
Financial Networks and Systemic Risk: optimal regulation decisions

Wagner E. Schuster

11/04/2023

Contents

Abstract 2

1 Introduction 2

2 Methodology and data 3

2.1 The intuition of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Financial Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Important definitions and equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Financial Centrality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Macroprudential Regulation, Bailout or Laissez-faire . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Stress tests and contagion effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Data generating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Results 12

3.1 Financial Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Optimal regulation decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Stress Tests and Contagion Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Conclusion and Future Research 17

References 18

Appendix 19

Part I - R code for generating the data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Part II - R code for defining Financial Centrality Measures . . . . . . . . . . . . . . . . . . . . . . 20

Part III - R code for compute Stress Tests and Contagion Effects . . . . . . . . . . . . . . . . . . . 26

1



Abstract

The objective of this term-paper is to examine the significance of systemic risk in the aftermath of the 2008
financial crisis and more recent events such as the SVB Financial Group crisis. The paper aims to determine
the optimal regulatory choices of ex-ante regulation, ex-post bailouts, or laissez-faire approaches. To accom-
plish this, I utilized the methodology introduced by Jackson and Pernoud (2019) by employing simulated
data to compute the optimal regulatory decisions. Apart from that I also compare various Financial Central-
ity Measures while assessing contagion effects through stress simulations. The results highlight the critical
role of networks in financial system analysis and the need for effective policy-making in regulating financial
systems to prevent catastrophic scenarios, underscoring the importance of prudent regulatory measures.

1 Introduction

Systemic risk is highly relevant in today’s world, as it refers to the potential for a failure or disruption in
one part of the financial system to have significant and far-reaching consequences for the wider economy.
The interconnectedness of financial institutions and markets, as well as the increasing complexity and speed
of financial transactions, make it more challenging to identify and mitigate systemic risk. In recent years,
several events have highlighted the importance of systemic risk management, such as the global financial
crisis of 2008, the COVID-19 pandemic, and the recent crises surrounding the Silicon Valley Bank (SVB)
Financial Group. Therefore, it is crucial for policymakers and financial institutions to monitor and address
systemic risk to maintain financial stability and avoid potential economic downturns.

The Basel III framework has significantly enhanced the quality and quantity of capital held by banks,
improved risk management practices, and addressed systemic risk in the aftermath of the 2008 financial
crisis. To understand and analyze systemic risk more effectively, network analysis has emerged as a powerful
tool. It enables modeling and analysis of the complex interactions and interdependencies between financial
institutions and markets, thereby facilitating a more comprehensive understanding of systemic risk.

In network analysis, financial institutions and markets are represented as nodes in a network, with links
or edges representing the various connections and interactions between them. Network can help to analyze
systemic risk through the identification of key players or nodes that are highly connected or central to
the network. These nodes, known as “systemically important institutions,” are more likely to have a large
impact on the rest of the network if they were to fail or experience financial difficulties. This subject has
been discussed in numerous paper in the recent years (Sun et al., 2021; Battiston et al., 2021 and 2012a;
Barucca et al., 2020; Hałaj and Kok, 2019; Leduc and Thurner, 2018; Cont et al., 2013).

In a financial network, banks and other financial institutions are highly interconnected through a variety of
channels. As a result, the externalities created by the failure or distress of one bank can have significant
spillover effects on other banks and financial institutions in the network, potentially leading to a broader
systemic crisis. Many studies have demonstrated that by examining the structure and dynamics of the
network, it is possible to gain insights into how shocks and contagion effects can propagate through the
financial system, potentially leading to systemic risk (Liu and He, 2020; Acemoglu et al., 2015; Allen and
Gale, 2000; Gai and Kapadia, 2010a).

Overall, network analysis is a valuable tool for understanding and analyzing systemic risk, and it has the
potential to improve our ability to identify and mitigate potential sources of risk in the financial system. By
identifying and monitoring critical nodes, regulators can focus on maintaining stability through prudential
regulations, stress testing, emergency liquidity facilities, and resolution frameworks. However, the presence
of moral hazard must be considered as financial institutions may take on excessive risk due to the existence
of capital buffers or the expectation of government bailouts.

In this paper, I started from a methodology proposed by Jackson and Pernoud (2019 and 2021) to investigate
the optimal regulation decisions, namely, whether to regulate ex-ante, employ ex-post bailouts, or adopt a
laissez-faire approach. Additionally, the paper evaluates and contrasts various Financial Centrality Measures
and concludes with simulations of multiple stress scenarios and their potential contagion effects.

2



The results in this work underscore the critical role of networks in the analysis of financial systems and
emphasize the crucial need for effective policy-making in regulation. In the absence of sound policies, the
emergence of catastrophic scenarios becomes a looming possibility, making it all the more imperative to
prioritize the implementation of regulatory measures.

The paper is structured into four main sections. The introduction sets the stage for the study, while
the second section covers the methodology and data. This section, apart from a presentation of the data
set creation procedures, includes the model for analyzing optimal regulation decisions, financial networks,
financial centrality measures, and stress test methodology. Moving on to section three, I present the results
of the analysis. Finally, section four concludes the study and outlines future steps.

2 Methodology and data

This section aims to outline the methodology and data set employed in this paper. Initially, I present a
general intuition regarding the model to analyze optimal regulation decisions. Following that, the Financial
Networks will be introduced, highlighting its unique features and defining it. Next, important definitions
and equations for this study will be briefly presented. The financial centrality measures, both traditional
and related to systemic risk theory, will then be defined. After that, I go deeper in my application to the
proposed Jackson and Pernoud (2019) model for optimal regulation decisions. In the sequence, the stress
tests and contagion effects methodology will be discussed. Finally, I present the procedures I used to create
the data set to be used in this paper.

I used mostly the software R version 4.2.2 with R-Studio 2022.12.0.

2.1 The intuition of the model

To effectively address systemic risk, it is necessary to take a comprehensive view of the network. To highlight
the importance of examining the details of the network in order to identify the key institutions that require
regulation or a bailout, I will provide an example from Jackson and Pernoud’s (2021) survey research.

To facilitate understanding, the authors consider a network in which banks are connected solely through debt
contracts. A measure of systemic risk based on local balance sheet information would only take into account
the face value of each bank’s assets and liabilities, without considering the identities of their counterparties.
However, this approach is inadequate, as demonstrated by the authors’ example of a financial network where
two banks have identical balance sheets, but their defaults have vastly different consequences.

Therefore, if the central authority had the ability to bail out only one of the two institutions, it would not
be able to make an optimal decision based on local information alone.
Consider the network shown in Figure 1. Suppose that the portfolios of both Bank 1 and Bank 4 have
yielded zero returns, rendering them insolvent. Let Bank 2 earn a return on its portfolio that falls between
3D/4 and D, while Bank 3 earns a return below D/4, and Bank 5 earns a return above D/2. Assuming a
recovery rate of zero on assets of a defaulting bank, despite having the same balance sheet, only Bank 1
would cause a widespread default contagion if it remains insolvent. Banks 2 and 3 have sufficient buffers
to absorb the shock of Bank 4’s default, but not that of Bank 1. Therefore, bailing out Bank 1 would
prevent the entire system from insolvency, while bailing out Bank 4 would not have any impact,
and a full systemic failure would occur.

