θ − Xt) dt + Σ
√

StdWQ
t (1)

where dWQ
t is an N-dimensional Brownian motion under the risk-neutral measure, K and Σ are constant N × N

matrices. St is a diagonal matrix such that:

St,[ii] = s0,i + s′1,iXt (2)

3



We assume that St is positive definite with probability one.2 We let the instantaneous rate be denoted by rt and

evolve according to

rt = δ0 + δ′1Xt (3)

Under these conditions, the price of a zero-coupon bond with maturity τ and its respective yield to maturity

are given by

log P(τ)
t = −a(τ)− b(τ)′Xt (4)

y(τ)t ≡ − log P(τ)
t

τ
=

a(τ)
τ

+
b(τ)′

τ
Xt (5)

where a(τ) and b(τ) are smooth functions of τ that solve a certain system of differential equations, with a(0) = 0

and b(0) = 0.3 If we stack J ≥ N yields with maturities ordered as in (τ1, ..., τJ) into Yt, we can effectively write

Yt = A + BXt (6)

where A and B are functions of the parameters and the stacked maturities. A is a J × 1 vector while B is a J × N

matrix. As long as we can invert B′B, we can write

Xt = (B′B)−1B′(Yt − A) = Ã + B̃Yt (7)

This is a spanning requirement. As long as we trade more yields than underlying factors, they should reveal all

information in the factors themselves. This condition should hold for each realization of yields and factors, or

“path-by-path” in the language of continuous-time models.

Equation (7) is key for the results ahead. It implies that knowledge of yields is enough to characterize move-

ments from the underlying factors - a sharp restriction on how data should behave. For instance, it implies that the

conditional expectation of yields from t + h, given all information up to time t, should depend only on the yield

curve from t. This implication regarding the first conditional moment has been tested in previous literature (see

Ludvigson and Ng (2009); Cooper and Priestley (2009); Joslin et al. (2014); Cieslak and Povala (2015)) and more

recently in Bauer and Hamilton (2018) and Freire and Riva (2023). In the current paper, I focus on implications

about the second moment of yields.

2.2 The Quadratic Variation Process

The instantaneous variation of the process Yt is given by

dYtdY′
t = BΣStΣ′B′dt (8)

which is still of order dt since we are in a pure diffusion setting. Let c be a J × 1 vector. Then, the instantaneous

variation of the linear combination Lt ≡ c′Yt is given by:

(dLt)
2 = c′

(
dYtdY′

t
)

c =
(
c′BΣStΣ′B′c

)
dt (9)

2This can be ensured by constraining the parameters of the model - a multidimensional Feller condition. See Duffie and Kan (1996) and

Piazzesi (2010) for a discussion of such conditions. Here, we assume that these are satisfied.
3See Piazzesi (2010) for a review of basic results in this setting.

4



To simplify notation, we define u ≡ Σ′B′c. This is an N × 1 vector. With this notation, we have that the instanta-

neous variation of Zt can be written as

(dLt)
2 =

N

∑
n=1

un(s0,n + s′1,nXt)dt

= (α0 + α′1Xt)dt

=
(
α0 + α′1

(
Ã + B̃Yt

))
dt

=
(
γ0 + γ′

1Yt
)

dt

=

(
γ0 +

J

∑
j=1

γ1,j · y
(τj)
t

)
dt (10)

where γ0 is a scalar and γ1 is a J × 1 vector. The second equality only collected terms, while the third one holds

because of equation (7). For some time interval h > 0, we denote the increment to the quadratic variation process

of Lt between t and t + h by QVL(t, t + h):

QVL(t, t + h) ≡
∫ t+h

t
(dLt)

2 =
∫ t+h

t

(
γ0 +

J

∑
j=1

γ1,j · y
(τj)
t

)
dt

= γ0h +
J

∑
j=1

γ1,j

∫ t+h

t
y
(τj)
t dt

= γ̃0,i +
J

∑
j=1

γ̃1,i;j · y(τj)(t, t + h) (11)

in which we define y(τj)(t, t + h) ≡ 1
h

∫ t+h
t y

(τj)
s ds. This is a notion of average yield over the interval [t, t + h].

Equation (11) implies that the increment to the quadratic variation process of Lt between t and t + h is a linear

combination of the average yields over the same interval. Importantly, we highlight that both the left-hand side

and the right-hand side are only known at time t + h. The equality in (11) holds path by path. The econometric

implication is that a regression of quadratic variation increments on average yields should yield an R2 of one,

absent measurement error. Moreover, we would expect statistical evidence of the significance of many of the

coefficients in that regression.4

2.3 Allowing for Jumps

Although the term structure literature typically works within a pure diffusion setting, there is no a priori reason

to rule jumps out. There is evidence that macroeconomic announcements when revealing new information might

cause asset prices - and not only bond prices - to jump. For instance, Andersen et al. (2007) document this behavior

across different markets. Piazzesi (2005) explicitly allows for jumps induced by monetary policy. Alternatively,

Piazzesi (2010) also points out that more extreme events such as wars and natural disasters might induce jumps.

More recently, the coronavirus pandemic was a major event that induced both large yield movements around

announcements and over the early months of 2020.

One of the most important aspects to explain the popularity of affine term structure models is their tractability

and almost closed-form solutions. The functions a(.) and b(.) satisfy a system of ordinary differential equations

4Andersen and Benzoni (2010) derive a very similar condition for single-maturity yields. Here I generalize their result for any linear

combination of yields - or portfolio of bonds.
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that is relatively easy to solve for low values of N. In discrete time, the ordinary differential equations give place

to simple recursions that only depend on model parameters.5 Allowing for jumps with general time-varying jump

intensity and keeping tractability is not an easy trade-off.

Fortunately, Duffie et al. (2000) show that we can still have a tractable model with jumps if we assume that

the jump intensity is affine in the state variables. On the one hand, this assumption still allows for interesting

dynamics for the jump intensity. For instance, if Xt contains macroeconomic variables, the jump intensity can be

an affine function of those. On the other hand, more general cases would require a different treatment.

To allow for jumps, assume the dynamics of Xt under the risk-neutral measure is given by:

dXt = K (Θ − Xt) dt + Σ
√

StdWQ
t + ZtdNQ

t (12)

where NQ
t is a Poisson process with finite intensity λt and Zt is a N × 1 vector of jump sizes. We assume that Zt is

independent of WQ
t and Nt. The random jump size Zt is distributed according to some distribution νQ. We also let

E[ZtZ′
t] = Ω, which does not depend on time. We further assume that λt = λ0 + λ′

1Xt for some constant λ0 and

some vector λ1.

This setup still yields an affine mapping from factors to yields, so the spanning of Xt by Yt will still hold, like

in (7).6 The instantaneous variation of Yt will now be given by:

dYt · dY′
t = BΣStΣ′B′dt + BZtZ′

tB
′dNQ

t (13)

In a similar fashion to the previous derivations, this implies the following for Lt = c′Yt:

(dLt)
2 =

(
u′Stu

)
dt +

(
v′ZtZ′

tv
)

dNQ
t (14)

where u ≡ Σ′v and v ≡ B′c. The first term is similar to before, although the matrix B will be different since its rows

solve a different system of ODEs for the diffusion-only case. The second term is new and comes from the presence

of jumps.

The increments in quadratic variation between t and t + h will now, as expected, incorporate two parts. As

before, the first part is spanned by the cross-section of average yields following an argument analogous to the

pure-diffusion setting. However, the realizations of the jumps cannot be spanned by the cross-section of yields.

