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Abstract

The existence of menu costs of price adjustment is one of the leading explanations for
the delayed response of prices to changes in economic conditions. This paper investigates
the relationship between menu costs of price adjustment at the micro level and aggregate
inflation dynamics. For that purpose, it introduces a measure of frictionless inflation that
estimates counterfactual inflation in the absence of menu costs. The measure is based on
a novel smoother for a state-space representation that describes pricing dynamics at the
micro level as implied by a random menu cost model. Combining the smoother with rich
micro price data underlying the UK CPI, I produce a measure of frictionless inflation for
the UK at a monthly frequency from 1997 to 2018. The analysis of that measure yields
three main findings: (i) menu costs matter for aggregate inflation dynamics, but their
importance decreased over time; (ii) the response of frictionless inflation to a monetary
policy shock is at odds with the monetary transmission mechanism from the basic new
Keynesian model and (iii) frictionless inflation contains useful information to forecast CPI

inflation.
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1 Introduction

The idea that prices adjust sluggishly to changes in economic conditions lies at the heart of
the new Keynesian framework that has emerged as the workhorse for the analysis of monetary
policy and its implications for inflation, economic fluctuations and welfare (Woodford, 2003;
Gali, 2008). One explanation for the delayed response of prices to shocks is the existence of
menu costs; that is, the existence of costs that have to be incurred whenever prices are changed,
independently of the size of the change.! In the presence of menu costs, price changes will only
occur when the resulting increase in profits is sufficiently large to outweigh the associated costs
(Mankiw, 1985). In addition to their intuitive appeal, so-called menu cost models are also
consistent with some of the stylised facts about price setting observed in micro price data
(Klenow and Malin, 2010; Nakamura and Steinsson, 2008, 2013).

This paper evaluates the importance of menu costs at the micro level for aggregate inflation
dynamics. In order to do that, the main challenge is to construct a measure of the aggregate
inflation that would have been observed in the counterfactual scenario where all the price-
setters in the economy were subject to the same economic conditions but could change their
prices without incurring in menu costs. Under the assumption that menu costs are the only
friction in firms’ pricing decisions, this measure is equivalent to the inflation that would result
from price setters charging a sequence of prices that maximise their profits period by period. I

label that measure frictionless inflation.?

The first contribution of this paper is to provide a methodology that allows the estimation of
frictionless inflation at the quote-line level using only information contained in observed prices.
The fundamental insight underlying this methodology is to think about individual inflation
as an imperfect measurement of frictionless inflation that is observed in the data because of
the existence of menu costs. More formally, this methodology is based on a nonlinear and
non-Gaussian state-space representation of pricing dynamics at the microeconomic level that is
microfounded by a random menu cost model (Stokey, 2009; Alvarez, Bihan and Lippi, 2016). In
that representation, the problem of estimating frictionless inflation is tantamount to obtaining

the smoothed estimates of an unobserved state variable. Under a set of assumptions about

IThe classic example of menu costs of price adjustment is the problem of a restaurant owner that has to
print new menus whenever the price of an item is changed. In a broader sense, menu costs can be thought of
as resulting from costs of information, decision and implementation of a pricing strategy.

2] am not the first to use this terminology. The price that maximise firm’s profits in the absence of
price adjustment frictions have received different labels in the literature, such as, frictionless profit-maximising
prices (Alvarez, Bihan and Lippi, 2016), frictionless optimum (Midrigan, 2011, figure 3) or static desired price
(Nakamura and Steinsson, 2010, figure 4). In a related paper, Bonomo, Correa and Medeiros (2013) using a
different methodology also produce a measure of frictionless optimal price inflation for Brazil. Further discussion
in the literature review.

3In a broad sense, the notion of “frictionless” is necessarily dependent on which frictions are present in the
model chosen to characterise price setting decisions. This paper studies price setting decisions as implied by
a random menu cost model in which the only mechanism preventing price adjustment is the presence of menu
costs. Therefore, the notion of frictionless here adopted is with respect to one particular friction, menu costs,
and not to other frictions that have been proposed in the literature such as sticky-information (Mankiw and
Reis, 2002) or information capacity constraints (Woodford, 2009).



processes governing the evolution of the unobserved state variables, I show that, despite the
“kinks” in the system induced by the presence of menu costs, the smoothing problem can be
solved in closed form. The methodology introduced here is transferrable to other contexts where
fixed costs of adjustment have been used to justify the empirical “lumpiness” of microeconomic
dynamics and the optimal policies are characterised by an inaction region and a single reset

point. Examples include cash balances, investment and employment.*

The second contribution is to provide a measure of frictionless inflation for the UK at a
monthly frequency from 1997 to 2018. To construct this measure, I combine the above method-
ology with micro-price data underlying the UK Consumer Price Index (CPI). The final dataset
contains over 23 million quote-lines and over 2.2 million unique-price trajectories and, most im-
portantly, contains price quotes of products representative of all broadly defined consumption
categories except for education. Those prices are collected in thousands of outlets across the

UK and cover between 55% to 65% of the published CPI by weight.

In terms of findings, first and foremost, I find that menu costs at the microeconomic level
matter for aggregate inflation dynamics. I find, however, that the extent to which menu costs
matter for aggregate inflation dynamics decreased over time. This conclusion is based on three
key observations. First, at any point in time the comparison of frictionless inflation with
its regular price inflation counterpart shows that the presence of menu costs can account for
a difference of up to 2.29 percentage points on year over year inflation. Second, the time-
series of frictionless inflation and regular price inflation co-move positively but not perfectly so
(correlation of 0.83 over the whole sample). Third, consistent with a decrease in the importance
of menu costs in more recent periods, the differences between the two time-series decreases,

whereas their correlation increases in the second half of the sample.

The constructed time-series of frictionless inflation is then used to test two predictions from
the basic new Keynesian model in Gali (2008). First, the model predicts that the difference
between regular price inflation and frictionless inflation (the inflation wedge) should be neg-
atively correlated with changes in the output gap. Second, in response to a monetary policy
shock, frictionless inflation should decrease more than regular price inflation upon impact of
the shock and less in subsequent periods. In the data, I find that the co-movement between
the inflation wedge and changes in the output gap is in line with the new Keynesian model
predictions, but the responses to monetary policy shocks are not. In particular, and in contrast
with the monetary policy transmission mechanism in the basic New Keynesian model, I find
that frictionless inflation does not react significantly to monetary policy shock at any horizon

up to 3 years.

Finally, I investigate to what extent the constructed measure of frictionless inflation contains

information that could be used to improve the forecasts of published CPI inflation. In particular,

4A non-exhaustive list includes: Miller and Orr (1966), Frenkel and Jovanovic (1980), Alvarez and Lippi
(2009) on cash balances; Dixit and Pindyck (1994), Caballero, Engel and Haltiwanger (1995) on investment;
Caballero, Engel and Haltiwanger (1997), Elsby and Michaels (2019) on employment.



I revisit the forecasting exercise of Blinder and Reis (2005) and compare forecasts from a linear
forecasting regression that uses only the information on past inflation with forecasts from
a regression that also combines information on past inflation and past frictionless inflation.
At different forecasting horizons, I find evidence that frictionless inflation can contain useful

information to forecast published inflation both in sample and out-of-sample.

Relation to the literature This paper relates to four strands of literature. First, it relates to
a literature quantifying the size of price adjustment costs and their importance for individual
pricing decisions (Levy, Bergen, Dutta and Venable, 1997; Blinder, Canetti, Lebow and Rudd,
1998; Dutta, Bergen, Levy and Venable, 1999; Zbaracki, Ritson, Levy, Dutta and Bergen, 2004;
Anderson, Jaimovich and Simester, 2015). It contributes to this literature in two fundamental
ways. First, in contrast with previous papers that have focused on quantifying the costs of
price adjustments, this paper focuses not on the size of menu costs per se but on their influence
on aggregate inflation dynamics. In spirit, this approach is similar to Gorodnicheko and Weber
(2016) who focus on the implications of menu costs for the responses of the stock market returns
of different firms to a monetary policy surprise. The second contribution is in terms of scope,
since my measure of frictionless inflation is based on prices of hundreds of different products
that are representative of the typical basket of consumer goods and were collected in thousands
of outlets across the UK. This contrasts with the existing literature that relies on very detailed

micro data that covers a limited set of products or store chains.

Second, it connects with other papers that have estimated closely related measures of in-
flation, most notably, the reset price inflation from Bils, Klenow and Malin (2012) and the
frictionless optimal price inflation from Bonomo, Correa and Medeiros (2013). In a context
where price-setters follow Ss pricing rules, as it will be assumed in section 2, all these three
measures are theoretically equivalent.® Having said that, this paper differs and complements
Bils, Klenow and Malin (2012) and Bonomo, Correa and Medeiros (2013) in three dimensions.
First, the methodology used to construct my measure of frictionless inflation is diametrically
different from the existing ones. Second, I use micro price data underlying the UK CPI, whilst
Bils, Klenow and Malin (2012) use US CPI micro data and Bonomo, Correa and Medeiros
(2013) use Brazilian CPI micro data. Third, the measures of inflation in Bils, Klenow and Ma-
lin (2012) and Bonomo, Correa and Medeiros (2013) are used to test implications from different
models of price rigidities whereas in my case the estimated measure of frictionless inflation is
the key counterfactual of interest to evaluate the impact of menu costs on aggregate inflation

dynamics.

5My measure of frictionless inflation is conceptually equivalent to the frictionless optimal price inflation
from Bonomo, Correa and Medeiros (2013), that is, the inflation that would be observed in the counterfactual
scenario where all price-setters chose the prices that maximise their static profits period by period. That
measure is conceptually different from the reset price inflation. In the words of Bils, Klenow and Malin (2012,
p. 2803), “[...] new prices need not be viewed as frictionless spot prices. If future spot prices are expected
to differ from the current spot price, then a newly set price may be influenced by future expected spot prices.
Thus, reset price inflation can deviate from spot price inflation.”. However, if price-setters follow Ss pricing
rules, then frictionless prices and reset prices will differ by a constant and, hence, frictionless inflation and reset
price inflation coincide. This point is also made in Bonomo, Correa and Medeiros (2013, pp. 19-20).

5The key focus of the methodology introduced in Bonomo, Correa and Medeiros (2013) is the estimation of
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Third, the proposed state-space representation of pricing dynamics at the individual level
is microfounded by a random menu cost model (Dotsey, King and Wolman, 1999; Caballero
and Engel, 2007; Stokey, 2009; Nakamura and Steinsson, 2010; Costain and Nakov, 2011a,b;
Alvarez, Bihan and Lippi, 2016) which is estimated allowing for rich parameter heterogeneity
in order to account for the observed heterogeneity in pricing moments across goods (Carvalho,
2006; Nakamura and Steinsson, 2010; Gautier and Bihan, 2018). This paper contributes to this
class of models by developing a methodology that allows the estimation of frictionless inflation
based only on the information contained in the observed price spells. As I shall discuss in section
2, this methodology can be applied to other contexts that are characterised by the presence of
fixed adjustment costs and “lumpy” microeconomic adjustments, such as, the demand for cash
(Miller and Orr, 1966; Frenkel and Jovanovic, 1980), investment (Caballero and Engel, 1999;
Baley and Blanco, 2019) and labor adjustment (Caballero, Engel and Haltiwanger, 1997; Elsby
and Michaels, 2019).

Finally, this paper also relates to a vast literature on filtering and smoothing in nonlinear and
non-Gaussian state-space representations. The intersection of this literature with macroeco-
nomics is mostly confined to the estimation of nonlinear DSGE models (Herbst and Schorfheide,
2015), but it has applications to a wide array of problems across different fields such as GPS
tracking, brain imaging, audio signal processing and autonomous navigation.” In linear and
Gaussian state-space representations filtering and smoothing problems can be solved in closed
form (Kalman, 1960; Rauch, Tung and Striebel, 1965). However, for nonlinear non-Gaussian
state-space representations filtering and smoothing problems in general do not admit closed
form solutions and require the use of some form of numerical approximation.® Building from
the forward filtering-backward smoothing recursion techniques presented in Kitagawa (1987,
1994, 1996), this paper contributes to the existing literature by deriving a closed-form solution
for the filtering and smoothing problems in a particular state-space representation that is con-
sistent with the optimal pricing dynamics implied a random menu cost model. The reduction
in computational burden from having closed form solutions allows me to solve the smoothing

problem for each of the millions of individual quote-lines underlying the construction of the UK

CPL

Structure of the paper The remainder of the paper is structured as follows. Section 2 in-
troduces a state-space representation of pricing dynamics at the microeconomic level. Section

3 starts from that representation and presents a methodology to estimate frictionless inflation

strategic complementarities and the measure of frictionless optimal price inflation and it’s subsequent analysis
are produced as a by-product of their main exercise.

"Some applications of filtering and smoothing problems and underlying references are presented in Sirkki
(2013, chapter 1) and in Chen (2003, section VIII).

8The literature on different methods is large and it includes: extended Kalman filters and smoothers, the
unscented Kalman filters and smoothers, grid based approximation methods, sequential Monte Carlo methods
or particle filters and smoothers. All these methods are presented in Sirkka (2013). A good survey of particle
filters in particular is Doucet and Johansen (2011). Some of these methods in the literature are not suitable
for my application as they require differentiability of the measurement equation (e.g. filters and smoothers of
the extended Kalman family). Others can require a prohibitive computational time to implement at the scale
necessary to re-construct the whole CPI (e.g. particle filters).



from observed quote-lines. Section 4 illustrates the properties of the proposed methodology
through a Monte Carlo experiment. Section 5 describes the micro price data used to construct
the measure of frictionless inflation for the UK. Section 6 discusses the parameter estimates,
the model fit and the dynamics of frictionless inflation for the UK from 1997 to 2018. Sec-
tion 7 uses the constructed measure of frictionless inflation to test two predictions from the
basic new Keynesian model. Section 8 investigates whether frictionless inflation contains useful

information to forecast actual published inflation. Section 9 concludes.