Furthermore, this example highlights the fact that without network information, it is impossible to identify
which banks are at risk of insolvency. For example, if one were to examine the books of Bank 3 without
knowing that Bank 2 is exposed to Bank 1, then even if one were aware of the portfolio realizations of
Bank 3’s counterparties, it would not be apparent that Bank 3 is in danger of insolvency. While this is a
straightforward example, it demonstrates why regulatory agencies that lack visibility into certain parts of
the network (such as foreign institutions or shadow banks) or only have access to data from local stress tests
are at a disadvantage.

3



Figure 1: Example on the importance of network information (from Jackson and Pernoud, 2021)

To address this issue, I will use a model the authors proposed in another paper (Jackson and Pernoud, 2021).
The authors suggest considering a scenario where a regulator needs to decide on the most appropriate way
to regulate bank i’s investments. This decision should take into account the financial network g = (D, S)
and the equilibrium investments of other banks q−i, which may or may not be regulated.
Assuming the regulator has the power to intervene in two ways to minimize the inefficiency of banks’
investments, there are two options available: first, the regulator can implement a macroprudential policy
that restricts the types of investments banks can make. Alternatively, the regulator can opt for ex post
bailouts of insolvent banks at some cost. These two interventions result in different investment decisions,
and thus lead to varying returns on banks’ investments as well as default risks. The authors explore this
trade-off between ex post bailouts and portfolio regulation policies, comparing them to a laissez-faire scenario
where banks are left to make their own investment decisions and are not bailed out in case of default.
In this template, the macroprudential policy can be implemented in different ways, such as a reserve re-
quirement that mandates a minimum amount of risk-free assets to be held, an upper bound on the variance
of a bank’s portfolio, or a limit on the amount of the portfolio that is at risk. However, for the purpose of
the analysis, the macroprudential policy is specifically defined as an upper bound q̄i on the share of bank i’s
portfolio that can be invested in the risky asset.
The presence of discontinuities in bankruptcy costs at certain values of qi means that even small changes in
i’s investment can lead to a different set of defaulting banks in some states of the world (I will discuss it in
more details later). As a result, there are multiple optimal levels of investment that must be compared to
determine the best course of action.
To maximize social welfare, a regulator should impose limits on a bank’s portfolio when its risk premium
falls below a certain threshold or when its net financial centrality exceeds a certain threshold. Therefore, an
optimal macroprudential policy should be discretionary and take into account the potential returns that a
bank could generate as well as its position in the network.
Finally, suppose the regulator can also choose to bail out bank i in case of insolvency. However, this action
comes at an expected cost of ci > 0 which includes not only the net capital injection but also any additional
indirect costs that are not recoverable.
The effects of restricting a portfolio or providing bailouts are equivalent in that they prevent a bank from
defaulting. Therefore, the expected bankruptcy costs associated with either option are affected by the extent
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to which they prevent bank i from defaulting and the resulting effects on the overall financial system. Figure
2 provides a summary of these effects.

Figure 2: Optimal regulation (from Jackson and Pernoud, 2021)

The graph in Figure 2 shows that bailouts are the optimal choice when both the expected excess returns
from investing in risky assets and bank i’s centrality in the financial network are high. When the risk
premium is high, it is desirable to maximize returns by investing in the risky asset, while high centrality
indicates that bailouts are preferred to a laissez-faire approach. On the other hand, when the returns are
lower, but the centrality remains high, it is better to impose portfolio restrictions rather than a laissez-faire
approach. If the centrality is low enough, but the returns are high, then laissez-faire becomes the optimal
choice. To summarize:

• laissez-faire is best when centrality is low and excess returns are relatively high;
• portfolio restrictions become optimal when excess returns are low and centrality is relatively high; and
• bailouts are optimal when excess returns are high and so is centrality.

To apply this model, it is necessary to first provide certain definitions on Financial Networks and on how to
establish the network on the banks.

2.2 Financial Networks

Financial networks are distinct in that they exhibit a significant level of interconnectedness and interde-
pendence. A complex web of connections exists between financial institutions and markets, which include
direct financial relationships, indirect exposures through shared counterparties, as well as informational and
reputational ties (Battiston et al., 2012; Upper and Worms, 2004).

The high level of interconnectedness and interdependence in financial networks renders them highly vulner-
able to systemic risk. A disturbance or shock to one area of the network can propagate rapidly to other
areas, potentially resulting in a chain reaction of failures and a wider systemic crisis (Elliott et al., 2014).

Financial networks also possess a critical characteristic of complexity. These networks are defined by a
vast number of nodes and links, which complicates the process of identifying and comprehending the fun-
damental dynamics and vulnerabilities of the system. Furthermore, this complexity poses challenges to the
implementation of sound regulatory policies and effective risk management practices.
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Lastly, financial networks exhibit a characteristic of constant evolution and adaptation to changes in market
conditions and economic environments. With the continuous development of new financial products and
technologies, financial institutions strive to optimize their returns and risk management practices. Con-
sequently, financial networks are incredibly dynamic, requiring constant monitoring and analysis to detect
emerging risks and vulnerabilities.

In summary, financial networks are distinct and unique, posing considerable challenges and complexities
that require careful examination. Nevertheless, studying and managing systemic risk in the financial system
necessitates a comprehensive understanding of financial networks.

2.2.1 What is special about Financial Networks?

In contrast to other networks, such as those involving contagious diseases, financial networks can exhibit non-
monotonicity (Jackson and Pernoud, 2021). This phenomenon describes situations where the introduction
or elimination of a node or link in the network can produce unforeseen alterations in the system’s overall
stability or risk. This implies that the association between network structure and systemic risk is not always
straightforward or monotonic. The inclusion or exclusion of specific nodes or links can have non-linear or
even counterintuitive implications on the system’s overall risk.

One example of non-monotonicity in financial networks is the “too interconnected to fail” phenomenon,
where increasing interconnectedness between financial institutions can initially lead to greater efficiency and
diversification of risk, but eventually lead to increased systemic risk if the network becomes too tightly
connected. This can occur due to the risk of contagion, where the failure of one institution can lead to a
chain reaction of defaults and contagion throughout the network.

Another example is the “robust yet fragile” phenomenon, where networks that are highly robust to small
shocks or disturbances can become extremely fragile and prone to systemic risk in the face of larger shocks
or crises. This can occur due to the presence of critical nodes or links in the network, which may be highly
connected and thus initially increase the robustness of the network but become points of vulnerability in the
face of larger shocks.

Overall, non-monotonicity is an important phenomenon to consider when analyzing and managing systemic
risk in financial networks, as it highlights the need to take a nuanced and dynamic approach to risk man-
agement that accounts for the complex and often counterintuitive relationships between network structure
and systemic risk.

2.2.2 Defining Financial Networks

Typically, we have information on the assets and liabilities of each bank in the interbank market, but not
on the specific interconnections between banks. In such cases, estimating the interbank network is necessary
when performing contagion simulations or evaluating other risk metrics.