To have an expression for the increment QVL(t, t + h), notice that Nt+h − Nt ≥ 0 is the number of realized jumps

between t and t+ h and let Tk(t, t+ h) denote the stochastic k-th jump time between t and t+ h. Then, QVL(t, t+ h)

can be written as:

QVL(t, t + h) = γ̃0 +
J

∑
j=1

γ̃1,j · y(τj)(t, t + h) +
Nt+h−Nt

∑
k=1

v′ZTk(t,t+h)Z
′
Tk(t,t+h)v (15)

for some constants γ̃0,i and γ̃1,j, j = 1, ..., J. If there are no jumps between t and t + h, we take the last part as zero.

Without jumps, as noted, the projection of quadratic variation on the cross-section of average yields should

generate a perfect fit. This is a testable implication that, unfortunately, is not satisfied when we work with the

more realistic case of a jump-diffusion setting.
5See Ang and Piazzesi (2003) and Duffee (2013a,b) for a discrete-time treatment.
6Of course, the differential equations that implicitly define a(.) and b(.) will be different. The affine jump intensity is convenient because

the expected number of jumps within a short interval, which appears in these differential equations, will be affine in Xt as well. See Piazzesi

(2010) for further details.
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To circumvent this issue, Andersen and Benzoni (2010) use the fact that the expected quadratic variation incre-

ment, E
Q
t [QVL(t, t + h)], will be a linear combination of average yields due to the following:

E
Q
t

[
Nt+h−Nt

∑
k=1

v′Z′
Tk(t,t+h)Z

′
Tk(t,t+h)v

]
= E

Q
t

[∫ t+h

t
(λ0 + λ′

1Xs)ds
]

v′Ωv

Moreover, the expected increment in quadratic variation is related to the conditional variance of yields. They are

in fact equal to each other if one assumes that a certain martingale condition holds for yields. I pursue a different

path and adopt a jump-robust estimator for the diffusive part of the quadratic variation process, along the lines of

Barndorff-Nielsen and Shephard (2004). This approach won’t require any other extra assumptions on this setup.

To finish this section, I highlight another related implication regarding the quadratic covariation process of

different linear combinations of yields in this context. Let c and c̆ denote J × 1 vectors. We consider two linear

combinations of yields: Lt = c′Yt and L̆t = c̆′Yt. The generalization of (14) brings the instantaneous covariation:

dLt · dL̆t =
(
u′Stŭ

)
dt +

(
v′ZtZ′

tv̆
)

dNQ
t

where ŭ ≡ Σ′v̆ and v̆ = B′ c̆. We can follow the same steps that led us to (15) and we will conclude that the

increment to the quadratic covariation process between Lt and L̆t over the interval [t, t + h] is composed by two

terms analogous to the ones in (15) (obviously with different γ’s that will depend both on c and on c̆). The first one

should be spanned by the cross-section of average yields, while the second one is due to jumps. When c = c̆, the

quadratic covariation process is exactly given by (15).

3 Data

There two sources of data for the empirical implementation below. The first one is the zero-coupon nominal yield

curve from Liu and Wu (2021). This is a daily dataset with maturities ranging from 1 to 360 months. This dataset is

becoming the default source for zero-coupon yields in the empirical term structure literature. For instance, Bianchi

et al. (2021) and Freire and Riva (2023) use this dataset to study the conditional mean of bond returns and yields

more generally. This dataset has some advantages over other popular choices, such as the one introduced in Fama

and Bliss (1987) and the one from Gurkaynak et al. (2007). The sample used in this paper ranges from January,

1973 up to December, 2022. The advantage of not using intraday data is that I can extend back the sample way

longer.

In comparison to Fama and Bliss (1987), Liu and Wu (2021) provide many more maturities. That is key for us

to estimate Nelson-Siegel factors since the identification of these factors relies on the fact we trade a large number

of maturities. In comparison to Gurkaynak et al. (2007), Liu and Wu (2021) achieve a better fit of the shorter end

of the yield curve, which is typically crucial for the pricing of different contracts.

The second dataset I rely on was developed and described in Swanson (2021). In similar spirit to Kuttner

(2001) and Gürkaynak et al. (2005), Swanson (2021) considers a panel of narrow-window returns of Eurodollar

and Fed Funds futures around FOMC announcements. These are considered as surprises in prices. He then

extracts three principal components of this panel, and then rotate the principal components so that the first shock

represents a Fed Funds rate shock, a second one represents a “forward guidance” innovation, and the third one is

related to Quantitative Easing. The sample used in this paper ranges from January, 1991 up to June, 2019.
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4 The Nelson-Siegel Representation

The empirical reduced-form literature on yield curve modelling and forecasting frequently deploys the so called

Nelson-Siegel representation, due to Nelson and Siegel (1987). This approach models yields across the maturity

spectrum as a linear combination of three factors:7

y(τ)t = βt,1 + β2,t

(
1 − e−λτ

λτ

)
+ β3,t

(
1 − e−λτ

λτ
− e−λτ

)
(16)

Each of these factors is multiplied by a coefficient that depends on the maturity τ and on a decay parameter

λ > 0. This parameter controls the shape of these coefficients as functions of τ. The coefficient that multiplies β2

starts at one when τ = 0 and decays to zero as τ increases. This decay is faster with higher values of λ. The coeffi-

cient that multiplies β3 starts at zero when τ = 0, starts increasing until it finds its maximum, and then decreases

towards zero again. The maximum is reached at a maturity that depends on λ. The coefficient that multiplies β1

is constant across maturities. Hence, the Nelson-Siegel representation is flexible enough to accommodate different

shapes of the yield curve. It can generate upward-sloping, downward-sloping, and humped yield curves.8

These time-varying factors are empirically related to the level, slope, and curvature of the yield curve. Nonethe-

less, the preferred interpretation here is one related to long, short, and medium-run factors. For λ > 0, one can

see that lim
τ→∞

y(τ)t = β1,t. This motivates calling β1,t a long-term factor since it’s identified as the very long end of

the yield. On the other hand, all else equal, movements in β2,t are translated to larger movements at the short end

of the yield curve than movements on the long end. That motivates the interpretation of β2,t as a short-run factor.

Similarly, the effect of β3,t on the yield curve is minimal both at the short end and the long end. It concentrates

its effect around the peak of its coefficient - an intermediate part of the yield curve. This interpretation enables

us to test theories regarding the evolution of yields for different parts of the yield curve, without having to pick

specific maturities. The Nelson-Siegel representation offers a straightforward decomposition of the entire yield

curve with coefficients that, unlike in a PCA approach, are identified without any rotation choice and that are easy

to interpret.

In principle, λ could depend on t as well. In that case, one could estimate factors and the decay parameter

with non-linear least squares, for instance. However, as Diebold and Li (2006) stressed, a constant decay parame-

ter is typically enough to generate a good fit and in that case we avoid numerical optimization completely. With

a constant decay value, the factors (βt,1; βt,2; β3,t) can be estimated with ordinary least squares, as outlined be-

low. Freire and Riva (2023) studied different methods of estimating the decay parameter, including non-linear

least squares, and showed that the observation from Diebold and Li (2006) is still valid almost two decades later.

Whenever numerical optimization for the estimation of λ converges to a local minimum, the estimated factors

were very close to the ones obtained by ordinary least squares and a constant decay parameter. The optimization

didn’t always converge, however. That motivates me to choose a constant decay parameter.

Diebold and Li (2006) used λ = 0.0609, which places the hump from the coefficient on β3 at τ = 30 months.