2 The microeconomic dynamic of prices with menu costs

This section derives a state-space representation of pricing dynamics at the microeconomic
level. That representation will be foundational for the estimation of frictionless inflation and
it must satisfy three requirements. First, it has to be consistent with the theoretically implied
optimal pricing policy of a price-setter that faces fixed adjustment costs. Second, as a data
generating process for a large number of quote-lines it has to be flexible enough to match the
main facts about prices observed in the micro price data. Third, it has to provide a connection
between the evolution of the observed price inflation and the unobserved frictionless inflation

that is the ultimate object of interest.

2.1 Microfoundation: a random menu cost model

The microfoundation for the state-space representation of pricing here proposed is a random
menu cost model. The main feature that distinguishes a random menu cost model from a
“canonical” menu cost model (Barro, 1972; Sheshinski and Weiss, 1977, 1983; Golosov and
Lucas, 2007) is that the size of the menu cost is allowed to stochastically change over time.
The class of random menu cost models is here preferred over its canonical counterpart because
the later cannot generate the large number of small price changes that is observed in micro price
data (Midrigan, 2011). By adding the possibility that the menu costs change over time, the
class of random menu cost models, also known as second-generation state-dependent models,
has more flexibility to match the shape of the distribution of price changes observed in the data

and, in particular, the large number of small price changes (Klenow and Kryvstov, 2008).°

9 Adding the possibility that menu costs change stochastically over time is not the only way of matching the
shape of the distribution of price changes observed in the micro price data. Building on the empirical evidence
from Lach and Tsiddon (2007), Midrigan (2011) introduced economies of scope in price setting in a general
equilibrium framework by considering a setting where multi-product firms pay a single fixed cost to re-price all
of their goods. He shows that not only his model can better fit the features of the micro price data than Golosov
and Lucas (2007) but also has different implications for the real effects of monetary policy. Alvarez et al. (2016)
combine multi-product firms with a random menu cost and argue that that combining these two features is
important to match the shape of the distribution of price changes observed in their data, in particular, the
positive excess kurtosis. In this paper, the random menu cost model for a single product is chosen instead of a
multi-product for two fundamental reasons. First and foremost, the micro price data underlying the CPI that
is used here contains typically the quote-line of one particular item sold in a particular outlet and, although the
outlet itself can be viewed as a multi-product firm, the data collected is typically for one single item and not
for all the products sold in the outlet. Second, the presence of multiple products would necessarily increase the
dimensionality of the state-space representation making it intractable for the propose of non-linear smoothing
and filtering.



Since Dotsey, King and Wolman (1999), different variants of the random menu cost model
have been used in the literature.!® Because of its tractability and transferability, I choose

environment presented in Stokey (2009) and Alvarez, Bihan and Lippi (2016).

Environment Consider a firm that sells a single good and chooses its prices to maximize the
expected discounted value of its profit flows. Time is continuous and discounted at a constant
rate r. To change prices the firms must pay an adjustment cost. In a period of length dt that
cost is equal to a positive constant ¢ with probability 1 — Adt or zero with probability Adt. Let
p: denote the log of the nominal price and p; denote the log of the frictionless price, that is, the
log of the price that would maximize the firm’s instantaneous flow of profits. It is assumed that
p; follows a brownian motion with drift, that is, dp; = pudt + odW, where dW, is the increment
to a standard Wiener process. Define the price gap as ; = p; —p;. It is assumed that the profit
flow of the firm can be written as I1(Z;; 1), where ¢ is a vector of structural parameters that
characterise the shape of the profit function. Finally, it is assumed that II(-; %) is continuous,

strictly increasing in (—o0,0) and strictly decreasing in (0, +00).

In this environment, the optimal pricing policy is fully characterized by an inaction region
(b, B) and a return point S € (b, B). The optimal pricing behavior is given by two cases. First,
upon arrival of a free adjustment opportunity, change nominal prices such that the price gap
equals the return value. Second, if prices cannot be changed costlessly, pay the adjustment cost
to reset the price gap to the return value only if the current price gap is outside the inaction

region, otherwise, do not change prices.!!

2.2 A state-space representation of price setting

Given the optimal pricing behavior implied the random menu cost model environment, a three
equation state-space representation of the pricing dynamics is proposed. The first equation is
the measurement equation that describes the evolution of cumulated price inflation (observable)
as a function of two unobservable states, namely, cumulated frictionless price inflation and
the arrival of costless adjustment opportunities. The remaining two equations are transition
equations that describe the evolution of the unobserved states.'? Before discussing each of these

equations, it is necessary to define some variables and notation.

10Some examples include Caballero and Engel (2007), the smoothly state-dependent pricing model of Costain
and Nakov (2011a,b) and the CalvoPlus model in Nakamura and Steinsson (2010).

HFor a formal proof, refer to chapter 7 in Stokey (2009). In particular, propositions 7.1 to 7.3 and the
extension to include random opportunities of costless adjustment in section 7.5.

12The reason why the state-space representation is cast in terms of cumulated inflation and cumulated
frictionless inflation and not in terms of prices and frictionless prices is the lack of parameter identification in
the representation in levels. In a separate note, I formally study parameter identification through moments of
the distribution of price changes in the context of the random menu cost model in Alvarez, Bihan and Lippi
(2016) that underlies the state-space representation of pricing here proposed. On the one hand, I show that
the return point S is not locally identified through any subset of commonly used moments of the distribution
of price changes. On the other hand, the differences (S — B) and (S — b) and the remaining parameters (u, o
and \) are locally identified as long as the frequency of price changes is included in the set of moments used for
estimation. Expressing the dynamics of pricing through the cumulated inflation and its frictionless counterpart
allows me to estimate only parameters that are locally identified in that representation.



Definitions and notation In the data, each firm is equivalent to a quote-line which is uniquely
identified by a triplet of subscripts (i, 7,t) where ¢ refers to a particular outlet, j a particular
product and ¢ a month. The optimal inaction region for a given quote-line is given by (b; ;, B ;)
and the optimal return point by .S; ;. The cumulated inflation at the quote-line level is defined
as Z; ji+ = Dijt—Dijo Where p; ;o is the (log of) the initial price for that quote-line. Analogously,
the cumulated frictionless inflation is defined as Z;;, = p;;, — p; ;o Where pj, is the (log of)
the initial frictionless price for that quote-line. Notice that by construction Z; ;o = Z;,, = 0.
Define the re-centred price gap as ;;+ = p;j: — p;;, — Si; and the re-centred inaction region
as (z;;,%;;) where z; ; = b; j — S; j and 7, ; = B; ; — S; ;. Henceforth, price gap implicitly refers
to the re-centred price gap and inaction region refers to the re-centred inaction region. Note
+ ;0. Finally, let L; ;, be

that using the definitions above one can write z; ;; = Z; j — Z7;,

an indicator variable equal to one if prices can be changed for free.

The measurement equation The dynamics of cumulated inflation is given by:

*
Zije = Zijt-1 dige + (275, —xigo) (1 —dijy) (1)
—— ~—_——
Cumulated Value of cumulated
inflation inflation that closes the
if price is price gap
unchanged

where d;;, is an indicator variable equal to one when not changing the prices is optimal.
Whether inaction is optimal depends on the cumulated frictionless inflation and the arrival of

costless adjustment opportunities,

dije = W Zijo1 — Z5 ;0 +Tijo € (@i, Tig) } (1 — Lije) + W25, = Zijea +xijotLije (2)

Vv Vv
=1 if price cannot be changed for free =1 if price can be changed for free
and price gap at previous period price but the price gap is already closed
is inside the inaction region at previous period price

Notice that (1) and (2) describe the dynamics of cumulated inflation in a form that follows
from the theoretically optimal pricing policy in the random menu cost environment and, at the
same time, provide a (non-linear) connection between the observed cumulated inflation and its

frictionless counterpart.

Transition equation for frictionless inflation I assume that cumulated frictionless inflation

evolves according to the following transition equation,

ZZj,t = Mij + Zz'*,j,t—1 + €ijt (3)

where ¢; ;; ~ N (0, agvm) with ¢; j, independent and identically distributed across ¢, j and ¢.

There are three main motivations for the choice of (3). First, the random walk with drift is the

closest discrete-time counterpart of the assumption that frictionless prices evolve according to



brownian motion with drift as in the random menu cost environment used as a microfoundation.
Second, beyond the realm of pricing models, the representation in (3) brings the state-space
representation here proposed closer to a wider range of stochastic impulse control problems
in which in the absence of control the relevant state variable is assumed to follow a brownian
motion with drift (see section 2.4). Third, as we shall later see, the normality assumption
will allow the derivation of closed form expressions for the filtering and smoothing probability

densities despite the kinks present in the measurement equation.

In the pricing literature, some papers have assumed normality of idiosyncratic shocks affecting
the firm’s frictionless price (e.g Golosov and Lucas, 2007; Nakamura and Steinsson, 2010)
but also other distributions have been considered. For instance, Gertler and Leahy (2008)
and Midrigan (2011) use a Poisson distribution for productivity and good’s quality shocks,
respectively. More recently, Karadi and Reiff (2019) use a mixture of normal distributions for
good’s quality shocks. Given the unobservable nature of the shocks that affect firm’s frictionless
prices, the choice of what distribution to use is largely driven by the ability of each specification
of matching features of the micro price data. In section 6.2, it will be shown that using (3) and
allowing for parameter heterogeneity at the product level produces a good fit of the UK micro

price data, specially, of the overall distribution of price changes.

It is important to notice two limitations of (3). First, there are no strategic complementarities
in the sense that there is no dependency of frictionless prices on the prices observed in the other
quote-lines. In a general equilibrium setup this could be justified in setups like Golosov and
Lucas (2007) and Alvarez, Bihan and Lippi (2016). A second limitation of (3) is that there are
no common shocks driving the fluctuations of frictionless prices. Later, I will partially address
this drawback by assuming that trend in the frictionless prices is common across quote-lines of

a given product.'?

Transition equation for costless adjustment opportunities I assume that the arrival of

costless adjustment opportunities is given by,

Lijo = W{vije < Nij} (4)

where v; j; ~ Uniform (0, 1) and independent and identically distributed across 4, j and ¢. It
is common in the class of random menu cost models to assume that the menu cost draws
are independent and identically distributed across firms and time. Some specifications assume

those draws are done from a specific distribution with weakly positive support (e.g. Dotsey,

131n a specification like (3) one way of introducing common shocks would be to have a factor structure in the
disturbances with a common component across quote-lines of a product, for example, to include a disturbance of
the form wj ¢ +¢; j+ where w;; ~ N(0, 0]2) and i.i.d across j and ¢. This specification would pose two additional
challenges. The first one is identification, as it would be difficult to separate the variances of the two shocks
from moments of the distribution of price changes. Second, and perhaps most importantly, this would make the
filtering and smoothing problems more difficult to solve since the density of frictionless inflation would have to
be conditioned not only on the observed inflation for that quote-line but also on the observed price-spells for
all the other quote-lines of the same product. I am currently working on this extension.



King and Wolman, 1999). Here, in line with the environment used in the microfoundation
for the state-space representation, it assumed that the menu cost is drawn from a two-point
distribution with values zero or some positive constant.'® Equations (1) to (4) form a nonlinear
state-space representation of the pricing dynamics at the quote-line level that will be used to

estimate frictionless inflation.

2.3 Semi-structural representation

The state-space representation in (1) to (4) is semi-structural. On the one hand, it is structural
since the form of the measurement equation is theoretically grounded on the optimal behavior
of a firm in a random menu cost environment. On the other hand, it is reduced form because
the six parameters that enter that representation are functions of deep structural parameters
that are left unspecified, such as those that describe the firm’s production function, the demand
that the firm faces, the size of the menu costs or any structural trends in factors that affect
the firm’s marginal cost. Also, the idiosyncratic shocks entering (3) are reduced form ones as
they represent a combination of a variety of structural shocks that affect the firm’s frictionless

prices (e.g. technology shocks, demand shocks, quality shocks, among others).

I adopt this semi-structural approach instead of a fully structural one for three fundamental
reasons. First and most importantly, for the main purpose of obtaining estimates of frictionless
inflation it is sufficient to focus on the parameters that enter the state-space representation (1)
to (4). Second, with this approach less restrictions on specific unknown functional forms are
needed which is an advantage both from the estimation perspective, since imposing incorrect
restrictions could lead to inconsistent estimates of the parameters of interest, and from the
perspective of transferability of the current methodology to other contexts in which (S, s) type
of behaviors is optimal. Third, the use of a reduced form representation reduces the compu-
tational costs of simulation-based estimation which facilitates parameter estimation allowing
for heterogeneity across products which, in turn, allows the match empirical features of the

distribution of price changes at more disaggregated levels.!?