Two widely used approaches for estimating the interbank network are the maximum entropy method (Upper
and Worms, 2004) and the minimum density estimation method (Anand et al, 2015).

The maximum entropy estimation method is based on using information about assets and liabilities to
construct an estimate of the interbank network. The estimate assumes that each bank strives to distribute
its exposures as evenly as possible, given the restrictions.
Although this method may be effective in certain instances, it does not fully replicate the properties of
interbank networks, which are typically sparse and disassortative.

An alternative to the maximum entropy method is the “minimum density” estimation method proposed by
Anand et al (2015). This method takes into account the sparsity of interbank networks by estimating a
network with the fewest possible links that still satisfy a set of predetermined constraints. By doing so, it
produces a more accurate representation of the actual interbank network and can improve the accuracy of
contagion simulations and other risk assessments.
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For this estimation I will use the package “NetworkRiskMeasures” in R created by Carlos Cinelli and Thiago
Cristiano Silva.

2.3 Important definitions and equations

In this section I will present some relevant definitions and equations. Most of them are based on the papers
of Jackson and Pernoud (2019 and 2021) with some adaptations.

The value of a bank (book) is given by:

Vi = πi +
∑

j

(dij(V ) − Dji) (1)

where πi represents the value of bank i’s portfolio of investments out of the financial system and dij is the
value that bank j owns to bank i. Here, for simplicity, it is assumed limited liability and equalized priority
of all debt. Therefore:

dij(V ) = min

{
Dij ,

Dij∑
k Dkj

[
πj +

∑
k

djk(V )
]}

(2)

In another words, the value of the debt dij is the minimum between the actual value of the debt (Dij) and
the fraction available of bank’s j value to pay this debt.

A bank is said to default when the value of assets does not cover liabilities. In this case bankruptcy costs
will incur as follows:

bi(V, p) =
{

0 if ASSETS + RETURN ≥ LIABILITIES

βi(V, p) if ASSETS + RETURN < 0
(3)

Therefore the bankruptcy cost depends on the the health of other banks as well as the value of the primitive
investments. It it is discontinuous as said before, being zero if the assets plus the return on investments
surplus the liabilities. Otherwise the value is βi(V, p) and corresponds to:

βi(V, p) = b + a ∗ (ASSETS + RETURN), with b ≥ 0 and 0 < a < 1 (4)

where a indicates that in case of default the bank loses a fraction of its value and b represents some additional
fixed cost.

Finally, I am defining the bailout costs as:

ci = (ASSETS + RETURN) − LIABILITIES (5)

which is the liquidation value of the institution (ASSETS − LIABILITIES) and include the returns as a
recoverable part of the cost.

Next step is defining the Financial Centrality Measures.
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2.4 Financial Centrality Measures

Measuring the contribution of banks to systemic risk can be accomplished by identifying central, significant,
or systemic nodes in the network using financial centrality concepts.

The rationale behind this is that if a bank is highly central, it can pose a significant systemic risk. Researchers
such as Jackson and Pernoud (2019 and 2021), Belhaj et al. (2020), and Capponi and Chen (2015) have
proposed various measures to capture this phenomenon.

In this study, I will first employ traditional centrality measures and subsequently utilize measures that
account for the particularities of financial connections and systemic risk.

2.4.1 Traditional centrality measures

A first approach to this problem would be to use traditional centrality measures from network theory.

Here I briefly discuss some of the most commonly used traditional centrality measures:

• Degree centrality: this measures the number of connections or links that an entity has with other
entities in the network

• Betweenness centrality: this measures the extent to which an entity lies on the shortest path between
other entities in the network.

• Eigenvector centrality: this measures the importance of an entity based on the importance of the
entities it is connected to.

• Closeness centrality: measures how close a node is to all other nodes in the network, based on the
length of the shortest paths between them.

• Alpha centrality: also known as Katz centrality, is a measure of centrality that takes into account the
entire network structure and the importance of all nodes in the network, rather than just the immediate
neighbors of a node.

Although these measures are useful for evaluating the centrality of institutions, they may not be directly
linked to financial theory, as they may not consider the unique characteristics of financial connections and
systemic risk.

2.4.2 Financial Centrality Measures

The “NetworkRiskMeasures” package offers other noteworthy measures, such as the impact susceptibility and
impact diffusion. The impact susceptibility assesses the potential contagion paths that can affect a vertex in
relation to its direct contagion paths. If the impact susceptibility is greater than 1, this indicates that the
vertex is susceptible to contagion from vertices beyond its immediate neighbors (i.e., remotely vulnerable).

On the other hand, the impact diffusion measures the influence that a node has on the propagation of impacts
in the network. It quantifies the impact of removing a vertex’s power to propagate contagion on the impact
susceptibility of other vertices in the network.

Nevertheless, the primary measures that this paper focuses on are those proposed by Jackson and Pernoud
(2019) for measuring the systemic importance of a bank.

The authors provide a network-based measure of financial impact of a given organization. Conceptually, given
their approach, there is a unique and clear way to assess financial impact. What limits its implementation
is a lack of regulation requiring all counterparties to be revealed to a central bank or other oversight agency
(that is why I will simulate my own data for this study)

First measure is the Net Financial Centrality (NFC). The NFC of bank i, given a network (D, S), a vector
of investments q, and a change in its investment choices from qi to q′

i can be determined as follows:
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NFCi(q, q′
i; D, S) = Ep

∑
j

bj(V (q), p) − bj(V (q−i, q′
i), p)

 (6)

Therefore NFC represents the total impact on the economy that comes from a change in i’s investment
strategy (from q to q′), based on the bankruptcy costs that are incurred. If there are no changes in bankruptcy
costs, then the net financial centrality of i is 0.

After that, the second measure is the Bailout Centrality (BC). This measure represents the impact of
guaranteeing to bailout a particular bank, as follows:

BCi(q; D, S) = Ep

∑
j

bj(V, p) − bj(V−i, V +
i , p)

 (7)

where V−i is calculated based on the assumption that bank i does not default on any payments and retains
its value V +

i . In another words, it reflects the total impact on bankruptcy costs when a bank is insured by
the government and bailed out in the event of insolvency, as opposed to a scenario where it is left to fail.

2.5 Macroprudential Regulation, Bailout or Laissez-faire

I employed a model based on the one developed by Jackson and Pernoud (2019) to examine the trade-
offs between ex post bailouts, portfolio regulation policies, and laissez-faire approaches in which banks are
permitted to invest as they choose and are not bailed out in the event of default.

The idea is that the optimal restriction balances the gain from the risk premium with the overall societal
expected bankruptcy costs. Therefore, this problem solves:

max
qi

qiE[pi] + (1 − qi)(1 + r) − Ep

[ ∑
j

bj(V (qi, q−i), p)
]

(8)

where the first component of the objective function reflects the expected return on the portfolio and increases
linearly with qi due to the inclusion of a risk premium. The second component captures the expected
bankruptcy costs, which exhibit a discontinuity at certain values of qi. This discontinuity arises because
making small adjustments to i’s investment may cause a shift in the set of defaulting banks under certain
conditions.