Freire and Riva (2023), using a monthly panel of nominal yields, found that λ = 0.0435 would be the best constant

7Svensson (1994) extends this representation to a four-factor model. As Diebold and Rudebusch (2013) point out, the extension implies

a model that is harder to estimate and that delivers a similar fit on the cross-section of yields. Due to its simplicity and good fit on the

daily nominal yield data I use, I stick with the three-factor model. That was also the choice of Diebold and Li (2006); Diebold et al. (2006);

Hännikäinen (2017); Fernandes and Vieira (2019); Freire and Riva (2023), among others.
8See Diebold and Rudebusch (2013) for an in-depth discussion of the properties of the Nelson-Siegel representation.
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decay parameter to minimize the average squared error when fitting the cross-section of yields over their sample.

But the fitting error was very similar to the one provided by the calibration from Diebold and Li (2006). To maintain

consistency with prior literature who used the same calibration, I stick with λ = 0.0609.

4.1 Estimation

For a fixed set of maturities (τ1, ..., τJ), if we stack the corresponding zero-coupon yields in a vector Yt, we can

write the OLS estimator for the factors as


β̂1,t

β̂2,t

β̂3,t

 =
(

M′M
)−1 M′Yt, M ≡


1 1−e−λτ1

λτ1
1−eλτ1

λτ1
− e−λτ1

1 1−e−λτ2
λτ2

1−eλτ2
λτ2

− e−λτ2

...
...

...

1 1−e−λτJ

λτJ
1−eλτJ

λτJ
− e−λτJ

 . (17)

Importantly, this approach implies that estimated factors are linear combinations of yields. In general, we write

β̂i,t = c′iYt, where c′i is the i-th row of (M′M)−1 M′. Since M does not depend on t, these linear combinations

are not time-varying. Therefore, the implications we derived for the quadratic variation of linear combinations of

yields in Section 2 will readily apply. Since we observe yields at the daily frequency, we have daily factor estimates

as well.

One limitation of this approach is the necessity of a balanced panel of yields. If we change the set of available

maturities, we would change matrix M and change how the factors are identified. A larger value of J implies that

we use more data to estimate factors, but it will limit us in the time-series dimension since longer yields started

being traded only more recently. We take J = 120, which implies that we use information from the 1-month yield

up to the 10-year one. We start the sample in January, 1973 since the 10-year bond started being traded during

the last months of 1972. The sample ends in December, 2022 which is the last available date on the daily dataset

from Liu and Wu (2021) as the time of writing.9 This sample covers different scenarios both for monetary policy

and business cycle. For instance, it includes the monetary tightening during the late 1970s and 1980s, the dot-com

bubble burst in early 2000, the global financial crisis from 2008, the period of unconventional monetary policy, and

part of the aftermath from the coronavirus pandemic.

Figure 1 displays the daily estimates of factors, using daily yields from Liu and Wu (2021). All three factors

are persistent time series, displaying trends at the business-cycle length. The long-run factor shows a steady

decline since the early 1980s, following the overall decline of the US yield curve level.10 Both the short-run and

the middle-run sector oscillate around negative means, which is consistent with a concave upward-sloping yield

curve.

The quality of the cross-sectional fit of the Nelson-Siegel representation is stressed by Diebold and Li (2006)

and Gurkaynak et al. (2007) on earlier data. Freire and Riva (2023) also find low fitting errors using monthly data

on a sample similar to the one used in this paper. Figure A.1 in Appendix A reports the daily RMSE when fitting

the cross-section of yields, which is given by σ̂t ≡
√

1
J ·

J
∑

j=1

(
y
(τj)
t − ŷ

(τj)
t

)2
. I report the series in basis points. The

average daily RMSE is around 6 basis points, but it’s constantly below 5bps. When we take into consideration that

9See Cynthia Wu’s website: https://sites.google.com/view/jingcynthiawu/
10See Bauer and Rudebusch (2020) for a treatment of this decline and further implications for yield curve models.
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Figure 1: Daily time-series of Nelson-Siefel factors estimated using the zero-coupon data from Liu and Wu (2021). The sample

ranges from 1973 to 2022. All maturities from 1 to 120 months are used. Gray bars denote NBER recessions.
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these are annualized yields, we conclude that the Nelson-Siegel representation achieves an impressive fit on the

dataset from Liu and Wu (2021).

4.2 Realized Covariances and Bipower Covariation

We now turn to the estimation of the realized covariances of the Nelson-Siegel factors, as well as the bipower

covariation measures. To ease notation, I drop the “hat” sign from the β’s although these variables refer to the

estimated factors from Figure 1. From the daily time series of factor estimates, I estimate the realized covariance

measures within each month. Formally, let’s define the realized covariance between factor i and factor j during

month t as:

RCovi,j(t) ≡ 12 ·
Dt

∑
d=1

(
βi,t+d/Dt − βi,t+(d−1)/Dt

)
·
(

β j,t+d/Dt − β j,t+(d−1)/Dt

)
(18)

where Dt denotes the number of trading days within month t. We multiply the sum by 12 to have an annualized

amount. When i = j, we have the usual realized variance measure. In that case, we call the square root of (18)

the realized volatility of factor i. As Dt increases, RCovi,j(t) approximates the quadratic covariation over month t

arbitrarily well.11

Similarly, I follow Barndorff-Nielsen and Shephard (2004) and define the realized bipower variation of factor

i as:

BPVi(t) ≡ 12 · π

2
·

Dt

∑
d=2

∣∣∣∣βi,t+d/Dt − βi,t+(d−1)/Dt

∣∣∣∣ · ∣∣∣∣βi,t+(d−1)/Dt
− βi,t+(d−2)/Dt

∣∣∣∣ (19)

As shown in Barndorff-Nielsen and Shephard (2004), as Dt increases, the random variable defined in equation

11See Andersen and Benzoni (2008) for a review of these techniques and Aı̈t-Sahalia and Jacod (2014) for a full textbook treatment.
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(19) approximates the part of the quadratic variation process that comes from the diffusive part from (12). It won’t

be disturbed by the jumps. Alternatively, when we work in a pure diffusion setting, both (18) and (19) estimate the

same quantity.12 Accordingly, the difference RCovi,i − BPVi converges in probability to the part of the quadratic

variation process that depends on jumps. In our context, that is the last term in equation (15).

The intuition why BPVi is able to estimate only the diffusive part comes from the fact that, over short intervals,

the presence of many jumps become increasingly unlikely. As the sampling becomes more frequent, jumps start

being confined to a single interval of decreasing length 1/Dt. When there are no jumps, the quadratic variation

process has increments of order dt. As dt decreases, intuitively, at least one of the terms in the typical product

inside the summation in (19) will be small enough to guard the estimator against jumps.

Notice that we have defined only the realized bipower variation for a single factor. But, as also demonstrated

by Barndorff-Nielsen and Shephard (2004), we can extend that definition and define the realized bipower covari-

ation. That is done using a polarization identity. Denoting by BPVi+j(t) the bipower variation of the time series

composed by sum of βi,t and β j,t, the realized bipower covariation between factors i and j over month t is given

by:

BPCovi,j(t) ≡
1
2
(

BPVi+j(t)− BPVi(t)− BPj(t)
)

(20)

This random variable estimates the diffusive part of the quadratic covariation process between factors i and j.

Once again, when we are in the diffusion-only setting, RCovi,j and BPCovi,j estimate the same quantity. And, in

general, when i = j we have that BPCovi,i(t) = BPVi(t). Finally, we also note that both RCovi,j and BPCovi,j can

be negative when i ̸= j.