2.4 Generalizations and special cases

In terms of the pricing literature, the random menu cost environment used as a microfoun-
dation of our state-representation nests two important models of price adjustment as special
cases. The canonical menu cost model used in Golosov and Lucas (2007) is obtained when the
are no possibilities of adjusting for free (A = 0). The Calvo (1983) model is obtained if changing

prices is infinitely costly (¢ — 00), in that case, the arrival of a free adjustment opportunity

14This is also similar to the specification of the CalvoPlus model in Nakamura and Steinsson (2010) with the
exception that there the menu cost can take two positive values (low versus high menu costs).

5The reduction in computational burden comes from the fact that for a given combination of the parameters
of interest, the state-space representation can be used to directly simulate the distribution of price changes
without the need of solving the underlying economic model first. Given the non-convexities due to the presence
of fixed costs of adjustment, solving the model typically requires the use of global methods (e.g. value function
interaction) which can be costly in terms of computational time.
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which can be equivalently interpreted as the arrival of the “Calvo fairy”.'® This environment
can also be adapted to some other contexts where fixed adjustment costs have been used to
rationalize the “lumpiness” of adjustments observed in the micro data and, notably, to any
context where the optimal policy is derived or assumed to take the form of an inaction region
and a single return point. Examples include the model of demand for money by firms of Miller
and Orr (1966), the model of demand for cash by Frenkel and Jovanovic (1980), the model of
investment in Caballero and Engel (1999) and the models of labor adjustments in Caballero,
Engel and Haltiwanger (1997) and Elsby and Michaels (2019).17

3 Constructing a measure of frictionless inflation

Given the state-space representation of pricing dynamics introduced in the previous section,
this section presents a methodology to estimate cumulated frictionless inflation at the quote-line
level. The key insight that underlies the methodology is that cumulated frictionless inflation
is a hidden state variable and to estimate it given all the data available is tantamount to
solving a specific smoothing problem. This section starts by formally defining that problem
and subsequently presents its solution in two blocks: one to deal with parameter estimation

and other to solve for the smoothing density taking parameters as given.

3.1 Frictionless inflation estimation: a smoothing problem

Consider the state-space representation of price dynamics from the previous section:

Zije = Zigedige + (Z5;, — wijo) (1 —di ) (5)
Zrie = Mij + Ziq + Eige (6)
Lije = Wvige < Nij} (7)

2 ..
5717]

where d; j, is given by (2), &, ;. ~ N (0,02, ;) and v; j; ~ Uniform (0, 1) both independent across

i, j and ¢ and Z; ;o = Z7;, = 0. The state-space representation above is taken as the data
generating process for each quote-line in the micro price data. Let ZZTJJ — {Zi;4}1% denote all
the observed data for a given quote-line and ©; ; denote vector containing all the parameters

in the data generating process for that quote-line. The aim is to obtain a smoothed estimate of

16In terms of the reduced form parameters in our state-space representation this could be obtained by
imposing z; ; = —oo and Z; ; — oo.

17Tt is important to notice that the state-space representation here proposed and all the associated filtering
and smoothing methods are based on a policy of the form (b, S, B) which arises in an environment where the
fixed costs are the only form of adjustment costs. For prices this is typically the case, but for other contexts like
investment, inventories and durable consumption the adjustment cost can involve a fixed and a proportional
cost. In that case, the optimal policy is characterized by four parameters (b, ¢, @, B) and the optimal policy is
given by inaction if the relevant state is in (b, B), adjust such that the state jumps to ¢ (Q) if the state is smaller
(bigger) than b (B) (Stokey, 2009, chapter 8). Extensions of the methodology here proposed to encompass also
those cases are left for future research.
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the hidden state Z;,;, or, more concretely, to obtain an estimate of E | Z}, , | Zg;’j ;0,18

3.2 Parameter estimation: A two-stage procedure

To obtain the smoothed estimates of frictionless inflation it is necessary to estimate the param-
cters that enter the state-space representation (5) to (7). For each quote-line these parameters
are: the initial price gap (; o), the lower and upper bounds of the inaction region (z; ;, %;;),
the drift of cumulated frictionless inflation process (y;;), the volatility of idiosyncratic shocks

to frictionless inflation (o.; ;) and the rate of arrival of free adjustment opportunities (J; ;).

Following a large literature that has used micro price data to estimate or calibrate parameters
of pricing models, the estimation procedure proposed is based on the moment conditions from
the distribution of price changes. Due to the limited number of price changes observed per-
quote line, it would be impossible to allow the parameters to vary at the quote-line level as in
the most general formulation (5) to (7). Instead, with the exception of the initial price gap,
all the parameters will be assumed to vary at the product level.'* More precisely, for a given
product in the data the vector of parameters of interest is ©; = {6;, {xi,j,o}?:jl} where 0; =
{z;, %, pj,0-;,A;} and N; is the number of quote-lines for a given product. With parameter
heterogeneity and the absence of any other common components across products, the estimation

of parameters of interest can done for each product separately.

Given that the state-space representation (5) to (7) does not admit a closed form solution
for the distribution of price changes as a function of the parameters of interest, this paper
uses simulated method of moments (SMM) (Gouriéroux and Monfort, 1996; Adda and Cooper,
2003; Davidson and MacKinnon, 2004) to estimate the vector of parameters ©; at the product

level. More precisely, let Z; = {{Z (&, Vi, 05, x;’jo}tT;é Y Dbe a panel of observed data with

o

¢ ;0 denote the true (unknown) parameter

all the quote-lines of a given product where 67 and z
values. Let Z3(0;) = {{Z(¢} ;4 Vi 0, xi’jjo}zﬂié Y be one panel of simulated data obtained
fixing a value of ©j, drawing sequences of shocks {{e},,, v} ]t}f’;g fvzjl from their respective
distributions and using the state-representation to generate the data. Each panel of simulated
data is indexed by s = 1,...,.5 and has the same structure as the panel of observed data in

terms of the number of quote-lines and their initial and end dates.?’ Finally, denote by m(-) a

8Note that the smoothing problem is conditional on the all the observations for that quote-line. This is
the case due to the absence of any linkages across the quote-lines, so that conditioning on all the available
measurements (i.e. all the quote-lines) is equivalent to conditioning only on the measurements for that specific
quote-line. In the most general form were linkages across quote-lines are allowed, the smoothing problem is to
obtain an estimate of E [ZZ* it | Z; @} where Z denotes the panel with all the quote-lines observed and © is the
vector of parameters that describe the data generating process for all the quote-lines.

YA product in the data is the same as an item in the ONS terminology. An item is identified by a unique six
digit code. This level of disaggregation is still less disaggregated than bar code level data as it does not specify a
specific product variety (including a specific brand) but it is the most disaggregated information that is given to
price collectors. Examples include: “Large loaf white sliced 800 grams” (item id 210101) or “Ultra-low sulphur
diesel 10L” (item 610304). More details on the data in section 5.

20The general principle in simulated based estimation is that of treating real and simulated data as similarly as
possible. In a recent paper, Berger, Caballero and Engel (2018) show that using a number of agents in simulations
that is larger than the number of agents in actual data can lead to underestimate the shock persistence in a
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p x 1 vector containing moment conditions that are functions of a panel of data. The estimator
for the SMM is defined as,

2

©; = arg min
O;

(8)

S
o (m<zj> S Ym (z;@»))

where [|-|| denotes the Euclidean norm and €2 is a symmetric and positive definite weight matrix.

Since the vector ©; for each product contains five common parameters plus one initial re-
centred price gap for each quote-line, avoiding under-identification in (8) would require a pro-
hibitively large number of moment conditions even for relatively small number of quote-lines
per product. To overcome this problem, this paper uses a two-stage procedure. The first stage
estimates the vector of common parameters by using a set of moment conditions that do not
depend on the values of the initial price gaps. In the second step, the vector of common pa-
rameters is fixed and a set of moment conditions that depend on both the common parameters

and the initial price gap are used to estimate the initial price gaps for each quote-line.

3.2.1 First stage: common parameters

The choice of moment conditions for the first stage is based on the following result,

Proposition 1 Consider the state-space representation given by (5), (6) and (7). For a given

quote-line, let Ti{j denote the time at which the first price change is observed. For any t > Ti%j,

Ap; j+ does not depend on x; ;0.
Proof. See appendix A.1 n

This result explores the fact that whenever a price change occurs it must be such that it
closes the re-centred price gap and what happens from then onwards does not depend on the
previous values of the price gap. In other words, price changes that occur after the re-centred
price gap has been closed once will not depend on the value of the re-centred price gap when

the quote-line started. This is illustrated in figure 1.

For a given product, let Ap; be a vector containing all the price changes and Ap;|;~,1 be a
vector containing all the price changes that occur after the first price change for each quote-line.
Denote by Ap; and Ap;?| >,1 their respective counterparts in simulated data.?! Proposition 1
implies that whereas Ap; and Ap;] are functions of both common parameters and initial price

gaps, Apj =1 and Apj ., depend only on the vector of common parameters (6).

[t>T

The vector of common parameters is estimated from,

Calvo model (see table 1, p. 12). More details on how simulated data is generated can be found in appendix B.
2 Implicitly, any quote-line that does not have any price change will be excluded from both either the actual
data or the simulated data.
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(9)

; = arg min
0;

S
9(Apjj=rt) — Z (APsr ()

where ¢(-) denotes a vector valued function containing the following moments: the frequency
of price changes; the first and the ninety-ninth percentiles of the distribution of non-zero price
changes and all the multiple of five percentiles of the distribution of non-zero price changes.??
The percentiles of the distribution of non-zero price changes along with the frequency are used
for parameter identification, whereas other moments of the distribution of price changes that
have been commonly used in the literature (e.g. frequency of price increases and decreases,
variance of price changes, skewness and kurtosis) are left to evaluate the model fit (see section

6.2).

3.2.2 Second stage: initial price gaps

To estimate the initial price gap for each quote-line, the common parameters estimated in the
first stage are taken as given and the moments conditions have to depend on the initial price

gap. More concretely, for each quote-line the initial price gap is estimated from,

2
Z)Aii,j’o = arg min (10)
Zi,5,0

‘h Ap; ;) — i (Ap” Tij0,0; ))

where Ap; ; is a vector containing all the price changes for a given quote-line of a product (and
Ap; ; is its counterpart in simulated data), éj is the vector of common parameters estimated
from (9) and A(-) is a function containing two moment conditions, namely, the number of
periods elapsed until the first price change and the value of the first price change.?®> For the
quote-lines for which no price change is observed, the initial price gap is estimated by taking

the mean of the estimated initial price gaps for the other quote-lines for that specific product.

Parameter identification For the true parameter value ©7 to be globally identified requires
that it is the unique minimizer of the population counterparts of (9) and (10). For that to
be the case, the objective functions cannot be flat at the true parameter value. For the initial
price gap in (10), the inclusion of the value of the first price change in the moment conditions
is important. The time elapsed until the first price change is typically concave in the initial

price gap with a maximum achieved in an interior point of the inaction region but the value of

22The identity is taken as the weight matrix in objective function to estimate the common parameters and
the number of replications is set to 50. The SMM estimator is consistent for a given fixed S and for any
weight matrix (Gouriéroux and Monfort, 1996, Proposition 2.3), so neither of these choices affects estimator
consistency. Other choices of the weight matrix and a large number of replications could yield more precise
estimates.

231n this case the difference in the data moments and the moments in simulated data in (10) is expressed as
percentage deviation from the moment observed in the data. Because of the difference in scales (time elapsed
until the first price change is an integer whereas the value of the first price change is typically of the order
1071), failing to do so with the euclidean norm in the objective function would imply a disproportional weight
being given to the time elapsed until the first price change. This and other computational details can be found
in appendix B.
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the first price change is usually strictly decreasing in the price gap which is helpful to separate
cases where there are two initial price gaps that yield the same expected time until the first
price adjustment.?* For some values of the true parameter value, identification from (9) can be
challenging specially for the two boundaries of the inaction region. To understand why, consider
for instance a case where true parameter values are such that no price changes are triggered
by crossing the boundaries of the inaction region (e.g. cases closer to a pure Calvo model) the
objective function will be flat at the true parameter value as increasing the boundaries of the
inaction region will not affect any price changes and, hence, will not affect any of the moments
of the distribution of price changes and, consequently, the objective function. In other words,
global identification in (9) requires that at the true parameter value both of boundaries are
binding for at least some of the price changes. In terms of the choice of the moment conditions,
the inclusion of extreme percentiles of the distribution of the non-zero price changes is important

specially in cases where very few price changes occur at the boundaries.?

3.3 The smoothed density function

The last ingredient missing to obtain the smoothed estimates of cumulated frictionless inflation
is the smoothed density. This section presents closed form solutions for the smoothed density

6

and formally defines the smoothed estimates.?® Before presenting the results, the relevant

notation is introduced.

Notation For notational simplicity, given that all the results are presented at the quote-line
level, the subscripts ¢ and j are omitted. For any two real numbers a < b, denote by Z,
the set of all integers in [a, b]. Upper case letters are used to denote random variables whereas
their lower case counterparts denote realizations of those random variables. For a continuous
random variable X, the notation fxy (x|y) is used to denote its probability density function
evaluated at a specific value = conditional on the random variable Y taking the value y. If X
is discrete then fx|y (x]y) is used to denote its probability mass function. The function d(-)
is used to denote the Dirac delta function. The functions ¢(-) and ®(-) denote the standard
normal probability density function and cumulative distribution function, respectively. The
subscript t is used to refer to a specific point in time whereas the superscript t is used to refer
to the sequence of all random variables or realizations up to that moment in time.?” Without

loss of generality, all the results in this section are presented for an arbitrary quote-line z7

24For the typical relationship between the time elapsed until the first price change and the initial price refer
to figure 5.3 in Stokey (2009). The fact that the value of the first price change is strictly decreasing in the
initial gap can be intuitively understood. For a quote-line that starts with a negative price gap it is likely that
the first price change is triggered either by crossing the lower bound of the inaction region or by receiving an
opportunity of adjusting prices for free while the price gap is still negative, in either case, that would generate
a positive value for the first price price change. For quote-lines that start with a positive price gap the converse
applies and it is more likely that the first price change will be negative.