Due to the presence of these discontinuities, there may be multiple optimal levels of investment that need
to be evaluated and compared. One such level is to allow bank i to operate without regulation and choose
q∗

i = 1. Another optimal level is the critical threshold of investment q̄i in the risky asset, below which bank
i remains solvent regardless of the actual return of the asset. This threshold can be determined by solving
the following equation:

(1 − q̄i)(1 + r) = DL
i or q̄i = 1 − DL

i

1 + r
(9)

Therefore, it is possible to compute the thresholds as discussed in the section 2.1 and illustrated in the
Figure 1. Such thresholds will allow the optimal decision and are as follows.

It would be preferable to implement regulation rather than a laissez-faire approach if:

E[pi] − E

[ ∑
j

bj(V (1, q−i), p)
]

<

(
1 − DL

i

1 + r

)
E[pi] +

(
DL

i

1 + r

)
(1 + r) (10)
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In summary, limiting bank i’s portfolio to prevent its default (regulating) is advantageous if the cost of such
restrictions, represented by the reduction in risk premium necessary to maintain the bank’s solvency, is lower
than the expected reduction in bankruptcy costs.

The other threshold shows that bailing out bank i whenever it is insolvent is preferred to regulate investments
if:

[
E[pi]
1 + r

− 1
]

DL
i > Ep

[ ∑
j

bj(Vi(q−i, q∗
i )+, V−i(q−i, q∗

i ), p)
]

+ ci (11)

In another words, bailing out bank i is preferred when the cost of doing so is smaller than the lost incurred
on restricting the bank investment (regulate).

Finally, these equations could be re-written in terms of NFC and BC as presented in section 2.4.2. The
results are as follows:

• If ci ≥ BCi(q∗) then bailout is never optimal and regulate » laissez-faire if:

[
E[pi]
1 + r

− 1
]

DL
i ≤ NFCi((q−i, q∗

i ), q̄i) (12)

• If ci < BCi(q∗) then laissez-faire is never optimal and bailout » regulate if:

[
E[pi]
1 + r

− 1
]

DL
i + BCi(q−i, q∗

i ) − ci ≤ NFCi((q−i, q∗
i ), q̄i) (13)

The concepts of centrality described above enable to determine the most effective method of regulating a
bank.

The code for applying this process can be checked in the Appendix (Part II - R code for defining Financial
Centrality Measures).

2.6 Stress tests and contagion effects

Both the traditional metrics and the financial centrality measures depend on network topology rather then
on a specific shock. Therefore, another way to measure the systemic importance of a bank is to answer the
following question: how would the default of the entity impact the system?

A comprehensive understanding of the network is crucial in addressing systemic risk. Accordingly to Jackson
and Pernoud (2021) stress testing is a key component in assessing risk, but it typically relies on decentralized
balance sheet data, which may not provide complete information on counterparties and the network structure.
This local data can miss critical information about which banks are most likely to trigger or be affected by
a default cascade.

At this point, my focus is on the impact susceptibility and impact diffusion measures, which account for
sequences of successive defaults. If a bank possesses sufficient value and/or their debt liabilities are smaller
compared to their assets, they can prevent such chains from occurring. Additionally, it is worth noting that
these “chains” can impact some banks multiple times and intersect with each other.

I make use of the contagion() function, which is available in the “NetworkRiskMeasures” package, to simulate
a contagion process within the network. This function takes into account the exposure matrix, capital buffer,
and node weights of the Banks as its input parameters. It also provides the flexibility to select from different
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propagation methods or even create a custom one. Currently, I am utilizing two distinct approaches for
propagation: the conventional default cascade and the DebtRank.

The DebtRank approach, as proposed by Bardoscia et al (2015), assumes a linear shock propagation, which
means that if a bank experiences a 10% loss in its capital buffer, it transmits losses of 10% of its debts to
its creditors.

However, it is possible to consider an alternative propagation method. For instance, a bank may not transmit
contagion unless it defaults. In such cases, the contagion method can be changed to a threshold-based
approach.

In addition to the aforementioned use cases, I also employed the contagion() function to simulate arbitrary
contagion scenarios. For instance, I investigated the impact of simultaneous stress shocks ranging from 1%
up to 10% across all banks on the entire system.

These implementations can be seen in Appendix (Part III - R code for computing Stress Tests and Contagion
Effects).

2.7 Data generating

Due to the difficulty of accessing all the required data for this paper, I will be simulating/generating the
necessary data at this moment. Initially, I have generated random values for assets and liabilities. It is worth
noting that I took care to generate heavy-tailed values using a lognormal distribution, as these values are
typically fat-tailed in actual data.

To simplify matters, I am assuming that all connections (assets and liabilities) in this work are interbank,
meaning that there are no investments made outside of the financial system (i.e., πi = 0 in equation (1)).
Additionally, it is important to note that I have maintained the total sum of values of assets and liabilities
as equal by using proportions. Furthermore, I have generated capital buffers as a function of the liabilities.
Using these values in conjunction with the assets, I have estimated the balance sheet for each bank, which
will serve as weights in the nodes, thereby providing some economic significance to the measures.

Regarding the returns, I am considering two types of investments, each consisting of 5 periods (although this
value is arbitrary and could be adjusted). First, I am considering a risk-free investment, where the returns
are sufficient to cover - at least - the total liabilities (such that if the bank invests solely in the risk-free
investment, it will not become insolvent). On the other hand, I have generated random returns for a risky
investment, with a mean equal to that of the risk-free investment, but with values fluctuating to mimic the
returns of a risky investment that could be either greater or smaller than the risk-free investment.

Lastly, I have generated random values for 0 < q < 1, q < q′ < 1, 0 < a < 1, and b > 0. These values
correspond respectively to the share of investment in the risky asset, a change in the investment strategy, the
share of assets lost in case of bankruptcy, and a fixed cost in case of bankruptcy. These values will be crucial
in estimating the bankruptcy cost (as in equation (4)), as well as estimating the NFC and BC (equations
(6) and (7)). Therefore, they are essential for computing the thresholds and defining the optimal regulatory
decisions.

I have encapsulated all of these procedures into a single function that is capable of generating this data for
any desired number of institutions. For the purpose of this work, I have used 100 institutions. You can refer
to the code in the Appendix (Part I - R code for generating the dataset) for more information.

In addition to generating the dataset, I have also calculated the financial centrality measures using the
generated data. To do so, I utilized minimum density estimation to construct the adjacency matrix. Using
this matrix, apart from computing the traditional centrality measures I managed to create the variables
required to calculate the other financial centrality measures, particularly NFC and BC.

Therefore, I have computed the returns on investments made by each bank, considering whether they invested
in risky or risk-free assets. Using these values, I have determined the impact of potential defaults in case a
bank fails to generate enough returns to cover its liabilities. I have done this by utilizing matrices to store the

11



weights and values of such debts, if any, and then subtracting them from the original returns. Subsequently,
I have calculated the bankruptcy and bailout costs in a regular scenario, accounting for the discontinuity as
specified in equation (3).