Figure 2 displays the monthly realized volatility (the square root of realized variance) of each factor as a blue

solid line, and the square root of BPi as a dashed orange line. For all three factors, they are very close. The

difference between them can be taken as a consistent estimator of the part of the quadratic variation process that is

due to the jumps. The periods of higher volatility are the 1970s and the 1980s. That is due to very active monetary

policy during in special after Paul Volcker became the chairman of the Federal Reserve in 1979. Volatility also

spikes up during periods of crises such as the period just after 2008 and in early 2020. In Appendix A, Figure

A.2 displays a similar plot focusing on the the realized covariation between factors and the associated bipower

covariation. In that we see that these time-series are very close to zero most of time, with the exception of the early

mid 1970s and early 1980s.

Table 1 displays summary statistics for the realized covariances and realized bipower covariation measures.

The total sample is 600 observations since these measures are at the monthly frequency, starting in January, 1973

and ending in December, 2022. We see that variation measures related to the medium-run factor β3 are typically

higher than the other ones. That can also be seen from Figure A.2 since the scales are different. That factor is the

hardest one to identify (see Diebold and Rudebusch (2013)). Hence, the variation measures might contain more

noise in that case. The variation measures are skewed, with mean values just above the respective 75% percentile,

both for realized variance and realized bipower variation measures.

In order to validate these measures, we now explore two salient periods and compare movements of the entire

yield curve with the respective variation measures shown in Figure 2. The first period is related to start of Paul

Volcker’s chairmanship at the Federal Reserve. His tenure ranged from August, 1979 up to August, 1987. The first

12Simulation evidence from Barndorff-Nielsen and Shephard (2004) suggests that the realized variance is a more efficient estimator in the

case of a pure diffusion, nonetheless.
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Figure 2: Realized volatility (solid blue line) and the square root of realized bipower variation (dashed orange) for each of the

Nelson-Siegel factors. All measures are annualized, but computed at the monthly frequency.
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years of his tenure represented a period of unprecedented monetary tightening to combat the high inflation from

the 1970s.13 The first panel in Figure 3 displays end-of-month yield curves starting in August, 1979 and ending in

December, 1983. Colors evolve following the timeline, from darker to lighter shades.

The yield curve from December, 1979 had a similar shape although a very different level than the one from

August of the same year. In July, 1980 it had a different shape, now with an upward-sloping profile. Between

December, 1980 and July, 1981 there was a slight change in slope although the level was similar - even though

the level was much higher than a few months before. In 1982 the yield curve was already sloping upwards again

and it became gradually steeper until December, 1983. All these movements regarding the level, the slope and

the humps in these curves are translated to high measures of yield variation, as seen in Figure 2, regardless of our

estimator choice.

The second panel in Figure 3 analyzes yield curve movements during the early months of 2020 when the

coronavirus pandemic hit the American economy. At the end of 2019, the yield curve was upward sloping. During

the next two following months, it became downward sloping - a change also followed by a decrease in the level of

the entire curve. At the end of March, it was almost a linear function of the maturity once again, with a positive

slope. However, at an even lower level. These movements are translated to high readings of realized volatility for

March, 2020 in Figure 2. That is stronger for β1 and β2, a consequence of stark changes in both level and slope.

13See Blinder (2022) for a detailed account.
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Table 1: Summary statistics for annualized realized covariation and realized bipower covariation measures. The sample goes

from 1973 to 2022.

Sample Size Mean Std. Dev. 5% pct. 25% pct. 50% pct. 75% pct. 95% pct.

RCov11 600 1.69 2.80 0.24 0.51 0.92 1.66 5.83

RCov22 600 2.30 4.29 0.32 0.67 1.06 2.02 8.07

RCov33 600 11.76 21.26 1.26 2.94 5.33 11.35 41.19

RCov21 600 -1.24 1.93 -3.95 -1.41 -0.72 -0.42 -0.08

RCov31 600 -1.56 4.92 -7.68 -1.43 -0.43 0.20 1.16

RCov32 600 0.30 3.32 -2.52 -0.68 -0.04 0.70 5.52

BPV1 600 1.39 2.30 0.19 0.42 0.76 1.33 4.62

BPV2 600 1.90 3.46 0.26 0.54 0.93 1.76 7.33

BPV3 600 9.75 18.06 1.10 2.42 4.56 9.30 34.37

BPCov21 600 -1.03 1.66 -3.23 -1.23 -0.64 -0.33 -0.06

BPCov31 600 -1.31 4.14 -5.98 -1.35 -0.43 0.15 1.04

BPCov32 600 0.25 3.48 -2.49 -0.64 -0.03 0.64 3.61

Figure 3: End-of-month yield curves at different salient moments: great inflation and early Volcker years (left) and late

2019/early 2020 close to the coronavirus pandemic (right). All yields are annualized.
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As a final check, Figure A.4 in Appendix A reports a comparison between the time-series of realized volatility

for each factor using either a balanced panel of yields (as in Figure 2) or an unbalanced one, which uses all the

available maturities from Liu and Wu (2021). These measures track each other. The correlation between them is

higher than 0.9 in all cases and higher then 0.97 for β1 and β2. Although using an unbalanced panel gives us a

longer time series, the linear combinations that define the factors are not constant over time. That would invalidate

some of the implications derived in Section 2. The choice of a balanced panel makes the previous computations

precise and is immaterial for the empirical results.
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5 Unspanned Volatility Everywhere

This section tests the implications from Section 2. I highlight once more that, in this context, the Nelson-Siegel

factors should be understood as linear combinations of yields. In a pure diffusion setting, the quadratic variation

increment during month t should be spanned by the cross-section of average yields, which can be approximated

by the realized covariances. That is not true anymore in a jump-diffusion setting. However, the bipower variation

(and covariation) measures are robust to jumps and estimate only the diffusive part of the quadratic variation

process.

My approach is different than the one taken by Andersen and Benzoni (2010) because they need to assume

extra conditions on yields to tie the expected quadratic variation to the conditional variance of yields. Those

conditions are less likely to be satisfied at the monthly frequency used in this paper. More importantly, they need

to assume that the dynamics of Xt is affine under both the risk-neutral and the physical measure. My approach

does not rely on any assumptions related to the P measure.14

Additionally, instead of casting the analyses at the single maturity level, I test the implications from affine

term structure models over the entire yield curve, using the Nelson-Siegel representation as a disciplined way of

decomposing the yield curve movements through the movement of the factors. Freire and Riva (2023) analyze

the conditional mean of these factors and show that state variables such as macroeconomic indicators can only

help forecasting β2, providing no gain for the other factors. There phenomena creates “unspanned” risk premium.

Hence, it’s natural to ask here whether we find unspanned volatility through all factors.

5.1 Linear Projections

The derivations from Section 2 suggest two different regression specifications. Let’s denote by Yt the J × 1 vector

of average yields over month t. Its j-th element is given by y(τj)(t, t + h) ≡ 1
h

∫ t+h
t y

(τj)
s ds. Then, it’s natural to

study the following regressions:

RCovi,j(t) = αi,j + γ′
i,jYt + ϵi,j(t), i, j = 1, 2, 3 (21)

BPCovi,j(t) = δi,j + θ′i,jYt + ηi,j(t), i, j = 1, 2, 3 (22)

We could approximate each element of Yt by the average yield within a month. However, since Litterman

and Scheinkman (1991), we know that the cross-section of yields have a factor structure of low dimension. Hence,

we use the average Nelson-Siegel factors within month t as the variables on the right-hand side of regressions (21)

and (22). As a robustness check, I will also report results using principal components of yields.