25This point will be illustrated further for one of the data generating processes considered in the Monte Carlo
experiment in section 4.

263olving for the smoothed density requires solving for the filtered density first. Expressions for the filtered
density are presented in lemmas 2 and 3 in appendix A.2.

2TFor example, z; refers to a realization of the random variable Z; at time ¢ whereas z? refers to all realizations
until ¢, that is, 2t = {z,0,..., 2 }.
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that starts at time 7° and finishes at time 7. Let K > 0 denote the number of non-zero price
changes observed for that quote-line and 7% denote the period at which the k-th non-zero price
change occurred. Given the structure of (5) any such quote-line can be fully characterized by

the sequences {71,..., 75} and {z.1,...,2,x}.78

For expositional purposes, the expressions for the smoothed density are divided in three
cases. First, for the initial period and any periods where a non-zero price change is observed.
Second, for periods of inaction for which some non-zero price change is observed afterwards.
Last, for periods of inaction for which no non-zero price change is observed before the end of

the quote. In all the results, the vector of parameters © is taken as given.

Proposition 2 Consider a quote-line 2T generated from the state-space representation (5) to
(7). Suppose t = 7% for some k € Zjy ki, then it holds that,

fz:12m0 (272750) = 0 (2 = ) (11)
where ¢* =0 for k=0 or c® = 2z« + ¢y for k € L K-
Proof. See appendix A.2 m

The result above states that the smoothed density of cumulated frictionless inflation is de-
generate at the first time period or whenever a non-zero price change is observed. For the
initial time period 7° that is trivial since by definition Z% = 0. For the time periods where a
non-zero price change is observed this follows immediately, since from (5) whenever a non-zero
price change occurs it must be such that at the new value of cumulated inflation the price gap

is closed which is the case if and only if z; — Z; + 29 = 0.

Now we turn to the time periods of inaction but for which a non-zero price change is observed

before the end of the quote-line,

Proposition 3 Consider a quote-line 2T generated from the state-space representation (5) to
(7). Suppose t € (7%, 7%1) for some k € Zp 1. Define A*F = 7+ — 7k b = ¢ — 7F,
ZF=1{k =0}zo+1{k > 1} -z, ZF = 1{k = 0}ao + 1{k > 1}* — 2, ITF = (Z*, Z%) and
1s defined as in proposition 2. Then, ignoring terms that are zero almost everywhere, it holds
that,

1 * _ ik
oz (1750) o po (o) g a1 € ) (12)
b b

where the functions BF(:) and x%(-) are defined recursively as,

28Tn particular, given those two sequences it follows that: z; = 0 for t € [70,71); 2, = z,» for t € [7F, 7FF1)
and k < K; 2z = 2.« for t € [75,T].
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(

1, ifb=1
fw=1 ) (13)
Jp 50 () By ) dy, ifb > 1

Gp—1

,
1, ifb=AF —1
HOEES . (14)
e 70 (S5) b () dy, if b < A =1
\ " % b+1 b41

and the means and standard deviations of the distributions are given by,

3 bkt + (AF — b)cF 3 b(AF —
[y = (Ak ) and & = % o (15)
N " + bx 5 b
iy (x) = b1 and oy = bl O¢ (16)
k+1 k %
— — _— e 1
jif@) = S and 6= e o (17)
Proof. See appendix A.2.5 O]

Intuition for this result can be better conveyed through figure 2. First, given that the density
refers to a period of inaction, the last term in (12) arises naturally since it results in a zero
probability mass being assigned for any value of cumulated frictionless inflation term that

I and 72 can

would yield a price gap outside the inaction region. Second, the time periods 7
be considered as reference periods relative to a given time period as these are the last and
next periods for which the values of cumulated frictionless inflation are known (equal to the
reference values c' and ¢?, respectively). The mean of the normal distribution in the first term
of (12) is the linear interpolation of those two reference values, whereas the standard deviation
is proportional to the standard deviation of the idiosyncratic shocks driving frictionless inflation

but maximised in the middle of these two reference periods.

Finally, for a given time period the density of cumulated frictionless inflation evaluated at
a certain value will also depend on the fact that in between the two reference periods it must
remain inside the inaction region. Consider the example in figure 2 and suppose that the trend
in frictionless inflation is positive. Intuitively, what is the likelihood that at time ¢ frictionless
cumulated inflation was equal to z*? For that to be the case it must be that in the periods
between t and 72 there was a sequence of consecutive negative idiosyncratic shocks that offset
the positive trend such that that cumulated frictionless inflation was equal to ¢? at time 72 and
did not cross the upper bound of the inaction region. Whilst possible, such a sequence negative
shocks is rather unlikely to happen specially given that the shocks are normally distributed

with zero mean.
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The recursions 35 (2*) and x¥(2*) capture precisely that intuition. In particular, the backward
recursion 3f(z*) captures the probability that in period ¢ the cumulated frictionless inflation
was equal to some value 2* given that b periods before it was equal to c* and it cannot have left
the inaction region in any period between 7% and t. On the other hand, the forward recursion
XF(2*) captures the probability that in period ¢ the cumulated frictionless inflation was equal

k+1 k+1

— t periods afterwards it was to equal ¢*** and it cannot have

k+1

to some value z* given that 7
left the inaction region at any point in between ¢ and 7°*!. By entering multiplicatively in (12),
these two recursions deform the normal density from the first term to take into account for the
boundaries of the inaction region. If the boundaries were not present, as it would be the case
for a pure Calvo model, the smoothed density would be given only by the first term in (12)
and its expected value would simply be given by the linear interpolation of the two reference

values (see corollary 1).

The last proposition characterises the smoothed density for the periods of inaction for which

no non-zero price change is observed before the end of the quote-line,

Proposition 4 Consider a quote-line 2z generated from the state-space representation (5) to
(7). Suppose t € (t5,T]. Defineb=1t— 75, AKX =T — 7K and the remaining objects defined

as in propositions 2 and 3. Then, ignoring terms that are zero almost everywhere, it holds that,

1y (;—“) BE(2) 1 () 1 {2 € TF) (18)

fz:17m0 (27127:0©)
Op

where the function BX(-) is defined in (13), ti(-) is defined recursively as,

1, for b= AK
Fw=1 (19
fZK Uie o) (%j@) iy (y) dy, for b < AX

and the mean and standard deviation are given by,

pf =bp+¢ and o, = Vb o. (20)
Proof. See appendix A.2.6 m

The intuition for the above result is similar to that of proposition 3 with the fundamental
difference that in this case there is no period after ¢ for which cumulated frictionless inflation
is known. This changes the expression for the smoothed density relative to (12) in three ways.
First, the mean of the normal density in the first term is no longer the linear interpolation
between two known values, but instead it is given by a linear extrapolation starting from the
K

)

last known value (¢™) and the rate of growth is given by the drift in the cumulated frictionless
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inflation process. Second, the standard deviation of the distribution in the first term is still
proportional to that of the idiosyncratic shocks but now it is increasing in the distance from
the last reference period. Third, the forward recursion ¢ (2*) in this case simply captures the
probability that at time ¢ cumulated frictionless inflation was equal to z* given that in the next

T — t periods it cannot have left the inaction region. This case is illustrated in figure 3.

3.4 Smoothed estimates

Combining all the results presented in this section, the smoothed estimates of cumulated fric-

tionless inflation can be formally defined,

Definition Given a quote-line 2T, the smoothed estimates of Z;, denoted by Z*, are given by,

o0

where th*|ZT;9(z*|zT;@) is obtained from (11), (12) and (18) and © are estimates of the

parameter vector for that quote-line obtained from the two-stage procedure in (9) and (10).

The measure of frictionless inflation proposed in this paper is based on computing (21) for
each quote-line and period in the micro price data. Finally, for the case of a pure Calvo model

the expression in (21) can be simplified further. This is formalised in the following result,

Corollary 1 Consider a quote-line z* and let OF denote a vector of estimated parameters
obtained from (9) and (10) by imposing the restrictions x = —oo and T = +oo. Then, the

smoothed estimates of Z} are given by,

(
c* ift =71% for some k € Zo, k]

Zs* =K [Z; B (:)C} = Qi ift e (t5, 75 for some k € Zy k1) (22)

where c* is as defined in proposition 2, ji¥ is defined in (15) and pf is defined in (20).
Proof. See appendix A.2.7 O]

The above result follows from the fact that the pure Calvo model is obtained by removing the
boundaries of the inaction region. In that case, the last three terms in the smoothed densities
(12) and (18) are always equal to one and the smoothed estimates are given by the mean of

the first term in those densities.
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4 Frictionless inflation: Monte Carlo evidence

Before turning to actual micro price data, this section presents a Monte Carlo experiment to

illustrate the properties of the methods introduced in the previous section.

4.1 Monte Carlo setup

Three different data generating processes (DGPs) are considered (see table 1). In all the
DGPs the upper and lower bounds of the inaction region are set to 10% and -10%, the drift
in cumulated inflation process is set to 0.2% per month and the standard deviation of the
idiosyncratic shocks to frictionless inflation is set to 5% per month. The key parameter that
varies across DGPs is the rate of arrival of costless adjustment opportunities () and it controls
how close the DGP is from two well known benchmarks: the pure menu cost model and the
Calvo model. That parameter alone has strong implications for the shape of the distribution of
non-zero price changes as illustrated in figure 4. For example, in the first DGP with a low value
of X only 6% of all the price changes occur due to the arrival of free adjustment opportunities
whereas in the third DGP that figure is around 87%, which visually translates into a larger
mass of small price changes for the third DGP. Price gaps are chosen as equally spaced points
inside the inaction region.?? Finally, for each of the DGPs balanced panels of three sample sizes
are considered: 100 quote-lines over 5 years (N = 100 and 7" = 60), 100 quote-lines over 20
years (N = 100 and T = 240) and 300 quote-lines over 5 years (N = 300 and 7" = 60).

4.2 Monte Carlo results

For each combination of true parameter values and sample size, 1000 samples of artificial panel
data are generated according to the state-space representation in (5), (6) and (7). In each of
these samples the two-stage procedure is used to estimate the common parameters and initial

price gaps.

4.2.1 First stage: common parameters

Figure 5 contains the kernel densities of estimated common parameters across Monte Carlo
replications. First and most importantly, the density becomes more concentrated around the
true parameter values with the increase in total sample size - as expected from a consistent
estimator. Second, in line with with the choice of first-stage moments motivated by proposition
1, all the results in figure 5 were obtained even though the simulated data in (9) was generated
assuming a zero initial price gap for every quote-line whereas the Monte Carlo samples were
generated using linearly spaced initial price gaps. Third, for larger values of the arrival of cost-
less adjustment opportunities the boundaries of the inaction region are estimated less precisely,

which can be rationalised from the fact that the increase in the mass of non-zero price changes

290ther rules could be used here, but it is fundamental that the values of those conditions are kept fixed
across Monte Carlo replications. This rule ensures that as it only depends on the boundaries of the inaction
region and the cross-sectional sample size which are both kept fixed across replications.
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around those boundaries is smaller the larger is that parameter. Most importantly, in spite of
that decrease in precision, the boundary parameters were estimated without signs of lack of pa-
rameter identification. This reinforces the idea that the inclusion of extreme percentiles of the
distribution of non-zero price changes in (9) is helpful for parameter identification, specially in
cases where relatively few price changes are triggered by crossing the boundaries of the inaction

region.3’

4.2.2 Second stage: initial price gaps

For each combination of common parameters and sample size, figure 6 presents the histograms
for the difference between the estimated initial price gaps (#;0) and their true values (zf;,)
across quote-lines and Monte Carlo replications. Notice first that all the histograms are centred
at zero which is indicative that the two moments used for the estimation do contain some useful
information to estimate the initial price gap. Nonetheless, and in contrast with the estimates
of the common parameters in figure 5, the estimates of the initial price gaps do not become
more concentrated around their true parameter values with the increase in total sample size.
The underlying reason for that is that regardless of the total number of time periods that a
quote-line is observed there can only be one first price change for each individual. In other
words, the estimates of the initial price gap in (10) are based on statistics that involve one

single realisation of a random variable and laws of large numbers will not apply.®!

5 Micro Price Data

To produce estimates of frictionless inflation this paper uses publicly available data on locally
collected price quotes underlying the construction of the UK Consumer Price Index (CPI).
In order to produce the CPI, the Office for National Statistics (ONS) collects on a monthly
basis prices of different goods and services that are selected to be representative of general
expenditure across the whole of the UK. There are two price collection methods: central or
local. Central collection is used for goods and services for which the price is the same for all
UK residents or the regional price variation can be collected with no field work, for example,
via internet, telephone or e-mail enquiries. Since some of these price quotes could reveal the
identity of the price setter, the ONS excludes those from the publicly available data. For the
remaining goods and services, which account for about 60% of the aggregate CPI by weight,
price collectors on behalf on the ONS visit every month thousands of shops in over 140 locations

spread over the United Kingdom to record over 100,000 prices on hand-held computers. The

30Some versions of this experiment that did not include extreme percentiles of the distribution of non-zero
price changes yielded a non-negligible fraction of extreme estimates for the boundary parameters, suggesting
the lack of parameter identification.