However, I had to simulate two distinct situations to calculate the NFC and BC measures.

Initially, I computed the maximum value of q̄i, as specified in equation (9), which represents the maximum
amount that banks could invest in the risky asset, ensuring that they have enough investment in the risk-free
asset to pay back their liabilities. This value represents the regulatory measure.

Using this q̄i value, I had to simulate, using loops, the impact of regulating each bank, i.e., investing qi = q̄i,
on its bankruptcy cost. For this computation, I had to consider every possible case once each bank’s failure
affects all the other banks in the system differently, which required looping through each bank.

After performing these computations, I could determine the NFC for each bank as the difference in the total
bankruptcy costs in the scenarios where this bank changes investment or not.

Similarly, in order to compute BC, I simulated scenarios where each bank’s debt is cancelled one at a time.
By creating a matrix that cancels all possible debts of each bank in each round, this allows me to see the
effect of a bailout of each bank. Using loops to simulate the cancellation of debts for each bank in each
round, and iterating through all banks, I computed the BC for each institution.

You can find these procedures in the Appendix (Part II - R code for defining Financial Centrality Measures).

3 Results

In this section I present my preliminary results.
I start by showing the results of the estimated Financial Network created for the simulation on the financial
institutions data. After that, I present the results of the main model, i.e. what is the optimal regulation for
the banks simulated. In this part I also show the results comparing all the Financial Centrality Measures
computed. Finally, in the last part I present the results of stress tests simulations and how the contagious
effect affect the institutions.

3.1 Financial Network

As said before, usually one do not observe the real network, only the marginals (total assets and liabilities).
Thus, it is necessary to estimate the adjacency matrix before running the contagion simulations or calculating
other network measures. For this sense, I used the package created by Cinelli and Silva to compute the
minimum density estimation as proposed by Anand et al (2015).

This method takes into account the sparsity of interbank networks by estimating a network with the fewest
possible links that still satisfy a set of predetermined constraints. By doing so, it produces a more accurate
representation of the actual interbank network and can improve the accuracy of contagion simulations and
other risk assessments.
In Figure 3 it is possible to see the estimated interbank network.
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Figure 3: Estimated interbank network

As one can see, the resulting network is sparse and disassortative. In fact, the edge density returned 0.0201
while the assortativity degree returned -0.4422.

3.2 Optimal regulation decisions

After creating the adjacency matrix, the impact of a default in one bank on the others was computed, taking
into account the interbank network. Using this information, I computed the NFC and BC measures according
to the methodology explained in section 2.4.2. Finally, the optimal regulation decision was determined for
the simulated data, i.e. Regulate vs Bailout vs Laissez-faire. The results can be found in Table 1.

Table 1: Optimal regulation decisions

Optimal Frequence
bailout 13
laissez-faire 37
regulate 50

In Table 1, the results show that for the simulated data, the optimal decision would be to bailout 13 financial
institutions ex-post, regulate ex-ante 50, and adopt a laissez-faire approach for the remaining 37. As the
total number of banks simulated was 100, these values can be interpreted as percentages.

It is worth noting that the optimal regulation decision depends not only on the total number of banks in the
system, but also on the specific network structure and the degree of interdependence among the institutions.
In particular, a highly interconnected network with many strong links may require more stringent regulations
to prevent the spread of contagion in case of default.

Finally, it is also relevant to observe that the optimal decision varies greatly depending on the values of the
parameters used in the simulation. For example, different assumptions about the distribution of returns,
the level of risk aversion of the banks, and the magnitude of the fixed costs of bankruptcy can lead to
different results. Therefore, the analysis of the optimal regulation policy must take into account the specific
characteristics of the financial system under consideration.
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3.3 Stress Tests and Contagion Effects

In this section, I will be examining the outcomes of simulating contagion processes on the network.

To begin with, I will be scrutinizing the results of the linear propagation approach (DebtRank), which
operates on the assumption of a linear shock propagation. This means that if a bank undergoes a 10% loss
in its capital buffer, it will transmit losses equivalent to 10% of its debts to its creditors.

The outcomes for the top 10 banks with additional stress in this simulation are presented in Table 2.

Table 2: Propagation function: DebtRank (10 first)

Bank original_stress additional_stress original_losses additional_losses additional_defaults
64 26.93 50.02 107.99 779.33 66
49 3.59 34.62 23.88 102.60 24
74 4.49 26.55 53.36 95.43 19
25 2.80 23.78 35.60 61.37 16
96 3.88 22.98 53.91 80.68 14
67 0.39 22.69 0.82 22.48 12
39 1.87 21.38 4.53 61.81 10
31 1.44 21.37 17.13 33.12 14
32 0.28 21.23 1.39 15.93 10
57 0.24 21.23 2.50 16.55 10

These results indicate the potential impact of the default of individual banks on the overall financial system
under a linear shock propagation assumption.

For instance, let’s consider the outcomes for bank 64. Despite representing around 27% of the simulated
financial system, its default would result in an additional stress of 50% of the system under linear shock
propagation. This additional stress would lead to losses of $ 779.33 (billions of dollars, for example) and
cause the default of other 66 financial institutions. Similarly, bank 67, which constitutes only 0.39% of the
system, would result in an additional stress of almost 23% of the system or 14 other banks if it defaults.
These results suggest that the default of even small banks can have a considerable impact on the stability
of the overall financial system.

These results are also showed in Figure 4 where is possible to see the effects for all banks.
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Figure 4: Original Stress vs Additional Stress

It is possible to adopt alternative propagation methods that differ from the linear shock propagation assump-
tion. For instance, one alternative is to utilize a threshold-based approach, where a bank will not transmit
contagion unless it defaults.

The outcomes for the top 10 banks with additional stress in this simulation are presented in Table 3.

Table 3: Propagation function: Threshold (10 first)

Bank original_stress additional_stress original_losses additional_losses additional_defaults
64 26.93 47.94 107.99 722.38 61
49 3.59 24.56 23.88 82.18 16
74 4.49 22.28 53.36 86.03 15
96 3.88 20.70 53.91 77.06 13
15 0.53 16.93 0.78 12.28 9
28 0.22 16.18 0.45 12.87 9
69 0.78 15.40 0.80 11.70 8
87 1.02 15.40 1.18 18.09 8
56 1.54 15.40 0.51 9.46 8
39 1.87 14.86 4.53 50.76 4

While the top 3 banks with the highest additional stress may remain consistent with the DebtRank approach,
several other banks may show varying results under the threshold-based approach, suggesting that the two
methods generate different outcomes.

This highlights the importance of selecting an appropriate propagation method that aligns with the specific
characteristics of the financial system being analyzed, and the type of shock being studied. Furthermore,
using multiple propagation methods can provide a more comprehensive and robust analysis of the potential
contagion risk within the financial system.
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Apart from the aforementioned scenarios, I conducted simulations of arbitrary contagion scenarios. In this
particular case, I examined the impact of simultaneous stress shocks ranging from 1% up to 10% on all banks
in the system.
The results of this simulation can be seen in Table 4 and Figure 5.