Absent measurement error, the fit in both cases should be perfect under the pure-diffusion setting and it

should also be perfect for (22) in the case of a jump-diffusion underlying process Xt. A perfect fit is identified by

R2 = 1 in these regressions. We now test these implications.

Table 2 reports coefficient estimates and associated R2 values for the specification in (21). The three first

14Models that fall into the “essentially affine” class introduced by Duffee (2002) have the property of being affine both under P and Q.

Although this class is prevalent, there are exceptions. For example, Duarte (2004) uses a richer parametrization for the price of risk. But his

model is not affine under P anymore. My approach would handle both cases.
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columns use the realized variances as dependent variables while the three last ones study the realized covariances.

Standard errors are based on a HAC-adjusted covariance matrix using the estimator from Newey and West (1987).

Panel A uses the full sample, ranging from 1973 up to 2022. These are exactly 600 monthly observations.

In fact, we do find that the coefficients on the average value of factors are often significant, in special for the

average value for β1. One exception is RCov32, for which we find no significant coefficients. The most salient fact,

nonetheless, are the very low R2. These values are higher than the numbers reported in Andersen and Benzoni

(2010) but their sample only starts in the 1990s. In any case, these R2 values are far from 1.

As described in detail by Blinder (2022) and Bernanke (2023), Volcker’s tenure at the Federal Reserve, which

corresponds to the initial period or the sample at hand and also to the period of more extreme readings of realized

variance measures, was exceptional in a number of ways. Inflation levels were at two digits and there was a

sharp tightening of monetary policy. There was also an ongoing discussion of how to conduct monetary policy

itself: either via monetary aggregates or via interest rate setting.15 Additionally, central bank communication was

done in a way that can probably be described as less transparent than nowadays.16 This exceptionality motivates

dividing our full sample in two subsamples. The first subsample starts in 1973 and ends in August, 1987 - when

Volcker left the Federal Reserve. The second subsample starts in September, 1987 and ends in December, 2022.

Panels B and C in Table 2 repeat the analysis from Panel A but for the other two subsamples. Panel B reports

coefficient estimates that are typically significant both for the average value of β1 and the average value of β2. The

coefficient on the average value of β3 is not significant in general. Once more, we found no significant coefficients

fro RCov32. The R2 values are higher than in Panel A, but they are still far from 1. Panel C reports even starker

results. In that case, we find essentially no significant coefficients and R2 values that are never higher than 0.11,

once again far from 1. The lack of significance of these coefficients and even lower values for R2 suggest that the

cross-section of yields became even worse at spanning the volatility measures it should, in theory, span when we

focus on more recent samples.

One explanation for these low values of R2 could be the presence of jumps. As shown in (15) this would break

the spanning condition and could generate values of R2 that are lower than 1. However, the realized bipower

variation (and covariation) measures are robust to jumps and estimate only the part that should be spanned by the

cross-section of yields. We now study specifications as in (22).

Table 3 repeats the analysis present in Table 2 but with the realized bipower covariation measures as depen-

dent variables. We see similar qualitative and quantitative patterns. For the full sample, most of the coefficients

are significant but R2 values are never higher than 0.31, which is far for the ideal value of 1. The subsample that

ends in August, 1987 generates similar results. The R2 values a higher in for all six regressions but they are once

more far from 1. Finally, the last panel from Table 3 reports results for the second subsample. Results are stark

again. We find no significant coefficients and the highest R2 value is 0.13.

In summary, the evidence so far leads us to conclude that, even when we account for the presence of jumps,

the cross-section of yields cannot span the volatility measures it should, following the implications of standard

affine term structure models. There is also suggestive evidence, judging by the lack of significance of coefficients

and very low R2 values, that the problem of unspanned volatility became, if anything, starker over time. To the best

15See Bernanke (2023) for an account of these methodological discussions.
16For instance, the Federal Open Market Committee only started announcing Fed Funds targets in 1995 and systematic press conferences

started during Bernanke’s tenure.
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Table 2: Coefficient estimates from (21). Variables are always standardized before running the regression. Standard errors are

computed using the HAC estimator from Newey and West (1987). Stars denote significance at 10%, 5%, and 1%, respectively.

Different panels refer to different subsamples.

Panel A: Full Sample (January, 1973 - December, 2022)

RCov11 RCov22 RCov33 RCov21 RCov31 RCov32

Average β1 0.433*** 0.714*** 3.361*** -0.190** -0.671*** 0.173

(0.136) (0.213) (1.041) (0.079) (0.233) (0.118)

Average β2 0.398* 1.106*** 4.257** -0.186 -0.805** 0.129

(0.225) (0.392) (1.684) (0.136) (0.340) (0.154)

Average β3 -0.267* -0.631** -1.587 0.210** 0.280 -0.043

(0.145) (0.245) (1.116) (0.093) (0.221) (0.115)

N 600 600 600 600 600 600

R2 0.20 0.32 0.27 0.09 0.20 0.02

Panel B: High Inflation and Volcker’s Tenure (January, 1973 - August, 1987)

RCov11 RCov22 RCov33 RCov21 RCov31 RCov32

Average β1 1.061*** 1.440*** 5.543*** -0.525*** -1.254*** 0.232

(0.208) (0.287) (1.826) (0.131) (0.461) (0.341)

Average β2 0.765*** 1.815*** 8.527*** -0.396*** -1.544*** 0.290

(0.213) (0.349) (1.792) (0.143) (0.458) (0.290)

Average β3 0.201 -0.106 3.848* -0.043 -0.974* 0.468

(0.269) (0.386) (2.106) (0.189) (0.559) (0.423)

N 176 176 176 176 176 176

R2 0.39 0.49 0.39 0.22 0.30 0.04

Panel C: Post-Volcker Sample (September, 1987 - December, 2022)

RCov11 RCov22 RCov33 RCov21 RCov31 RCov32

Average β1 0.010 0.002 0.409 0.048 0.006 -0.013

(0.051) (0.055) (0.367) (0.043) (0.059) (0.058)

Average β2 -0.087 -0.043 -0.545 0.103 -0.065 0.076

(0.091) (0.088) (0.603) (0.071) (0.122) (0.130)

Average β3 -0.092 -0.153 -0.232 0.103 0.174 -0.149*

(0.094) (0.095) (0.641) (0.077) (0.114) (0.088)

N 424 424 424 424 424 424

R2 0.06 0.07 0.05 0.11 0.04 0.03
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Figure 4: Spectral decomposition of the panels of residuals from (21) and (22). Before applying the diagonalization, the series

are demeaned and standardized. See Table B.1 for the definitions of the subsamples.
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(b) Spectral decomposition of ηi,j(t)
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of my knowledge, this is the first study to document this apparent asymmetry between these two subsamples.

5.2 Isn’t it just noisy measurements?

One possible concern is that the daily sampling of yields is too coarse and does not allow for precise measurement

of realized variances and realized bipower variation measures. That would generate noisy measurements, which

would lower the R2 in the regressions above. In principle, these measures will always contain some noise since

they only match the realization of the respective population moments when Dt diverges to infinity. In this section,

I provide evidence that the low R2 are not driven solely by noise.17

To analyze this issue, I focus on studying the regression residuals from (21) and (22). For each time t, there are

six residuals - one from each regression. If the low R2 values are only due to noisy volatility measurements, then

the time series of residuals should have no factor structure. I consider the spectral decomposition of the covariance

matrix of these residuals, after scaling them to have have same standard deviation.