31To illustrate this point, consider the problem of estimating the mean of a random variable X ~ N (., 02)
by taking the first observation from a sample {z1,2s,...,2x} of iid observations, in other words, consider
iz = x1 as an estimator for u,. Despite being unbiased (in this particular case), the estimator fi, will not
converge in probability to u, as there are no laws of large numbers that apply for an estimator based on a single
observation.
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baseline sample comprises locally collected price quotes from 1996m1 to 2018m1.32

5.1 Sample Selection

Some price quotes available in the baseline sample are excluded from the final sample used for
the construction of frictionless inflation measures. First, price quotes that did not enter the
actual CPI calculation because they did not pass the ONS internal validation procedures are
excluded.?® Second, some price quotes referring to research items that did not enter the actual
CPI calculation were also excluded. Third, any price quotes that were not uniquely identified
by a concatenation of month, shop code, region and item identifier were also excluded from

34 Fourth, since the estimation of common parameters is conducted at the

the final sample.
item level and it is based on the moments of the distribution of regular price changes excluding
the first price changes in any quote-line, any item that has less than 100 such price changes is

excluded from the sample.

5.2 Product substitutions, sales and quote-line gaps

The random menu cost model that motivates state-space representation of pricing in (5) to
(7) does not include sales or product substitutions and, hence, that state-space representation
should be interpreted as a data generating process for reqular prices. In order to have a
good match between the underlying theory and the data, it is necessary to remove product
substitutions and temporary sales from the data in order to obtain quote-lines of regular prices

before estimating frictionless inflation.

Product substitutions For each outlet in which prices are collected, the price collectors
start by choosing, among all products matching the specification of each item to be priced, one
product that is representative of what people buy in the area. Once a product is chosen, the
price collector returns to the outlet every month to collect prices of that same product. However,
in some cases the price collector might be forced to change the product being priced either
because it becomes unavailable or because the producer changed its physical characteristics
such as weight or size. Whenever those forced substitutions occur the price collector should
flag the respective price quote accordingly. To deal with product substitutions, whenever a

substitution flag is present a break in the original price trajectory is generated.

32Bunn and Ellis (2012) were the first to have access and document stylised facts about consumer prices
in the United Kingdom. Due to its public availability and disaggregation level, there is a growing number of
papers using the micro price data provided by the ONS. A non-exhaustive list includes: Chu et al. (2018),
Petrella, Santoro and Simonsen (2018), Carvalho and Kryvstov (2018), Blanco and Cravino (2019), Kryvstov
and Vincent (2019) and Hobijn, Nechio and Shapiro (2019). Since this is not the first paper to use this dataset,
this section focuses on the most important aspects of the data to produce a measure of frictionless inflation.

33The internal validation procedures used to ensure the prices have been accurately recorded and the indicator
codes have also have been used sensibly and correctly are described in ONS (2014, chapter 6).

34In the ONS internal systems price quotes are uniquely identified by a concatenation of month, shop code,
location and item identifier. For confidentiality reasons, the ONS does not publish the location variable, hence,
the use of the region variable as a proxy. Nonetheless, it happens in some instances that two different outlets
are the same region and have the same shop code and, in those cases, the two price trajectories could not be
separated.
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Product sales The prices quotes collected by the price collectors are the product shelf-prices
and this means the prices would reflect any temporary sales at the time of collection. If the
collected price is a sale price, the price collectors should flag it with the respective sales indicator.
Those sales flags are used to obtain quote lines of regular prices. First, collected prices that
are not on sale are immediately considered as the regular prices for the period. Second, if the
collected price is on sale the last regular price observed is used as the regular price for that
period. If the last regular price change is not available, the first regular price observed after the
current observation is used instead. Third, if no regular prices are observed before or after the
sales observation it is because the respective quote-line is composed exclusively of sales prices

and in those cases the quote-line is excluded from the sample.

Quote-line gaps After cleaning the data following the steps above it is possible that the
resulting quote line contains gaps, for example, because some price quote in the middle of
the quote line was not validated internally by the ONS. Since to produce estimates of the
frictionless inflation requires a non singleton quote-line of contiguous observations of regular
prices, whenever the resulting quote-line contains gaps it is split into separate quote-lines of

contiguous observations. Any resulting singleton quote lines are excluded from the sample.

An example To illustrate how to go from the primary data provided by the ONS to the quote
lines of regular prices used to produces estimates of frictionless inflation, fictitious price quotes
of an item collected in a particular outlet are considered in figure 7. Although price quotes
are available for a 4 year period, some of them did not pass the ONS internal checks and,
because of that, did not contribute to the CPI in the respective periods. Those price quotes are
excluded from the final sample. Moreover, in one of the periods the price collector was forced
to substitute the product for which prices were being recorded for another brand and/or variety
that also matches the specification of the item to be priced. Since from that period onwards it
is effectively a different product that is being priced a quote break is created. Finally, during
the whole period the price collector also indicated two episodes of temporary sales and in those
periods regular prices are imputed for sales prices following the procedure above described.
More precisely, for the first sales spell the last regular price observed is imputed in place of the
sales prices whereas for the second sales spell the next regular price is imputed since the last
regular price is not observed. The outcome of this process are four quote lines of contiguous
regular price observations which include a total of six regular price changes and three regular
price changes when excluding the first. Estimates for the frictionless cumulated inflation are

obtained for each quote line separately.

Final Sample The final sample used to produce frictionless inflation measures spans the period
from 1996m1 to 2018m1 and comprises over 23 million price quote observations, over 2.2 million

quote-lines and 979 unique items.
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5.3 From price quotes to price indices

To produce estimates of frictionless inflation at the aggregate level, the estimates of cumulated
frictionless inflation obtained from computing (21) for each quote-line in the data are aggregated
to produce higher level indices. The aggregation procedure adapts the methodology used to
construct the actual CPI as described in ONS (2014).

From price quotes to elementary aggregates The lowest level of aggregation at which
price-quotes are aggregated into indices is at the stratum level. Each item in the data can
be stratified in four different ways: by region, by shop type, by region and shop type or
not stratified.>® For each stratum, the individual price quotes are aggregated to produce an
elementary aggregate index. The method primarily used to produce elementary aggregates
in the CPI is the geometric mean (also known as the Jevons formula), more precisely, the

elementary aggregate for stratum s of item j in month ¢ with base period ¢’ is given by,

Ns,j NSyj

P+
Iy = H ZLpt (23)

=1 Pi:j:tb

where P ;; and P, ;. are the prices of the same product collected in a particular outlet in
period ¢t and in the base period t* and N ; is the number of price quotes in stratum s of item j
after using the central shop weights as a replication factors. Using the previous month as the
base period and the definition of cumulated individual inflation, the above expression can be

re-written as,

N
1 S57

Ifjét\tfl = exXp N E AZi,j,t (24)
57 =1

The regular price elementary aggregates are obtained from (24) with AZ%,. Similarly, the

2,7,t"
frictionless elementary aggregates are obtained from (24) with AZf j7t.36

From elementary aggregates to higher level indices Indices for higher levels are weighted
averages of the elementary aggregate indices. First, combining elementary aggregates with stra-
tum weights yields item level indices. Second, item level indices and the respective item weights

are combined to produces Classification of Individual Consumption by Purpose (COICOP) in-

35There are 12 regions in total (London, Southeast, Southwest, East Anglia, East Midlands, Yorks and
Humber, Northwest, North, Wales, Scotland and Northern Ireland) and two shop types (multiple if the shop
has 10 or more outlets or independent if it has less than 10 outlets).

36 A key difference between the elementary aggregates produced following (24) and the elementary aggregates
underlying the published CPI is that the later uses the previous month of January as the base period. Because
of the breaks in quote-lines created to deal with product substitutions and quote-line gaps, using the previous
January as the base period would require to either: (i) drop any observations that do not have information
for AZ;fﬁt in the previous month of January which are almost a half of the total sample or (ii) impute values
for AZ %, and AZZL »» at the base period. I choose to change the base period and chain-link the elementary

i,5,t°
aggregate indices every month over either of these two options.
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dices at the class, group and division levels and the aggregate CPI.

6 A measure of frictionless inflation

This section presents the reduced form parameter estimates obtained for each item in the micro
price data, analyses the model fit and presents a measure of year over year frictionless inflation
for the UK from 1997 to 2018.

6.1 Reduced form parameter estimates

There is substantial heterogeneity in the estimated reduced form parameters at the item level
(figure 8 and table 2). This section investigates whether this heterogeneity in estimated reduced
form parameters can be rationalised in light of their theoretically implied relationships and key

moments of the distribution of price changes.

Inaction region asymmetry A dimension of interest is the extent to which price setters pric-
ing policies are characterised by symmetric inaction region boundaries. In terms of estimated
parameters, a simple way of measuring the asymmetry of the inaction region is by taking the
sum of the two boundaries, that is, A; = Z; + &;. In the data, that measure ranges from
-171% to 206% and 58% of the items display negative asymmetry.>” A common explanation
for asymmetric pricing policies is the presence of non-zero trend inflation, since in a pure menu
cost model with positive trend inflation the optimal policy is characterised by price increases
that are larger than price decreases (Ball and Mankiw, 1994). This explanation is qualitatively
in line with the heterogeneity observed in the cross section of items since the correlation be-
tween A; and the estimated drift of the frictionless inflation process of -0.41 (figure 9, top-left
panel). Nonetheless, that explanation alone is quantitatively insufficient to rationalise all the
heterogeneity in the asymmetry measure across different items. Other potential explanations
for asymmetric adjustment policies include differences in size of the menu cost to increase or

decrease prices and asymmetries in the profit loss function.3

Trends in frictionless inflation The estimated frictionless inflation trend (/;) across items is
typically in the range of -1.4% to 1.2% per month. The median estimated frictionless inflation
trend across products is 0.2% per month which is consistent with the average monthly CPI
inflation for the period analysed of 0.17%. In the data, the correlation across items between
estimated frictionless inflation trend and the average size of price changes is 0.63 (figure 9,
top right-panel). Moreover, approximately one-fourth of the items have negative estimated

trends. These negative estimated trends can be explained by the fact that, despite the positive

37"The measure of asymmetry is computed only for items that have at least one price changed triggered by
crossing the upper bound of the inaction region and one price change triggered by crossing the lower bound of
the inaction region (total of 424 items).

38Tt is relatively common to assume a zero trend inflation and profit flow function that is quadratic in the
price gap. These two assumptions give rise to an optimal symmetric Ss policy that can be solved in closed form
(Dixit, 1991). Despite their analytical convenience, it is noticeable that these assumptions would be at odds
with the pricing behaviour observed for most items in the UK micro price data.
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aggregate inflation, some individual items have become less expensive over time.’

Standard deviation of idiosyncratic shocks Differences in dispersion of price changes
are mostly accounted by differences in the volatility of idiosyncratic shocks. More precisely,
the correlation between the standard deviation of price changes and the estimated standard
deviation of idiosyncratic shocks (6. ;) across items is 0.86 (figure 9, bottom-left panel). The
median value of the estimated standard deviation of the idiosyncratic shocks for the UK micro
price data is 7.2% which is in line with the figures reported in Gautier and Bihan (2018).
Estimating a random menu cost model across 227 products underlying the French CPI, Gautier
and Bihan (2018) find a median across products for the unconditional productivity standard
deviation to be either 5% (in a model without strategic complementarities) or 9% (in a model

with strategic complementarities).

Arrival of costless adjustment opportunities The heterogeneity in frequency of price
changes across items in the micro price data is mostly accounted by the estimated probability
of a costless adjustment opportunity (S\j) Across all the items in the sample they correlate at
0.91 (figure 9, bottom-right panel). This high correlation resounds the fact that, in the UK
data, most of the price changes are estimated to be due to the arrival of costless adjustment

opportunities.

State-dependent versus time-dependent pricing An interesting feature of the random
menu cost model is that it allows for the occurrence of both time-dependent and state-dependent
price changes. A way of measuring which of these two extremes can better account for the
pricing dynamics in the micro data is to compute the ratio between the number of costless

O TFor a given item, a value of this

price changes over the total number of price changes.®
measure closer to a hundred percent indicates that most of the price changes are triggered by
the arrival of costless adjustment opportunities and, hence, the pricing dynamics is closer to
that implied by a pure Calvo model. Computing this ratio using all the price changes in my
final sample yields a figure of 83%. For individual items this measure ranges from 7.5% to
100% with an average value of 87%. Across different COICOP divisions, this ratio ranges from
66% for restaurants and hotels to 94% in food and non-alcoholic beverages (figure 10). The
large number of time-dependent price changes is broadly in line with previous findings in the
literature. For instance, Nakamura and Steinsson (2010, footnote 25) using data underlying
the US CPI find that roughly 75% of price changes occur in the low menu cost state. Gautier
and Bihan (2018, tables 5 and 6) find that costless adjustment opportunities account for 80%
of the price changes in micro price data underlying the French CPI. Moreover, Blanco (2017)
also using UK CPI micro price data finds that 93% of all the price changes are due to either

39Most examples are from items classified as: recreation and culture (e.g personal CD player, CD radio
cassette, computer diskettes etc); furniture, household equipment and maintenance (e.g automatic washing
machine, vacuum cleaners etc) and clothing and footwear (e.g. boy’s casual short sleeve shirt).