Table 4: Arbitrary contagion scenarios

scenario additional_stress original_losses additional_losses additional_defaults
10 pct shock 41.77 36.79 173.27 46
9 pct shock 41.76 33.11 159.81 45
8 pct shock 41.72 29.44 146.18 45
7 pct shock 41.66 25.76 132.49 44
6 pct shock 41.60 22.08 118.78 44
5 pct shock 41.49 18.40 104.76 42
4 pct shock 41.21 14.72 89.57 41
3 pct shock 40.85 11.04 74.24 38
2 pct shock 39.74 7.36 57.82 31
1 pct shock 37.34 3.68 39.63 26
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Figure 5: Arbitrary contagion scenarios

In this example, a 10% shock in all banks results in an additional stress of 42% in the system, which is a
four-fold amplification of the initial shock.
This outcome suggests that the financial system may be highly vulnerable to contagion effects, particularly
under severe and simultaneous stress shocks. Such scenarios can trigger a cascade of defaults and amplify
losses, leading to significant disruptions in the financial system and potentially spilling over to the wider
economy.
It’s important to highlight the fact that these results might not be interpreted too literally and used as the
sole determinant of the systemic importance of a financial institution. The additional stress indicator, such

16



as the DebtRank, can serve as another measure of the institution’s systemic importance, but it should be
considered in conjunction with other factors, such as the institution’s size, interconnectedness, and criticality
to the overall functioning of the financial system.
To provide a more comprehensive assessment, I computed all these methods together and compared them
in Table 5.

Table 5: Ranking

DebtRank cascade degree eigen impd total_assets total_liabilities buffer BC NFC
64 1 1 1 1 1 87 1 1 1 2
49 2 2 5 11 6 24 3 5 3 1
74 3 3 7 23 5 85 2 3 6 4
25 4 10 8 15 20 80 6 4 4 6
96 5 4 8 34 22 79 4 2 2 8
67 6 25 11 31 41 33 20 27 10 12
39 7 8 11 36 23 66 5 10 8 3
31 8 16 9 43 15 35 7 6 9 10
32 9 15 12 49 21 65 26 20 10 12
57 9 15 12 54 21 97 23 14 10 11

In Table 5, I have presented all the centrality measures computed and ranked by the DebtRank. Although
some results are convergent, such as the fact that bank 64 is ranked first in 8 out of 10 measures, it is crucial
to note that it is not ranked first in a very important measure, which is the NFC. This fact underscores the
significance of combining different measures. By combining multiple measures of systemic importance, one
can obtain a more accurate and comprehensive perspective of the potential risks that individual financial
institutions pose to the stability of the financial system.

4 Conclusion and Future Research

This paper examines the relationship between Financial Networks and Systemic Risk by analyzing the
optimal regulation decisions of ex-ante regulation, ex-post bailouts, or laissez-faire approaches. The relevance
of the study lies in highlighting the importance of systemic risk in the present-day context, owing to the
increasing interconnectedness and complexity of financial systems, as well as the occurrence of significant
events such as the global financial crisis, COVID-19 pandemic, and SVB crises.
A methodology proposed by Jackson and Pernoud (2019) is applied to compute the optimal regulation deci-
sions using simulated data. The paper also compares various Financial Centrality Measures while assessing
contagion effects through stress simulations.
In addition to the findings presented in this paper, my primary focus for future endeavors is to obtain
relevant financial data from institutions to apply the methodology and measures computed in this study to
real-world scenarios. This will enable me to analyze past financial crises such as the 2008 crisis and determine
if regulators in the US or Europe acted in accordance with the theories expressed in the models used in this
study.
In addition to that, to further improve the study I intend to incorporate NFC and BC metrics in the stress
tests and simulations for contagious effects. Moreover, I aim to generate data simulations with different
distributions to to evaluate their impact on the results.
Finally, it is important to note that this is a work in progress, and many definitions and the code require
further revisions and optimization. Nevertheless, I aim to conduct sensitivity analysis to determine the
robustness of the results and investigate the effects of varying parameters on the outcomes. Overall, these
future endeavors are expected to contribute to the advancement of systemic risk analysis and the development
of effective policy-making measures.
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Appendix

Part I - R code for generating the data set

# Generate data
# Description: simulate data on financial institutions
# e.g. assets, liabilities, buffer, BS and CF
# Author: Wagner Eduardo Schuster (2023/03)

# cleaning
rm(list=ls());gc()
# setting work directory
setwd("~/QEM/BARCELONA/Networks/Paper")

# function to generate data (n = number of banks)
generate_financial_data <- function(n) {

# Set seed for reproducibility
set.seed(123)

# Generate random data for financial institutions
## Assets (fat-tailed using lognormal dist)
tot_assets <- rlnorm(n, 0, 2)

# fat-tailed liabilities
tot_liabilities <- rlnorm(n, 0, 2)

# guaranteeing tot_assets = tot_liabilities
tot_assets <- sum(tot_liabilities) * (tot_assets/sum(tot_assets))

# Buffer (capital) as a function of liabilities
buffer <- runif(length(tot_liabilities))*tot_liabilities

# Weights (balance sheet) as a function of assets, buffer and liabilities
weights <- (tot_assets + tot_liabilities + buffer + 1) + rlnorm(n, 0, 1)

# Cash flow (5 years)
## risk-free
library(FinCal)
### interest rate
## try with positive return...
## (at least pay back your liabilities + random positive return)
r_riskfree <- 0.05 * runif(n,1,1.02)

### calculate the fixed payment amount using the pmt() function
cf_riskfree <- -pmt(r_riskfree, 5, tot_liabilities,0)

## risky
cf_year1 <- rnorm(n, mean = cf_riskfree, sd = cf_riskfree/5)
cf_year2 <- rnorm(n, mean = cf_riskfree, sd = cf_riskfree/5)
cf_year3 <- rnorm(n, mean = cf_riskfree, sd = cf_riskfree/5)
cf_year4 <- rnorm(n, mean = cf_riskfree, sd = cf_riskfree/5)
cf_year5 <- rnorm(n, mean = cf_riskfree, sd = cf_riskfree/5)
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# share invested in risky assets (q)
q <- runif(n, 0, 1)
# random change in share invested in risky assets (q)
# Q_PRIME >= Q
q_prime <- runif(n, q, 1)

# share assets lost in case bankruptcy (a)
# 0 < a < 1
a <- runif(n, 0, 1)

# fixed cost in case bankruptcy (b)
# b > 0
b <- rlnorm(n, 0, 1)

# Create data frame
data <- data.frame(

institution_id = 1:n,
total_assets = tot_assets,
total_liabilities = tot_liabilities,
buffer = buffer,
weights = weights,
cf_riskfree = cf_riskfree,
cf_year1 = cf_year1,
cf_year2 = cf_year2,
cf_year3 = cf_year3,
cf_year4 = cf_year4,
cf_year5 = cf_year5,
q = q,
a = a,
b = b,
q_prime = q_prime

)

# Return data
return(data)

}

data <- generate_financial_data(100)