Figure 4 reports the fraction of total variance explained by each of the principal components from the panel

constructed from ϵi,t(t) (left) and the one constructed from ηi,j(t) (right). The different bars report results for dif-

ferent subsamples. In any case, I find evidence of a dominant factor driving unspanned variances (and covariances)

- no matter whether we account for jumps or not. Using the full sample, the first principal component explains

around 70% of the total variance when we consider the residuals from (21). The same pattern arises when we use

the residuals from (22), for which the first principal component explains just short of 70% of the total variance

of the panel of residuals. Although the realized covariances and bipower covariation measures are undoubtedly

noisy to some extent, it’s hard to explain the low R2 values from Tables 2 and 3 in light of the evidence from Figure

4. Pure noise wouldn’t have such a factor structure.
17Notice that Barndorff-Nielsen and Shephard (2006) develop a Central Limit Theorem for the measures used in this paper. Hence, we could

in principle create confidence bands for the realized covariances and bipower covariation measures, even though I do not follow this approach

here. See Aı̈t-Sahalia and Jacod (2014) for a collection of both classical and more modern results on the asymptotic theory of these objects.
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Table 3: Coefficient estimates from (22). Variables are always standardized before running the regression. Standard errors are

computed using the HAC estimator from Newey and West (1987). Stars denote significance at 10%, 5%, and 1%, respectively.

Different panels refer to different subsamples.

Panel A: Full Sample (January, 1973 - December, 2022)

BPV1 BPV2 BPV3 BPCov21 BPCov31 BPCov32

Average β1 0.341*** 0.561*** 2.897*** -0.141** -0.562** 0.136

(0.112) (0.175) (0.863) (0.065) (0.220) (0.099)

Average β2 0.340* 0.874*** 3.770*** -0.152 -0.639** 0.038

(0.174) (0.318) (1.382) (0.106) (0.303) (0.100)

Average β3 -0.248** -0.537*** -1.679* 0.194** 0.253 0.028

(0.116) (0.206) (0.880) (0.076) (0.168) (0.078)

N 600 600 600 600 600 600

R2 0.18 0.31 0.27 0.08 0.18 0.02

Panel B: High Inflation and Volcker’s Tenure (January, 1973 - August, 1987)

BPV1 BPV2 BPV3 BPCov21 BPCov31 BPCov32

Average β1 0.901*** 1.151*** 5.065*** -0.438*** -1.230*** 0.385

(0.161) (0.240) (1.433) (0.106) (0.424) (0.242)

Average β2 0.614*** 1.377*** 7.246*** -0.308*** -1.182*** 0.252

(0.162) (0.274) (1.446) (0.119) (0.448) (0.188)

Average β3 0.094 -0.239 2.129 0.006 -0.616 0.655**

(0.225) (0.358) (1.654) (0.178) (0.421) (0.315)

N 176 176 176 176 176 176

R2 0.40 0.47 0.40 0.20 0.30 0.07

Panel C: Post-Volcker Sample (September, 1987 - December, 2022)

BPV1 BPV2 BPV3 BPCov21 BPCov31 BPCov32

Average β1 -0.026 -0.006 0.364 0.059 0.015 -0.044

(0.044) (0.051) (0.296) (0.038) (0.055) (0.055)

Average β2 -0.054 -0.026 -0.558 0.077 -0.037 0.001

(0.069) (0.084) (0.516) (0.060) (0.103) (0.123)

Average β3 -0.100 -0.145 -0.206 0.106 0.119 -0.069

(0.082) (0.090) (0.517) (0.071) (0.105) (0.083)

N 424 424 424 424 424 424

R2 0.07 0.08 0.06 0.13 0.02 0.01
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Figure 5: Factor estimates associated to the first component of the panel generated by residuals from (21) and (22). The sample

ranges from 1973 to 2022. Gray bars denote NBER recessions. The series is demeaned and scaled to have unit variance.
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I also investigate the time-series evolution of this first principal component of these panels of residuals. Both

time series are reported in Figure 5. The solid blue line represents the first principal component of the panel of

residuals ϵi,j(t). The dashed orange line represents the first principal component from the panel of residuals ηi,j(t).

I also center both series at zero and make them have standard deviation equal to one before plotting them.

The two series are almost on top of each other, which tells us that the behavior of the first principal component

of residuals is similar no matter whether we consider a pure-diffusion or a jump-diffusion setting. It typically

spikes during recessions. Examples of that behavior happened in the early 1980s, during the dot-com bubble and

the global financial crisis. We can spot a sharp spike during March, 2020. There are other sharp spike not related

to recessions as well. For example, we can also see a spike during October, 1987 - exactly the month in which the

“Black Monday” happened. Moreover, we can also see a sharp increase in late 2011, which coincides with the

so-called “Operation Twist”, which was an attempt by the Federal Reserve to lower long-term yields by selling

short-term Treasury securities and using the proceeds to buy long-term obligations.18 Additionally, this time series

is skewed in the sense that its largest realizations are all on the positive plane. It doesn’t have large spikes down -

as one would expect once in a while if it were pure noise.

In contrast, Figure A.5 in Appendix A displays the second principal component of the panel of errors. The

behavior is entirely different. The solid and the dashed line are not tracking each other so well and there are

spikes in both directions. The behavior during recessions does not have a clear pattern. These time series are

more consistent with pure noise. Figure A.6, also in Appendix A, displays the autocorrelation functions for both

the first and second principal components. While the first principal component is a persistent time series with

autocorrelations that are positive and decay slowly, the second principal component has autocorrelations that are

often not significant and that are typically small in absolute value. Taken together, the evidence from this section

leads us to conclude that there is unspanned volatility across the entire yield curve and the residual variation that

cannot be explained by the cross-section of yields has a strong one-factor structure.

18See Blinder (2022) and Bernanke (2023) for a discussion about Operation Twist and other unconventional measures taken during this time.
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6 How Jumpy Are the Nelson-Siegel Factors?

We now study the variation in the Nelson-Siegel factors that comes from jumps. The variation that comes from

jumps can be estimated in the following way:

JVi(t) ≡ max{RCovii(t)− BPVi(t), 0}, i = 1, 2, 3 (23)

In finite samples, it can be the case that RCovii(t)− BPVi(t) < 0, even though that won’t happen in the limit.

Barndorff-Nielsen and Shephard (2004) show, with simulation evidence, that this estimator performs well in a

variety of scenarios. Figure 6 displays the time-series evolution of the square root of the jump variation (so it’s on

a similar scale to Figure 2). It also spikes up during the high inflation era during the 1970s and during the initial

phase of Volcker’s tenure. The 2008 crisis also represents another moment where the jump variation gets more

active.

It’s also convenient to consider the ratio between realized variance and jump variation. This ratio represents

how much of the total variation in each of the Nelson-Siegel factors is due to jumps:19

JRi(t) ≡
JVi(t)

RCovii(t)
, i = 1, 2, 3 (24)

Huang and Tauchen (2005) analyzed how big the term in (24) is for the case of equities in the US. They found

an average jump ratio of about 7%. Table 4 displays the average jump ratio over the entire sample for each factor.

They surprisingly close to each other, but double the size of the mean jump ratio for the equities. Although the

Nelson-Siegel factors capture movements that very different across maturities, they all seem to have the same

average “jumpiness”.

6.1 FOMC Announcements

Given the evidence in Andersen et al. (2007), it’s natural to ask whether macroeconomic announcements, such as

the ones from the Federal Open Market Committee (FOMC) are related to the jumpiness of Nelson-Siegel factors. I

analyze here how volatility of factors, the jumpiness, and unspanned volatility vary with monetary policy shocks.

To do that, I rely on a dataset the dataset from Swanson (2021) who used intraday futures data to extract surprises

around FOMC announcements in the Eurodollar and Fed Funds market.