40More formally, for each item in the data this statistic is computed as C; = >, >, 1{Ap; ;+ € (—2;,0) U

(0,=25)}/ 22 > 1{Api j # 0}
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free adjustment opportunities or fat-tailed idiosyncratic shocks.*!

6.2 Model fit

Figures 11 to 16 investigate the extent to which the proposed state-space representation of
pricing dynamics with parameter heterogeneity at the item level can account for the patterns
of price changes observed in the micro price data. In terms of the moments directly targeted
in the first-stage of parameter estimation, the proposed representation of pricing dynamics can
in general match the percentiles of the distribution of non-zero price changes and the model
fit tends to be better at the tails of the distribution (figures 11 and 12). In terms of the
non-targeted moments, the worse fit of the middle percentiles of the distribution of non-zero
price changes does not affect the model’s ability to match some of the moments (e.g. mean or
variance of price changes) but it does imply that for a non-negligible proportion of items the
model cannot account for the values of robust skewness and robust kurtosis observed in the
micro price data (figure 13). The inability of the single product version of the random menu
cost model to match the kurtosis observed in the micro price data has been pointed before
by Alvarez, Bihan and Lippi (2016). It is interesting to notice that for the micro price data
underlying the UK CPI that is also the case for some individual items but the mismatch is
much smaller when considering the distribution for the price changes across all items (figure 14).
Finally, across all individual items considered the actual distribution of regular price changes
can take a wide variety of shapes and inevitably the proposed state-space representation will
fit some items better than others. Figures 15 and 16 illustrate the variety of shapes that the
distribution of price changes can take across items and the model fit for the items with worst

and best model fits, respectively.

6.3 A measure of frictionless inflation for the United Kingdom: 1997 - 2018

The measure of frictionless inflation for the UK against its regular price counterpart is presented
in figure 17. In a nutshell, the conclusion to be drawn from that figure is that menu costs matter

for aggregate inflation dynamics, their importance is decreasing over time period analysed.

Menu costs matter for aggregate inflation dynamics This comes from the fact that the
two lines do not perfectly overlap over the period analysed. The correlation between the two-
series from 1997 to 2018 is equal to 0.83 and the difference between regular price inflation and

its frictionless counterpart can range from -0.79 and 2.29 percentage points. On average over

4IMore precisely, the ratio of free to total price adjustments is only 48% but adding the price changes after
fat-tailed idiosyncratic shocks the figure increases to 93% (p.17). The combination of the two cases is a measure
of how close the slope of the Phillips curve in the model in Blanco (2017) is from a Calvo model and that measure
is more comparable to the ratio of free price changes to total price changes that I consider. Intuitively, in the
state-space representation of the random menu cost model in (5) to (7), the boundaries of the inaction region
are allowed to vary freely to account for the extremes in the distribution whereas the arrival of the costless
adjustment opportunities accounts for the “middle” of the distribution. In Blanco (2017) also the middle of
the distribution is accounted by the arrival of costless adjustment opportunities but the tails are accounted by
fat-tailed idiosyncratic shocks. Despite these methodological differences, it is interesting that we find similar
figures in terms of how close the model is from a pure Calvo model.
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the whole period analysed, frictionless inflation is 0.55 percentage points lower than regular
price inflation and the difference is mostly driven by observations prior to 2004. Moreover,
from figure 17 it is also the case that the time-series for frictionless inflation is smoother that
its regular price counterpart. More precisely, the historical standard deviation of the time-series
for frictionless inflation is 20% lower than the standard deviation for the time-series of regular
price inflation (0.91 against 1.13), also, the time-series of frictionless inflation exhibits higher
persistence as it is more autocorrelated than regular price inflation at any horizon up to three

years.

Their importance is decreasing over time From figure 17 it is also clear that the time-
series of frictionless inflation is in general closer to its regular price counterpart after mid-2000s.
In particular, considering only the periods prior to 2004 the correlation between the two time-
series is 0.52 against 0.94 in the post-2004 period. Moreover, the average difference between
regular price inflation and frictionless inflation decreases from 1.14 pp prior to 2004 to 0.27
pp post 2004. Interpreted through the lens of the random menu cost model that underlies the
construction of the frictionless inflation measure, this change in the correlation of the two-time
series can be caused by a narrowing of the boundaries of the inaction region or by an increase
in the rate of costless adjustment opportunities or by a combination of the two.#? There are
two events that are be consistent with a narrowing of the inaction boundaries, namely, the
increase in product competition from import penetration from China around the early 2000s
and the change in inflation target in December 2003 from 2.5% of the Retail Price Index
excluding mortgage payments (RPIX) to 2% of the CPI. The increase in product competition
from imports would make deviations from the frictionless prices more costly in terms of profit
flows and, hence, a smaller deviation would be enough to trigger the payment of the menu
cost narrowing the bands of the inaction region. The decrease in the inflation target could also
rationalise a narrowing of the boundaries of the inaction region if interpreted as decreasing the
uncertainty regarding aggregate inflation rate. It is more difficult to rationalise an increase
in the rate of arrival of costless adjustment opportunities in terms of specific events, but such
increase is consistent with an increase in the frequency of price changes that is observed for
part of the period between 2005 and 2012 (Petrella et al., 2018, figure 1).

7 Frictionless inflation and the basic New Keynesian model

In this section, the constructed measure of frictionless inflation is used to empirically test two
novel predictions from the basic new Keynesian model in Gali (2008, chapter 3). The first
prediction concerns the difference between inflation and its frictionless counterpart over the
business cycle. The second prediction concerns the difference in their responses to a monetary

policy shock.

420n the one hand, the narrowing of the inaction region decreases the range of values that Ap* can take.
On the other hand, an increase in the rate of arrival of costless adjustment opportunities would decrease the
number of periods where AZ; ;; = 0 and AZ?,;, # 0. In the limit, if A;; = 1 for every product, then

AZijy=AZF, V> T}

i,
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7.1 The inflation wedge and the output gap

The three equation New Keynesian model as presented in Gali (2008) implies a relationship
between the difference of inflation and its frictionless counterpart, the inflation wedge, and the
changes in the output gap.*® In particular, letting 7 denote the output gap, it can be shown
that,

R .

Ty = 3 Ay + (25)
where \ and k are convolutions of structural parameters that take only positive values and, most
importantly, x is the slope of the New Keynesian Phillips curve.** This relationship implies
that the inflation wedge and the changes in the output gap should be negatively correlated. In

particular,

Cov(m — 7F, AGy) K
R 2
Var(Ag,) 3o 0 (26)

Empirical test Using the constructed measure of frictionless inflation, the prediction in (26)

is empirically assessed by a bivariate regression of the form,

T — T = a+ BAG + wy (27)

where the hypothesis of interest is whether the slope of this regression is negative and statis-
tically significant. The dependent variable is computed by taking the difference between year
over year regular price inflation and its frictionless counterpart (the two time-series in figure
17). For the output gap six different measures are considered. First to measure output at
the monthly frequency it is used either the monthly GDP index or industrial production index
both from the ONS. Second, to measure the gap the deviations of the log of the indices from
three types of trends are consider: an HP trend, a cubic trend or the trend extracted from the
Hamilton (2018) filter.

Results The slope estimates in (27) across are presented in table 3. In line with the prediction
in (26) all the estimated coefficients are negative. In three out of the six specifications considered
the slope is also statistically significant at a 10% significance level. Overall, this suggests the
co-movement between the inflation wedge and the changes in the output gap is qualitatively
in line with a positively slopped Phillips curve implied by nominal pricing frictions as in the

three equation new Keynesian model of Gali (2008).4°

43The output gap being defined as “the log deviation of output from it’s flexible price counterpart.”

44Details and derivations of relationships implied by the basic New Keynesian model can be found in appendix
C.

45Using the same values for the structural parameters as in Gali (2008, p. 52), the model implied value for
—k/\ is approximately -3 which is in line with some of the point estimates for 5 reported in table 3.
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7.2 Differential responses to a monetary policy shock

The second prediction considered concerns the responses of inflation and frictionless inflation
to a monetary policy shock. In particular, the three equation new Keynesian model under an
interest rate rule implies that in response to a monetary tightening frictionless inflation should
decrease more on impact and less in the subsequent periods. More formally, let £/ denote a

monetary policy shock then in the basic new Keynesian model of Gali (2008) it holds that,

omi _ o

— 2
oeyr et <0 (28)
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for any h > 0 (29)

Empirical test The predictions in (28) and (29) are formally tested by using local projec-
tions (Jorda, 2005) to estimate the impulse responses of regular price inflation and friction-
less inflation to an externally identified monetary policy shock. More precisely, for horizons

h=0,1,...,36, I estimate regressions of the following form:

Tepn = o + B Aty + 7 Xy + &
- 30
T, = o + B Ady + 5 X7+ €f

where Zz\t denotes the change in the official bank rate instrumented by the high-frequency
measure monetary policy surprises from Cesa-Bianchi, Thwaites and Vicondoa (2019) and X;
and X7 are vectors of control variables. In the baseline specification the vectors of controls
include four lags of regular price inflation and four lags frictionless inflation. In terms of the
coefficients [, and [, the hypothesis of interest are: (i) 55 < Sy < 0 and (ii) 85 > By, for h > 0.

Results The impulse responses for regular price inflation and frictionless inflation to a 1 per-
cent unexpected increase in nominal interest rates are depicted in figure 18. The first hypothesis
is not supported given that frictionless inflation reacts positively on impact whereas regular in-
flation is virtually unchanged and neither of the two responses is statistically significant (see
figure 19). The second hypothesis is only weakly supported at horizons greater than 21 months
when regular price inflation starts declining. It is important to notice that this is not a test
of whether monetary policy has effects inflation. From the response of regular price inflation
in figure 18 it is indeed the case that regular price inflation declines in response to a monetary
tightening albeit with a long delay, that is, there is a substantial prize puzzle. Instead, this
exercise should be interpreted as a test of the monetary transmission mechanism implied by
the basic new Keynesian model. In that model, frictionless inflation should react quickly to
a monetary policy shock and this is at odds with the responses in figure 18 where frictionless

inflation does not significantly react to a monetary policy shock at any horizon considered.
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8 Can frictionless inflation help to forecast published inflation?

This section investigates to what extent the proposed measure of frictionless inflation contain
useful information to forecast the actual published CPI inflation. The intuition behind this
hypothesis is simple. Consider a quote-line for which price remains unchanged for 9 months
and in the tenth month it change by 30%. The frictionless counterfactual for that quote-line is
another quote-line for which the price changes every period by small positive amounts, say, on
average 3% every month. Starting from this disaggregated perspective, the question is whether
an aggregate measure based on those small changes can contain useful information to forecast

the actual inflation rate based on infrequent “lumpy” price adjustments.

A simple forecasting exercise In order to assess the relevance of frictionless inflation to
forecast published inflation, the forecasting exercise of Blinder and Reis (2005) is revisited. In

particular, I consider linear regressions of the form:

Titrn = @+ X0 + & (31)

where 7,15 is the inflation between months ¢ and ¢ + h calculated based on the published
headline CPI index, X is a vector containing published inflation over the previous 12 months
(m4—12,¢) or frictionless inflation over the previous 12 months (7 ;,;) or both. Forecasting
ability is assessed through three different measures. First, the in-sample forecasting ability
is evaluated by estimating the different specifications of the above regression and computing
the standard error of the regressions. Second, the out-of-sample forecasting ability is assessed
by estimating the above regressions using data until January 2008 and computing the root
mean squared errors from forecasting inflation from then until the end of the sample. Third,
the version of the above regression with both m;_15; and 7 15, and the significance of the

coefficients is compared.

Results The results for the forecasting exercise are presented in table 4. First, for any forecast-
ing horizon considered the specification with frictionless inflation only has a better in-sample
fit than the specification only with headline inflation. Moreover, the gains of including both
frictionless and headline inflation are small at short horizons and inexistent for longer horizons.
The message for out-of-sample fit is similar since again the specification only with frictionless
inflation has better out-of-sample forecasting ability when compared with the specification with
the exception that there are typically gains from including both the frictionless and the headline
inflation. Finally, regarding coefficient significance only the coefficient on frictionless inflation
is significant at any of the horizons considered and more so for longer horizons. Overall, the
evidence from the forecasting exercise here presented is indicative that frictionless inflation can

contain useful information to forecast the published inflation.
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9 Conclusion

Menu costs are one of the leading explanations for the sluggish response of prices to changes
in economic conditions. This paper investigated the relationship between menu costs of price
adjustment at the micro level and the aggregate inflation dynamics. I introduce a methodology
to estimate counterfactual inflation in the absence of menu costs based on information contained
in the observed price quotes. Applying this methodology to rich micro data underlying the UK
CPI, I find that menu costs matter for aggregate inflation dynamics, but their importance
decreased over time. Moreover, the response of frictionless inflation to a monetary policy shock
is at odds with the monetary transmission mechanism from the basic new Keynesian model.