# save data
write.csv2(data,"Data/data.csv")

Part II - R code for defining Financial Centrality Measures

# Financial centrality measures
# Description: compute financial centrality measures
# e.g. NFC and BC. also the standard ones: eigen, degree, closeness, etc
# Author: Wagner Eduardo Schuster (2023/03)

# cleaning
rm(list=ls());gc()
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# setting work directory
setwd("~/QEM/BARCELONA/Networks/Paper")

# load data
data <- read.csv2("Data/data.csv")
data <- data[,-1]

# Loads the package
library(NetworkRiskMeasures)
# Minimum Density Estimation
set.seed(192) # seed for reproducibility
MD <- matrix_estimation(rowsums = data$total_assets, colsums = data$total_liabilities

, method = "md")

# rownames and colnames for the matrix
rownames(MD) <- colnames(MD) <- data$institution_id

# graph
library(ggplot2)
library(ggnetwork)
library(igraph)

# converting network to igraph object
gmd <- graph_from_adjacency_matrix(MD, weighted = T)

# adding other node attributes to the network
V(gmd)$buffer <- data$buffer
V(gmd)$weights <- data$weights/sum(data$weights)
V(gmd)$assets <- data$total_assets
V(gmd)$liabilities <- data$total_liabilities

# ploting with ggplot and ggnetwork
set.seed(20)
netdf <- ggnetwork(gmd)

ggplot(netdf, aes(x = x, y = y, xend = xend, yend = yend)) +
geom_edges(arrow = arrow(length = unit(6, "pt"), type = "closed"),

color = "grey50", curvature = 0.1, alpha = 0.5) +
geom_nodes(aes(size = weights)) +
ggtitle("Estimated interbank network") +
theme_blank()

# network density
edge_density(gmd)

# assortativity
assortativity_degree(gmd)

# Traditional centrality measures, impact susceptibility and impact diffusion
data$degree <- igraph::degree(gmd)
data$btw <- igraph::betweenness(gmd)
data$close <- igraph::closeness(gmd)
data$eigen <- igraph::eigen_centrality(gmd)$vector
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data$alpha <- igraph::alpha_centrality(gmd, alpha = 0.5)

# The impact susceptibility and impact diffusion
data$imps <- impact_susceptibility(exposures = gmd, buffer = data$buffer)
data$impd <- impact_diffusion(exposures = gmd, buffer = data$buffer, weights = data$weights)$total

# NPV (risk-free and risky) considering no bank default
library(FinancialMath)
NPV_riskfree <- NA
NPV_risky <- NA
for (bank in 1:length(data$institution_id)){

NPV_riskfree[bank] <- NPV(data$total_liabilities[bank],c(rep(data$cf_riskfree[bank],5)),1:5,i=0.05)
NPV_risky[bank] <- NPV(data$total_liabilities[bank],as.numeric(data[bank,7:11]),1:5,i=0.05)

}

## add to the data
data$NPV_riskfree <- NPV_riskfree
data$NPV_risky <- NPV_risky

## total NPV
data$NPV <- data$NPV_risky*data$q + data$NPV_riskfree*(1-data$q)

# APPLY DEFAULT OF OTHER BANKS IN THE NPV
data$debt <- data$total_assets + data$NPV - data$total_liabilities
## keep only negative values (positive are not debt) and turn positive
data$debt <- ifelse(data$debt>0,0,-data$debt)

# create matrix of weights (for liabilities: all columns will sum up to 1)
# proportion the liabilities of bank i are divided among all other banks
W_MD <- MD
for (c in 1:ncol(MD)){

for (r in 1:nrow(MD)){
W_MD[r,c] <- MD[r,c] / sum(MD[,c])

}
}

# now if there is a debt it will be spread accordingly to these weights...
matrix_debt <- MD
for (c in 1:ncol(MD)){

for (r in 1:nrow(MD)){
matrix_debt[r,c] <- W_MD[r,c] * data$debt[c]

}
}

# sum up values of each columns
total <- rowSums(matrix_debt)
matrix_debt <- cbind(matrix_debt,total)

# take out from NPV (banks will not receive if default)
matrix_debt <- as.data.frame(matrix_debt)
data$NPV_new <- data$NPV - matrix_debt$total

# BAILOUT COST
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## Calculate the liquidation value of the institution
data$liquidation_value <- data$total_assets - data$total_liabilities
## Calculate the estimated bailout cost (account for part recoverable bailout)
data$bailout_cost <- data$liquidation_value + data$NPV_new
data$bailout_cost <- -data$bailout_cost

# BANKRUPTCY COST
## bankruptcy cost would be lose fraction a of all the assets + "b" (additional fixed cost)
## need also to be a function of NPV (for the q)
data$bankruptcy_costs <- data$b + data$a * (data$total_assets + data$NPV_new)

# discontinous function (see Pernoud p. 6)
data$bankruptcy_costs <- ifelse(data$NPV_new + data$liquidation_value<0,

data$bankruptcy_costs,0)

# LOOPS FOR NFC AND BC
# create bankruptcy_prime to collect all these values
bankruptcy_prime <- as.data.frame(matrix(NA, nrow(data), nrow(data)))
for (i in 1:nrow(data)){

## NPV prime
### same for j (all banks but i)
data$NPV_prime <- data$NPV
### NPV_prime for bank i
data$NPV_prime[i] <- ( data$NPV_risky[i]*data$q_prime[i]

+ data$NPV_riskfree[i]*(1-data$q_prime[i]) )

## APPLY DEFAULT OF OTHER BANKS IN THE NPV
data$debt_prime <- data$total_assets + data$NPV_prime - data$total_liabilities
## keep only negative values (positive are not debt) and turn positive
data$debt_prime <- ifelse(data$debt_prime>0,0,-data$debt_prime)

# use same matrix of weights (W_MD)
# now if there is a debt it will be spread accordingly to these weights...
matrix_debt_prime <- MD
for (c in 1:ncol(MD)){

for (r in 1:nrow(MD)){
matrix_debt_prime[r,c] <- W_MD[r,c] * data$debt_prime[c]

}
}

# sum up values of each columns
total_prime <- rowSums(matrix_debt_prime)
matrix_debt_prime <- cbind(matrix_debt_prime,total_prime)

# take out positive values (no impact) and change sign others
matrix_debt_prime <- as.data.frame(matrix_debt_prime)
# take out from NPV
data$NPV_prime_new <- data$NPV_prime - matrix_debt_prime$total_prime

# bankruptcy cost
# need also to be a function of NPV (for the q)
bankruptcy_prime[,i] <- ( data$b + data$a *

(data$total_assets + data$NPV_prime_new) )
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# discontinous function (see Pernoud pag 6)
bankruptcy_prime[,i] <- ifelse(data$NPV_prime_new + data$liquidation_value<0

,bankruptcy_prime[,i], 0)
}

# NFC - Net Financial Centrality
for (i in 1:nrow(data)){

data$NFC[i] <- ( (sum(data$bankruptcy_costs) - data$bankruptcy_costs[i])
-(sum(bankruptcy_prime[,i]) - bankruptcy_prime[i,i]) )