The dataset provides three time-series of shocks. The first one if a Fed Funds rate shock, a standard monetary

policy shock (FFR). The second one is a “forward guidance” shock (FG), which does not move the very short rates

by construction but is designed to capture shocks to yields a few months ahead. The third shock is related to

large-scale asset purchases (LSAP) - or Quantitative Easing. It affects yields with maturities with more than five

years. They are plotted in Figure A.7 in Appendix A. Positive values imply a monetary tightening. The dataset

ranges from January 1991 to June, 2019. 20

19I only define this measure for realized variance and ignore covariances because the covariances might be negative or even zero. In that

case, the notion of a jump ratio is not well defined.
20I only plot LSAP from 2008 onwards since that will be the relevant period for regressions when it’s used. Although there were no LSAPs

prior to 2008, the shock identification technique used to extract this delivers a time series with the same length for all of them. But realizations

of LSAP prior to 2008 in Eric Swanson’s dataset are, by construction, minuscule. See Swanson (2021) for further details.
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Figure 6: Square root of jump variation for each factor, as defined in (23). The sample ranges from 1973 to 2022. Gray bars

denote NBER recessions. The scale is the same as the one from Figure 2.
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Table 4: The first two panels show the average for each variable conditional on the existence of an FOMC announcement,

following the dates from Swanson (2021). The p-value refers to a test whether both averages are the same. A low p-value

indicates that average are statistically different. The last panel displays the average jump volatility ratio for the whole sample

and conditional on FOMC announcements following the dates in Swanson (2021).

Panel A: Average Realized Covariation

RCov11 RCov22 RCov33 RCov21 RCov31 RCov32

No FOMC Meeting 0.999 1.215 6.016 -0.969 -0.137 -0.214

FOMC Meeting 1.219 1.520 6.797 -1.123 -0.371 -0.168

p-value 0.001 0.025 0.058 0.029 0.027 0.765

Panel B: Average Realized Bipower Covariation

BPV1 BPV2 BPV3 BPCov21 BCov31 BCov32

No FOMC Meeting 0.876 1.048 5.107 -0.867 -0.145 -0.125

FOMC Meeting 1.049 1.325 5.984 -0.980 -0.422 -0.145

p-value 0.016 0.014 0.081 0.150 0.019 0.905

Panel C: Average Jump Variation Fraction

JR1 JR2 JR3

Whole Sample (1973-2022) 0.172 0.158 0.170

No FOMC Meeting 0.146 0.145 0.161

FOMC Meeting 0.150 0.149 0.157

p-value 0.799 0.808 0.812

Table 4 reports the average realized covariance and realized bipower covariation measures over months with

and without FOMC announcements, taken from Swanson’s dataset. For each column, the p-value reported is

associated to a test of null of equal (co)-variation. As expected, once more validating the variation measures, there

is more overall volatility on months with FOMC announcements. There is also more diffusive volatility across the

board. The behavior of the cross-terms is mixed.

Alternatively, the jumpiness of the Nelson-Siegel factors remains constant no matter an FOMC announcement

happened or not. This is evidence that, even though overall volatility increases, the amount of volatility due to

jumps remains constant over time - around 15%. To the best of my knowledge, this is the first study to document

such stable behavior.

6.2 Monetary Policy Surprises and Volatility

Following the insight from Kuttner (2001), if market participants are not surprised during a monetary policy

announcement, there should be no specific asset price movements. In that spirit, instead of conditioning on the

existence of a monetary policy announcement, I now consider the projection of different variables on absolute

values of these surprises. I consider regressions of the following form

Zt = α + θ × |Shock|t + ut (25)
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Table 5: Coefficient estimates from (25) when the realized bipower variation for each one of the factors is used as the dependent

variable. The first three columns refer to the 1991-2019 period, while the fourth column for each dependent variables concen-

trates on the zero-lower bound period. Variables are standardized before running the regression. Stars denote significance at

10%, 5%, and 1%, respectively.

BPV1 BPV2 BPV3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

FFR 0.20** 0.15* 0.35*** 0.32** 0.26** 0.22**

(0.10) (0.09) (0.12) (0.13) (0.10) (0.10)

FG 0.20*** 0.15** 0.22 0.18*** 0.07 0.14 0.18*** 0.10* 0.26*

(0.08) (0.07) (0.16) (0.06) (0.05) (0.11) (0.06) (0.06) (0.14)

LSAP 0.03 0.05 -0.02

(0.09) (0.07) (0.09)

N 336 336 336 109 336 336 336 109 336 336 336 109

R2 0.04 0.04 0.06 0.06 0.12 0.03 0.12 0.03 0.07 0.03 0.08 0.06

where Zt is a generic variable of interest. Before running the regression, I scale the variables so a shock of one

standard deviation (no matter the sign) changes Zt by θ standard deviations, on average.

Table 5 displays results the results when we project the realized bipower variation measures into the absolute

value of monetary policy surprises.21 For each dependent variable, the first and second columns analyze the effect

of FFR and FG shocks individually. The third one conditions on both of them. Finally, the fourth sample considers

the period of the Zero Lower Bound, when there was no FFR shock by design and both Quantitative Easing and

forward guidance were used together.22

Across the board, a shock in the Federal Funds rate does increase the diffusive volatility of Nelson-Siegel

factors. This is intuitive since, after a shock, agents might still take time to learn the fundamental reason why they

were surprised and then update their trading positions, generating higher volatility over the rest of the month.

When conditioning on both FFR and FG, both are still significant with the exception of BVP2. We don’t find

evidence, however, that LSAPs increased the diffusive volatility.

Table 6 repeats this analysis but now focusing on JRi. Consistent with the previous evidence, most of the

coefficients are not statistically different than zero. The only exception at the 5% level would be the coefficient on

LSAP for JR1. But in general it’s hard to make the case that monetary policy surprises are making the yield curve

relatively “more jumpy”. Unreported results show that JV does increase with monetary policy announcements,

buI argue that it increases in a proportional way to the diffusive volatility. This is consistent with a setting in

which agents process information, and update their positions, as new information gets released on, for example,

a daily basis. Even though FOMC announcements move markets on the day they happen, the period before and

the period after the announcement is also more volatile.

21I focus here only variances and not on covariances because they are quantitatively less important. Results are available upon request,

however.
22I refer to Kuttner (2018) for an assessment of unconventional monetary policy over time.
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Table 6: Coefficient estimates from (25) when the realized jump variation ratio for each one of the factors, as in (24), is used

as the dependent variable. The first three columns refer to the 1991-2019 period, while the fourth column for each dependent

variables concentrates on the zero-lower bound period. Variables are standardized before running the regression. Stars denote

significance at 10%, 5%, and 1%, respectively.

JR1 JR2 JR3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

FFR 0.07 0.07 0.03 0.03 0.06 0.03

(0.06) (0.07) (0.04) (0.05) (0.07) (0.07)

FG 0.02 -0.00 0.00 0.02 0.01 0.13 0.08* 0.07 0.09

(0.05) (0.05) (0.10) (0.06) (0.07) (0.10) (0.05) (0.05) (0.11)

LSAP 0.20** 0.18 -0.11*

(0.10) (0.13) (0.06)

N 336 336 336 109 336 336 336 109 336 336 336 109

R2 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.07 0.00 0.01 0.01 0.01

7 How Much of Unspanned Volatility Is Due to Monetary Policy Shocks?

In this last analysis, we revisit the evidence from Section 5 and ask whether these monetary policy surprises can

account for unspanned volatility. If these time series are indeed pure shocks, they should not be spanned by the

cross-section of yields. After all, in the standard affine term-structure models there is typically no role for a central

bank aside from a simple policy rule like (3). Therefore, after a shock, agents can update their positions based

on new information and generate volatility that could not possibly be spanned by the yield curve. The empirical

question is how of that variation can be accounted by monetary policy. Importantly, ex-ante, it’s not clear whether

different instruments of monetary policy generate volatility in the same way.