Finally, frictionless inflation contains useful information to forecast actual CPI inflation.
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Re-centred price gap (z;)

Figures and Tables

Figure 1: Illustration of proposition 1
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Figure 2: Illustration of proposition 3
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The solid black line illustrates a hypothetical observed quote-line. The dashed black lines show the boundaries
of the inaction region in terms of Z* for the price spell that starts at 7 and ends at 75, the dashed blue line
connecting the two pentagrams is equal to the linear interpolation (fij) and 2* is an arbitrary value chosen to
illustrate the argument.
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Figure 3: Illustration of proposition 4
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The solid black line illustrates a hypothetical observed quote-line. The dashed black lines show the boundaries
of the inaction region in terms of Z* for the price spell that starts at 7 and ends at 75, the dashed blue line
connecting the two pentagrams is equal to the linear interpolation (fij) and 2* is an arbitrary value chosen to
illustrate the argument.
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Figure 4: Price change distribution for DGPs in Monte Carlo experiment
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Distributions of price changes are obtained from a sample with a balanced panel with 1000 quote-lines spanning
240 months. The initial conditions are equally spaced points in the inaction region following the same rule as
in table 1.
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Figure 5: Kernel density of parameter estimates over Monte Carlo replications
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Each line is a normal kernel density estimate of each parameter estimate across 1,000 monte carlo replications. The red dashed line correspond to the case N = 100 and
T = 60, the blue dotted line to the case (N = 100 and T = 240) and the green solid line to the case to the case (N = 300 and 7' = 60). The vertical black solid lines
are at the true parameter values. The alternative DGPs are described in table 1.



Figure 6: Histograms of estimates of initial price gaps over Monte Carlo replications
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For each individual in each sample an estimate for the initial price gap is obtained af’:i,j,ti,j. The histograms
above are of the difference between the estimated initial gap and the true one. The vertical black solid lines are
the means of those differences across individuals and monte carlo replications for a given combination of DGP
and sample size. The rule used to generate the initial conditions is described in table 1.
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Figure 7: Step by step cleaning of an hypothetical quote-line
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Black solid lines represent raw log price quotes. Blue stars indicate observations flagged as sales. Downward
pointing green triangle indicates an observation flagged as a product substitution. Red crosses indicates obser-
vations that did not pass the validity checks. Orange squares indicate regular prices imputed for sales prices
following the procedure described in the main text.
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Figure 8: Distribution of estimated common parameters at the item level
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Notes: Histograms of estimated common parameters over different items. Histogram for the inaction region
lower bound excludes items for which none of the observed price changes is triggered by crossing the lower
bound (358 out of 979 items). Histogram for the inaction region upper bound excludes items for which none
of the observed price changes is triggered by crossing the upper bound. Solid black and red dashed lines are,
respectively, the mean and the median of estimated parameters calculated from the sample that is used to plot
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the histogram. Descriptive statistics across all items available in table 2.
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Figure 9: Pricing moments and reduced form parameters
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Notes: In all the scatter plots, each grey dot represents a given 6-digit item in the sample. In the first scatter
plot only items for which there is at least one price change triggered by crossing the upper and the lower
boundaries of the inaction region are considered (total of 424 items). In all the scatter plots, the dashed black
line is the best fit line obtained from a bivariate regression of the variable on the y-axis on the variable on the
z-axis.

46



Figure 10: Proportion of costless adjustments by COICOP division
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Notes: Each grey dot represents the ratio of costless adjustments over the total number of adjustments for each
of the 979 unique items in the sample. The red downward pointing triangle contains this ratio computed using
all the price changes for that division. The blue upward pointing triangle contains the (unweighted) average
ratio across all items in the division.
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Figure 11: Data versus model implied targeted moments (1/2)
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Notes: Each grey dot represents, for a given 6-digit item in the sample, the value of the moment in the data

(y-axis) against its model implied counterpart (z-axis). The black dashed line is a 45° line. The solid blue line

is the best fit line obtained from a bivariate regression of data moments on their model implied counterparts.
Both in the data and in simulated data the moments are computed after excluding the first price change of each
quote line. To compute the model implied moments a set of 50 panels is generated using the common parameter
estimates from the first stage and the same primitive shocks used for the estimation. The model implied moment

is the average of the respective moment across simulated panels. In terms of equation (9), the y-axis in each

plot contains g(Apj|s~-1) and the z-axis contains the average of g(Aij ¢>1(05)) across simulations.
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Figure 12: Data versus model implied targeted moments (2/2)
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Notes: Each grey dot represents, for a given 6-digit item in the sample, the value of the moment in the data
(y-axis) against its model implied counterpart (z-axis). The black dashed line is a 45° line. The solid blue line
is the best fit line obtained from a bivariate regression of data moments on their model implied counterparts.
Both in the data and in simulated data the moments are computed after excluding the first price change of each
quote line. To compute the model implied moments a set of 50 panels is generated using the common parameter
estimates from the first stage and the same primitive shocks used for the estimation. The model implied moment
is the average of the respective moment across simulated panels. In terms of equation (9), the y-axis in each

plot contains g(Apj|s~-1) and the z-axis contains the average of g(Aij ¢>1(05)) across simulations.

49



Figure 13: Data versus model implied non targeted moments
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Notes: Each grey dot represents, for a given 6-digit item in the sample, the value of the moment in the
data (y-axis) against its model implied counterpart (x-axis). The black dashed line is a 45° line. The solid
blue line is the best fit line obtained from a bivariate regression of data moments on their model implied
counterparts. Both in the data and in simulated data the moments are computed after excluding the first
price change of each quote line. To compute the model implied moments a set of 50 panels is generated using
the common parameter estimates from the first stage and the same primitive shocks used for the estimation.
The robust skewness and robust kurtosis are computed as in Berger and Vavra (2018, table 1), in particular,
Robust-Skew = (Poo + Pio — 2P50)/(Poo — P1o) and Robust-Kurt = (Pog — Pea.5 + P37.5 — P1o)/(Prs — Pas).
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Figure 14: Model fit for all items
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Notes: Blue bars represent the histograms for the distributions of regular price changes observed for the whole
dataset. The black solid line is kernel density estimate of the distribution of price changes for all items over
50 panels of simulated data. Simulated data is generated by combining data of separate items and simulating
using the the estimated common parameters. When considering the price changes, the first price change in
each quote line is excluded. The histogram excludes log price changes that are not in the range [—0.7,0.7]. The
excluded observations account for 0.78% of the total number of non-zero price changes.
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Figure 15: Model fit for the worst fitting 9 items
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Notes: Blue bars represent the histograms for the distributions of regular price changes observed in the data
for a given item. The black solid lines the kernel density estimates of the distribution of price changes over 50
panels of simulated data. Each panel was simulated using the estimated parameter values for the first stage
for each item and the same primitive shocks used for estimation. When considering the price changes, the first
price change in each quote line is excluded. The items chosen are those for which the first-stage SMM objective
function (9) evaluated at the estimated parameters displayed the largest values.
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Figure 16: Model fit for the best fitting 9 items
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Notes: Blue bars represent the histograms for the distributions of regular price changes observed in the data
for a given item. The black solid lines the kernel density estimates of the distribution of price changes over 50
panels of simulated data. Each panel was simulated using the estimated parameter values for the first stage
for each item and the same primitive shocks used for estimation. When considering the price changes, the first
price change in each quote line is excluded. The items chosen are those for which the first-stage SMM objective
function (9) evaluated at the estimated parameters displayed the smallest values.
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Figure 17: Regular price versus frictionless inflation for the UK (1997m2 - 2018m1)
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Notes: Regular price and frictionless price indexes are computed at a monthly frequency from weighted averages
of the elementary aggregates in (24). Year over year inflation is computed as the percentage variation in the
index of a given month against the same month of the previous year. The grey shaded area denotes the great
recession.
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Figure 18: Impulse responses to a monetary policy shock
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Notes: Impulse responses obtained from a local projection of the form y;yp = ap + ﬂhE + Xt + & for
horizons h = 0,1,...,36. The change in the nominal Bank of England interest rate is instrumented with the
series of high-frequency identified monetary surprises by Cesa-Bianchi, Thwaites and Vicondoa (2019) and the
vector of controls X; includes four lags of regular price inflation and frictionless inflation.

Figure 19: Significance tests of impulse responses to a monetary policy shock
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Notes: For a local projection of the form y;1p = ap + ﬂhZi\t + v Xt + €¢ this plot contains the t-statistics for
the null hypothesis Hy : 85, = 0 over different horizons. For a given horizon if the line is outside the grey shaded
(dashed) area indicates the null can be rejected at the 5% (10%) against a double sided alternative.
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Table 1: Data generating processes in the Monte Carlo experiment

DGP Lj Tj My Oc,j /\j
1 -0.10 0.10 0.002 0.05 0.025
2 -0.10 0.10 0.002 0.05 0.10
3 -0.10 0.10 0.002 0.05 0.40

Notes: For each of the DGPs above balanced panels of three sizes are considered: 100 quote-lines over 5 years
(N =100, T = 60); 100 quote-lines over 20 years (N = 100, " = 240) and 300 quote-lines over 5 years (N = 300,
T = 60). True initial price gaps are set to equally spaced points within the re-centred inaction region.

Table 2: Descriptive statistics for estimated parameters

~ ~

Z; Z; fi Oe,j Aj
Mean -2.691 2.271 0.001 0.09 0.139
Median -0.596 0.568 0.002 0.072 0.114
Std Dev 8.633 6.676 0.011 0.06 0.109
IQR 1.87 1.466 0.004 0.064 0.092
5th Percentile -9.377 0.129 -0.014 0.023 0.024
10th Percentile -5.586 0.194 -0.007 0.032 0.039
25th Percentile -2.104 0.31 0 0.05 0.073
75th Percentile -0.234 1.776 0.004 0.114 0.165
90th Percentile -0.056 4.925 0.008 0.179 0.266
95th Percentile -0.02 8.815 0.012 0.213 0.37
Minimum -130.84 0 -0.137 0.006 0.001
Maximum 0 130.262 0.058 0.4 0.868

N 979 979 979 979 979

Notes: Descriptive statistics calculated over different items. All the numbers rounded to three decimal places
and any number smaller than 5 x 10™4 is displayed as a zero.
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Table 3: Inflation wedge over the business cycle

Deviation from HP trend Cubic trend Hamilton trend

Monthly GDP

-5.52 -10.62* -3.06

(4.56) (5.93) (4.18)
Industrial Production

-3.11 -4.6* -3.77*

(2.44) (2.45) (2.21)

Notes: Each cell contains the slope coefficient from a bivariate regression of the form (m; —7}) = a+ BAG: +w;.
In parenthesis are the Newey and West (1987) HAC standard errors with 12 lags. In all the specifications
the dependent variable is computed as the difference between year over year regular price inflation and its
frictionless counterpart (as depicted in figure 17). The independent variable varies across specifications: output
is measured by either the log of a monthly GDP index (top panel) or the log of industrial production index
(bottom panel) and the output gap is computed as the log deviation of the given output measure from an HP
trend (second column), from a cubic trend (third column) or from a Hamilton (2018) trend (fourth column). *
indicates significance at the 10% level, ** indicates significance at the the 5% level and *** indicates significance
at the 1% level. All the numbers are rounded to two decimal places.

Table 4: Forecasting Inflation - Frictionless versus Headline

Forecasting horizon 6 Months 12 Months 24 Months 36 Months

In-sample standard error

Frictionless 0.67 0.95 1.54 2.09
Headline 0.69 0.99 1.78 2.54
Both 0.66 0.94 1.54 2.09
Out-of-sample root mean squared error
Frictionless 0.81 1.16 1.99 2.40
Headline 0.83 1.30 2.79 4.27
Both 0.77 1.09 1.69 2.00
Multivariate regression coefficients
Frictionless 0.26* 0.47* 1.32** 2.14**
(0.14) (0.25) (0.52) (0.67)
Headline 0.08 0.20 0.08 0.08
(0.12) (0.19) (0.45) (0.69)

Notes: Each cell in the table is derived from a regression of the form 7 1y, = o+ X3 + &; where h denotes
a particular forecasting horizon. For each forecasting horizon, X contains headline published inflation over
the previous 12 months (m;_12,) or frictionless inflation over the previous 12 months (7;_;5,) or both. The
in-sample standard error in the top panel is computed from the whole sample 1997m2 to 2018m1. The out-
of-sample root mean squared error in the second panel is computed by estimating the regression using data
from 1997m2 to 2008m1 and using the forecasting errors from then to the end of the sample. The third panel
reports the regression coefficients of the multivariate regression containing both m_12+ and 7r§_12,t over the
whole sample 1997m2 to 2018m1. In parenthesis are the respective Newey and West (1987) standard erros with
a lag length choice equal to 12. * indicates significance at the 10% level, ** indicates significance at the the 5%
level and *** indicates significance at the 1% level. All the numbers are rounded to two decimal places.
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Appendix to
Frictionless Inflation

by Miguel Bandeira

A Proofs of propositions and auxiliary results

This appendix contains the proofs of all the propositions in the main text as well as some
auxiliary results used in those proofs. Appendix A.1 contains the proofs of results in the
estimation block. Appendix A.2 contains the proofs of all the results associated with the

smoothing problem, including the solution to the filtering problem.

A.1 Proof of results for the estimation block

Proof of Proposition 1. For any t it follows from (7) that L; ;, depends only on the parameter
Ai; and the realizations of the shock v;;, which is drawn from a Uniform (0,1), hence, L;

does not depend on w; ;. Iterating (6) backwards and using Z, , = 0 yields,

Zige = iy + ngk (P1.1)

Therefore, for any ¢ this depends only on the parameters u;; and o.;;. For any t > 7},

2]7
equation (5) implies that Z; ;,1 = Z*J o — Tijo where Tfj denotes the last time period where
’ .7 ’
a price change occurred. Subtract Z; ;,—; on both sides of (5) and use Z; ;1 = Z.*]. o~ Tijo
1 /Lv.]
to obtain,
Apije = (Zije = 27500 ) (1= dijy) (P1.2)

Finally, given that Z7; , is independent of z; ;¢ for any ¢, it remains to be shown that for ¢ > 7,

also d; ;; is independent of x; ;0. To see this substitute Z; ;1 = Z*. , —x;,0in (2) to obtaln.