}

# LOOP: take out effects of debt in bank i
bailout <- as.data.frame(matrix(NA, nrow(data), nrow(data)))
# create bailout to collect all these values
# it will receive the bankruptcy cost considering effects on bailout
for (i in 1:nrow(data)){

# now if there is a debt it will be spread accordingly to these weights...
# need to spread but taking out the effects of debts from bank i
matrix_debt_bailout <- MD
for (c in 1:ncol(MD)){

for (r in 1:nrow(MD)){
matrix_debt_bailout[r,c] <- W_MD[r,c] * data$debt[c]

}
}

# erase the debt of bank i (like bailout it...)
matrix_debt_bailout[,i] <- 0
total_bailout <- rowSums(matrix_debt_bailout)

matrix_debt_bailout <- cbind(matrix_debt_bailout,total_bailout)

# take out from NPV
matrix_debt_bailout <- as.data.frame(matrix_debt_bailout)
data$NPV_bailout <- data$NPV - matrix_debt_bailout$total_bailout

# bankruptcy cost
# need also to be a function of NPV (for the q)
bailout[,i] <- ( data$b + data$a *

(data$total_assets + data$NPV_bailout) )
# discontinous function (see Pernoud pag 6)
bailout[,i] <- ifelse(data$NPV_bailout + data$liquidation_value<0

,bailout[,i], 0)
}

# BC - Bailout Centrality
for (i in 1:nrow(data)){

data$BC[i] <- ( (sum(data$bankruptcy_costs) - data$bankruptcy_costs[i])
- (sum(bailout[,i]) - bailout[i,i]) )

}

# define q_bar
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# formula: 1 - (D / (1+r)) i.e. debt / return_risk_free
data$q_bar <- 1 - data$total_liabilities / (data$total_liabilities + data$NPV_riskfree)

# then compute NFC between q and q_bar. but instead of q, is (q_{-i},1). Everybody else
# invest q but bank i invest 1

# LOOP
# create bankruptcy_prime to collect all these values
bankruptcy_bar <- as.data.frame(matrix(NA, nrow(data), nrow(data)))
for (i in 1:nrow(data)){

## NPV bar
### same for j (all banks but i)
data$NPV_bar <- data$NPV
### NPV_bar for bank i
data$NPV_bar[i] <- (data$NPV_risky[i]*data$q_bar[i]

+ data$NPV_riskfree[i]*(1-data$q_bar[i]) )

## APPLY DEFAULT OF OTHER BANKS IN THE NPV
data$debt_bar <- data$total_assets + data$NPV_bar - data$total_liabilities
## keep only negative values (positive are not debt) and turn positive
data$debt_bar <- ifelse(data$debt_bar>0,0,-data$debt_bar)

# use same matrix of weights (W_MD)
# now if there is a debt it will be spread accordingly to these weights...
matrix_debt_bar <- MD
for (c in 1:ncol(MD)){

for (r in 1:nrow(MD)){
matrix_debt_bar[r,c] <- W_MD[r,c] * data$debt_bar[c]

}
}

# sum up values of each columns
total_bar <- rowSums(matrix_debt_bar)
matrix_debt_bar <- cbind(matrix_debt_bar,total_bar)

# take out from NPV
matrix_debt_bar <- as.data.frame(matrix_debt_bar)
data$NPV_bar_new <- data$NPV_bar - matrix_debt_bar$total_bar

# bankruptcy cost
# need also to be a function of NPV (for the q)
bankruptcy_bar[,i] <- ( data$b + data$a *

(data$total_assets + data$NPV_bar_new) )
# discontinous function (see Pernoud p. 6)
bankruptcy_bar[,i] <- ifelse(data$NPV_bar_new + data$liquidation_value<0

,bankruptcy_bar[,i], 0)
}

# NFC - Net Financial Centrality
for (i in 1:nrow(data)){

# data$NFC[i] <- -sum(data$bankruptcy_costs) - sum(bankruptcy_prime[,i])
data$NFC_bar[i] <- ( (sum(data$bankruptcy_costs) - data$bankruptcy_costs[i])

-(sum(bankruptcy_bar[,i]) - bankruptcy_bar[i,i]) )
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}

# define thresholds
data$optimal <- ifelse(data$bailout_cost >= data$BC

,ifelse( (data$NPV_risky/data$NPV_riskfree - 1)*data$total_liabilities
<= data$NFC_bar, "regulate", "laissez-faire"), "" )

data$optimal <- ifelse(data$bailout_cost < data$BC
,ifelse( (data$NPV_risky/data$NPV_riskfree - 1)*data$total_liabilities

+ data$NFC_bar - data$bailout_cost <= data$NFC_bar
, "regulate", "bailout"), data$optimal )

# count
table(data$optimal)

# save tables
write.csv2(data, "Data/data_fin_cent.csv")
write.csv2(MD, "Data/MD.csv")

Part III - R code for compute Stress Tests and Contagion Effects

# Stress
# Description: compute stress measures and contagious
# Author: Wagner Eduardo Schuster (2023/03)

# cleaning
rm(list=ls());gc()
# setting work directory
setwd("~/QEM/BARCELONA/Networks/Paper")

# load data
data <- read.csv2("Data/data_fin_cent.csv")
data <- data[,-1]
MD <- read.csv2("Data/MD.csv")
MD <- MD[,-1]

# DebtRank simulation
contdr <- contagion(exposures = MD, buffer = data$buffer, weights = data$weights,

shock = "all", method = "debtrank", verbose = F)
summary(contdr)

contdr_summary <- summary(contdr)
data$DebtRank <- contdr_summary$summary_table$additional_stress

# Traditional default cascades simulation (THRESHOLD)
contthr <- contagion(exposures = MD, buffer = data$buffer, weights = data$weights,

shock = "all", method = "threshold", verbose = F)
summary(contthr)

# save results
contthr_summary <- summary(contthr)
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data$cascade <- contthr_summary$summary_table$additional_stress

# Rankings
rankings <- data[1] # institution id
# add other measures
rankings <- cbind(rankings, data[

c("DebtRank","cascade","degree","eigen","impd","total_assets", "total_liabilities"
,"buffer","BC","NFC_bar")])

# take abs for BC and NFC
rankings$BC <- abs(rankings$BC)
rankings$NFC <- abs(rankings$NFC_bar)
rankings$NFC_bar <- NULL
# rank values
rankings2 <- as.data.frame(lapply(rankings,function(x) as.numeric(factor(-1*x))))
rankings2 <- rankings2[order(rankings2$DebtRank), ]
head(rankings2, 10)

#And the cross-correlations between the metrics:
cor(rankings[-1])

# Simulating arbitrary contagion scenarios
s <- seq(0.01, 0.10, by = 0.01)
shocks <- lapply(s, function(x) rep(x, nrow(MD)))
names(shocks) <- paste(s*100, "pct shock")

cont <- contagion(exposures = gmd, buffer = data$buffer, shock = shocks, weights = data$weights
, method = "debtrank", verbose = F)

summary(cont)

plot(cont, size = 2.2)
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