In this spirit, Table 7 reports coefficients for the projection of the first principal component of the residuals

ηi,j(t), which corresponds to the dashed line in Figure 5, on the monetary policy shocks. Once more, both the

dependent and the independent variables are standardized before the running the regression. The answer for the

question in the title of this section is “not much”. The values for R2 reported in Table 7 are never past 0.08. But I do

find a significant effect of forward guidance shocks on the first principal component of residuals. On the contrary,

I find no evidence that a standard Fed Funds shock increased the amount of unspanned volatility.

The last fours columns of Table 7 repeat the analysis for the second principal component of residuals. In

line with the previous interpretation that the second principal component encodes no relevant information and is

mostly just noise, I find essentially no significant coefficients.

In order to check the robustness of these results, I regress the residuals ηi,j(t) individually on the monetary

policy surprises. Results are reported in Table 8. Consistent with the interpretation that forward guidance shocks

fuel unspanned volatility, I find that coefficients on FG are positive and statistically significant across specifications.

Coefficients on other shocks are not significant, usually. The values for R2 are still low, nonetheless.

In summary, I provide evidence in this section that forward guidance shocks indeed fuel the unspanned part

of yield curve volatility. However, these shocks can only explain a small part of the time series evolution of yield
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Table 7: Coefficient estimates from (25) when the principal components of ηi,j(t) are used as the dependent variables. The

first three columns refer to the 1991-2019 period, while the fourth column for each dependent variables concentrates on the

zero-lower bound period. Variables are standardized before running the regression. Stars denote significance at 10%, 5%, and

1%, respectively.

First PC of Residuals Second PC of Residuals

(1) (2) (3) (4) (5) (6) (7) (8)

FFR 0.10 0.04 0.16* 0.15

(0.10) (0.09) (0.09) (0.09)

FG 0.17** 0.16** 0.30* 0.09 0.04 -0.03

(0.08) (0.07) (0.17) (0.07) (0.07) (0.18)

LSAP -0.05 0.02

(0.09) (0.07)

N 336 336 336 109 336 336 336 109

R2 0.01 0.03 0.03 0.08 0.03 0.01 0.03 0.00

volatility above and beyond what is already spanned by bond prices. This is true even when we consider the

presence of jumps to extract the dynamics of unspanned volatility.

8 Conclusion

As Duffee (2002) points out, affine term-structure models face a trade-off between fitting the cross-section of yields

and fitting their time-series behavior. In this paper, I consider implications for the volatilities of yields that arise

naturally in the context of these models. I extended results from Andersen and Benzoni (2010) to general linear

combinations of yields in a jump-diffusion. I also proposed a new way to test for the presence of unspanned

volatility based jump-robust estimators of the diffusive variance of Nelson-Siegel factors. My approach does not

rely on any assumptions about the empirical relevance of the drift in yields and I do not constrain the dynamics of

the underlying risk factors under the physical measure.

The results point to a stark inability of affine term structure models to accommodate the volatility behavior we

see from yields. The part of volatility that cannot be spanned by yields has a strong 1-factor structure. This finding

is robust across subsamples that exclude the exceptional years of the great inflation from 1970s and subsequent

monetary tightening. I also test whether monetary policy shocks can explain unspanned volatility. I do find that

forward-guidance-type shocks fuel volatility in yields, across the entire yield curve. However, such shocks explain

less than 10% of unspanned volatility.

Understanding the sources of variation in yields is a prime concern for risk managers and traders seeking to

hedge fixed income portfolios. Although it might contain a purely stochastic nature to some extent, movements

in asset prices - which generates volatility more generally - should be tied to economic fundamentals. Explaining

the “excessive varation” I document here with macroeconomic and financial indicators seems a natural next step

into understanding
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Table 8: Coefficient estimates from (25) using the residuals directly as dependent variables. The first three columns refer to

the 1991-2019 period, while the fourth column for each dependent variables concentrates on the zero-lower bound period.

Variables are standardized before running the regression. Stars denote significance at 10%, 5%, and 1%, respectively.

η11(t) η22(t) η33(t)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

FFR 0.10 0.04 0.19* 0.16 0.10 0.06

(0.10) (0.08) (0.10) (0.11) (0.09) (0.08)

FG 0.18** 0.17** 0.26* 0.15*** 0.10* 0.19** 0.15*** 0.13** 0.31**

(0.08) (0.07) (0.15) (0.05) (0.06) (0.09) (0.06) (0.06) (0.14)

LSAP -0.01 -0.03 -0.09

(0.09) (0.05) (0.08)

N 336 336 336 109 336 336 336 109 336 336 336 109

R2 0.01 0.03 0.03 0.07 0.04 0.02 0.05 0.03 0.01 0.02 0.03 0.08
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A Figures
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Figure A.2
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Figure A.3
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Figure A.5
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B Tables

Table B.1: Robustness check. See Table 2.

RCov11 RCov22 RCov33 RCov21 RCov31 RCov32

PC1 1.013*** 1.632*** 9.337*** -0.302 -1.896*** 0.489

(0.353) (0.484) (2.671) (0.208) (0.699) (0.393)

PC2 0.145 0.894** 3.600* -0.010 -0.670* 0.057

(0.251) (0.418) (1.839) (0.159) (0.378) (0.178)

PC3 0.721** 1.586*** 4.699* -0.494** -0.871* 0.157

(0.344) (0.585) (2.588) (0.213) (0.512) (0.232)

PC4 0.462* 0.187 0.801 -0.212 -0.274 -0.218

(0.259) (0.439) (1.884) (0.147) (0.474) (0.252)

PC5 0.004 0.039 1.141 -0.037 -0.393 0.158

(0.190) (0.313) (1.519) (0.121) (0.352) (0.151)

PC6 -0.063 -0.301 -2.666 -0.053 0.157 0.118

(0.241) (0.316) (1.864) (0.169) (0.451) (0.285)

N 600 600 600 600 600 600

R2 0.22 0.33 0.29 0.10 0.21 0.03
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Table B.2: Robustness check. See Table 3.

BPV1 BPV2 BPV3 BPCov21 BPCov31 BPCov32

PC1 0.755** 1.223*** 7.608*** -0.172 -1.537** 0.448

(0.293) (0.391) (2.186) (0.180) (0.641) (0.337)

PC2 0.131 0.678** 3.037** -0.002 -0.483 -0.021

(0.199) (0.332) (1.490) (0.126) (0.325) (0.136)

PC3 0.642** 1.324*** 4.658** -0.442*** -0.761* 0.005

(0.272) (0.489) (2.074) (0.166) (0.411) (0.156)

PC4 0.406* 0.139 0.535 -0.228* -0.142 0.228

(0.208) (0.346) (1.418) (0.137) (0.370) (0.229)

PC5 0.015 0.078 0.606 -0.035 -0.201 0.166

(0.157) (0.245) (1.182) (0.108) (0.268) (0.125)

PC6 -0.063 -0.175 -2.055 -0.076 0.137 0.010

(0.193) (0.267) (1.421) (0.143) (0.367) (0.266)

N 600 600 600 600 600 600

R2 0.22 0.31 0.28 0.10 0.19 0.02
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