(VR
dv]t ]l{ZJT - ’Zj,te <$Z7],Zfz,])}(1_LZ]t)+]}.{ ’L_]t_Z:JTk }L 7]t (Pl?))
Given that Zi and L; ;; do not depend on z; j ¢, this completes the proof. O
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A.2 Proof of results for filtering and smoothing

This section contains the proofs of all the relevant results used to derive the smoothed probabil-
ity density function of cumulated frictionless inflation at any point in time. In total this section
contains seven results. The first one is an algebraic fact on the product of normal densities
(lemma 1). That is followed by two results that are the solution to the filtering problem in
state-space representation (5), (6) and (7) (lemmas 2 and 3). This is followed by three results
that characterise the smoothed density presented in the main text (propositions 2, 3 and 4)
and the proof of smoothed estimates for the pure Calvo model (corollary 1). In addition to the
the notation introduced at the beginning of section 3.3, the function o(:) : R — R is used to

denote any function that is equal to zero almost everywhere in the real line.

A.2.1 Auxiliary fact on the product of normal distributions

Lemma 1 Let z,y, pip,a,c € R, 0,,0, € Ry and p, = ax + c. Then,

L) () - o5 () o

where,

ora(y —c) + o i

(L, = L1.2
05 + a’o? ( )

_ 0y0s
P N L1.3
7 \ /05 + a’o? ( )
fly = aply + C (L1.4)

0, =1\/0y + a*0} (L1.5)

Proof of Lemma 1. Using the definition of the standard normal probability density function:

1 (y—np 1 (2=, 1 y—iy)? (=)’
_¢< y)X—(ZS( >: eXp{—< 23/) _( 2)
oy oy o Oy 2moy 0, 20 20

y x

1 1
20%0

2
Yy

S [0y — 1y)? + (2 — 1)’
)

(L1.6)
Given that p, = ax + ¢, rearrange terms and define fi, = (0] + a’02) " (o2a(y — ¢) + opps) to
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obtain,

() = 2y — 0 + (02?4 02) (a2 = 20f,) + 024
2

=02(y — )’ + (02a° + o)) (2 — 2afiy + i2) + oops — (020° + o)) i

= (020 + 02) (2 — i) + 02y — 0 + 0% — (o2 + %) (L1.7)

(%)

Using the definition of fi, and rearranging terms yields,

(#x) = 20 (020> + 00) " [(y — ©)* = 2ap.(y — ) + a’pil)

- Jiaz(aiaz + 05)_1(y — (apy + ¢))? (L1.8)
~——

=iy

Combine (L1.8) and (L1.7) and plug back in (L1.6),

Lo(y=m) 1 (= L 1 T — fir)’ y— )"
ot () < 20 (72) = a0 s s+ i
oy oy O o 2100, 2\ (02a® + 02)"lo202  (02a® + 0})

oy

Finally, define 6, = (o] + a’02)"2(0,0,) and &, = (o + a*02)2 and rearrange to obtain,

This completes the proof. O
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A.2.2 The filtered density: main result

Lemma 2 Consider an arbitrary time period t € Z;o 1.

If 3k € Zjo k) such that t = T*,

fz5 1200 (271250) = 6 (2% — ") (L2.1)
where & =0 for k=0 or c® =z« + 2y for k € L K-

k_In that case, let TF denote the last period

where (L2.1) holds, that is, let k be such that 3j € Zj k) that satisfies T8 < 79 < t. For
a given combination of t and k, define: b =t — 7%, ZF = 1{k = 0}xo + 1{k > 1} — 7,
ZF = 1{k = 0}xo + 1{k > 1}¢* — 2 and TF = (Z*, Z%). Then, ignoring terms that are zero

almost everywhere, it holds that:

Otherwise, suppose Pk € Zyo,k) such that t = T

*| t. i Z*_/“ng k(.* * k
Jzi1200 (2425 0) < —¢ Br(z*) 1{z* € I"} (L2.2)

Oy Op

where B5(-) is given recursively by,

1, ifb=1
b () = ) (L2.3)
N I |
oo (SR By dy, if b > 1

Ob—1

and the means and standard deviations of the distributions are given by,

uf =bu+c* and o, = Vb o. (L2.4)
k
ko CFbT . b
fg(x) = P and ab—\/—bleag (L2.5)

Proof of Lemma 2. Consider each of the cases separately.

Proof of (L2.1): If t = 7°, the distribution of Z} must be degenerate at 0 since, by definition,

2% = p; —pr. Otherwise, if t = 7% for some k € 21 k) it means that the time period considered

corresponds to a period where a non-zero price change is observed. In that case, from (5) it
must be the case that d; = 0 and, hence, the distribution of Z must be degenerate at z; + xo.
Defining ¢* = 0 for k = 0 and ¢ = 2.« + ¢ for k € Z,k) and using the Dirac delta to denote
a degenerate pdf, (1.2.1) follows.
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Proof of (L2.2): To establish (L.2.2), start from Bayes’ rule:

fz;|zt;e(2*|2t; 9) = fz;|zt;zt*1;®(2*|2t; Zt*l% 9)

cot1.0(2] 2 2N 0) fue g0 (22010
B fzt\zt,z 1,@( t| )fzt|z 1,@( | ) (L2.6)

/th|Zt*;Zt1;®(zt|a; 2t=10) fzg|zt*1;e(a|zt_1§ 0) da

Consider the first term in the numerator of (L.2.6) and use the law of total probability:

Jzazpz10(2l 2" 27 0) = 20201000 (26|25 271500) X fryze20-1,0(012% 2715 0)
+ fz VASYARRES ~®(Zt|7«'*§zt_1; 1;0) x fL Z*~Zt*1~®(1|Z*;Zt_1§9) (L2.7)
t‘ £ sty tl t )

Since fk € Zyo,k) such that ¢ = 7% it must be that this is a period of inaction and, hence,

k

2 = #z_1 and d; = 1. Moreover, from #j € Zyo,k such that 7% < 7/ < t it must also hold

that z;_1 = z;+. Using the definition of d; in (2) and the transition equation for the arrival of

costless adjustment opportunities in (7), expression (L2.7) can be written as:
thlzg;Zt—l;@(ZAZ*; A0 =1{* €T x (1= N) +1{2* = zx + 20} X A (L2.8)

where ZF = (Z%, Z%) and Z* = 1{k = 0}z + 1{k > 1}c* — 7 and Z* = 1{k = 0}xo + 1{k >
1}c* — z. Substituting (L2.8) in (L2.6) and re-arranging yields:

fzt*|zt*1;@(2*|zt_1$ 0)

[z:1200(27250) = . 1{z" e I}
t
A fzzre(2]2710)
: ’ 1{z* = L2.
+ Ty c {z" =z + 20} (L2.9)
—o(=*)

Zk
where C; = / [z zt-1.6(a|z'™1; 0) da and the second term on the RHS is zero almost every-
zk

where in the real line. Considering now the second term in the numerator of (L2.6) and use

the Chapman-Kolmogorov equation to obtain:

th*‘Zt—l;@<Z*’Zt71; 0) = /th*Zt*l;e(Z*lg*; 0>f2;71‘zt71;@(§*|2t71; 0) dg* (L210)

Using the transition equation for the cumulated frictionless inflation in (6) and the normality

62



of the idiosyncratic shocks (g;) yields that,

fz:12:_0(2712750) = 0i<b (M) (L2.11)

£

Substituting (L.2.10) and (L2.11) in (L2.9),

* — 1 2 — + 2* ok t— ~% * *
Frmo(=l250) = € / o (YD) fop el ) 2 1" € T4 ofs)
(L2.12)

Equation (L2.12) is a filtering forward recursion. It expresses the filtered pdf a given time period
as a function of the filtered pdf in the previous time period. Filtering forward recursions are
common in the nonlinear non-Gaussian filtering literature (see, for instance, Kitagawa (1987,
equation 2.3) or Sarkkd (2013, theorem 4.1)). The key difference of (L2.12) is that it holds
only for inaction periods (i.e. Bk € Zjg k) such that t = 7%) for which the last period where Z*
is known is 7% (i.e. #j € Z x that satisfies 7% < 77 < t). To complete the proof it remains to

be shown that (1.2.2) satisfies (L2.12) for any such time period. This is shown by induction.

Base case: Suppose t is an inaction period and that ¢ = 7% 4+ 1 (so that b = 1). In that case,
using that at ¢ = 7% the filtered pdf is given by (L2.1), then (L2.12) reads,

O¢

*| T — 1 Z¥ = + z* ~x ok * *
fZ*k |ka+1.@(2 27 0) = Crk1+1 /0—925 <—(# >> §(2* — M) dz* 1{z* € TF} + o(2*)
TR41 ’ <

=C3h, Uigb (LM) 1{z* € T} + o(z")

*

=Col, 1o (Z — “lf) BR(2*) 1{z* € TF} + o(2¥) (L2.13)
g1 g1

where: (i) the second equality uses the properties of the Dirac delta function and (ii) the third
equality uses the definitions of yf and oy, in (L2.4) with b = 1 and the fact that 8F(z) = 1 for
b =1 from (L2.3). Therefore, (L.2.2) satisfies (L2.12) for the base case.

Induction step: Suppose t —1 and t are both inaction periods and they are such that 3j € 2o, K
that satisfies 7% < 77 <t — 1. Define b = t — 7% and suppose (L.2.2) holds for ¢ — 1, that is, the
filtered pdf at t — 1 can be written as:

* k
— Hp—1

Op—1

A

el 1
Jzr 2010 (F2710) = C oy ¢ (
Op—1

b—

) BE L(EN1{Z € TF} +o(2)  (L2.14)

where C;_; is a normalisation constant. Substituting (L2.14) in (L2.12) yields,
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zZk * ~x sx .k
Famotetetin = e [ Lo (F2UE) L (Fob) g eyisrager e 24 o)
tJz

k Oc O¢ Op_1 _1
Cr 1 (= [T 1 (7 i) : k
B C; U_b¢( oy >/_Zk 5—b1¢( Go1 )ﬂb LN dZ 1{z" € I} + o(27)
k
s ( Mb) G5 ()1{=" € T + o(=") (12.15)
Cy oy Op

where: (i) the first equality follows from combining (L2.14) in (1.2.12) and rearranging terms;
(ii) the second equality uses lemma 1 to combine the two normal pdfs in the integral and the
definitions in (L.2.4) and (L.2.5); (iii) the third equality uses the definition of (1.2.3).%6 Therefore,
the filtered pdf is again given by (1.2.2).

This completes the proof. O

A.2.3 The filtered density: auxiliary result

Lemma 3 Consider an arbitrary time period t € Zj;o . If t = 70 then,

fz:10 (2718) = 6 (2%) (L3.1)

Otherwise, for any t > 7° let k be such that 3j € Zyp ) : 7% < 79 < t. Define b =t — 7,
ZF =1{k = 0}zo + 1{k > 1}¢* — 7 and ZF = 1{k = 0}xo + 1{k = 1}c* — 2. Then,

1 * _ .,k
Far1r0 (12710 o —cb(Z “b) B () (L3.2)
Jp Op

where BF(+) is given by (L2.3), u¥ and oy are given by (L2.4).

O expression (L3.1) follows from the fact

Proof of Lemma 3. For the initial time period ¢ = 7
that the distribution is degenerate at zero since, by definition, Z; = p; — p¥,. For any other

time period, use the Chapman-Kolmogorov equation and the pdf for Z; conditional on Z; ;:

o 1 25— (u+z* x|t .
fzp12010(2"]2150) = /_Qﬁ (L)) fztiﬂth;@(z 12071 0) dz (L3.3)

O¢ O¢

It remains to be shown that for any ¢, the expression for the pdf in (L3.2) satisfies (L3.3).

According to the expressions for the filtered pdf in lemma 2 there are two cases to be verified.

46In the second equality Lemma 1 is invoked with: y = 2*, x = %, a = 1, ¢ = pu, Oy = 0¢, 0y = 0p—1 and
k
Mo = Hp—1-
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First, consider the case where t — 1 is either a period for which a non-zero price change is
observed or the initial period, that is, 3k € Zjg g} such that t — 1 = 7% Combining the filtered
density in (L2.1) with (L3.3) yields,

Frevzrio(2*|27130) = / o (T o - yaz

3 O-E
:i¢<2*—(u+ck)>
o, o
_ 1 Z*_:ulf ki x
- o (T2 st (L3.9)

where: (i) the second equality uses the properties of the Dirac delta function; (ii) the third
equality used the definitions of uf and o, in (L2.4) for b = 1 and that 8f(x) = 1 Vo if b =1
from (L2.3). Therefore, (L3.2) holds.

Second, consider the case where t — 1 is a period of inaction and the last period for which the
value of Z* is known is given by 7%. In that case, the filtered density is given by (L2.2) and
(L3.3) reads,

z* * * s _ .k
th*|Zt71;@(Z*’Zt71; 9) = / i‘b (Z (,LL te >> ! ¢ (Z ’ub_l) ﬁllj—l(g*) dz*
7" O¢ Oc Op—1 Op—1
1 (25— pf ! F () ok e e
=C;—o —¢ = By_1(27)dz
Op Op 7k Op—1 Op—1
—ate (oMY gy (135
=C} o o p (2 .

where: (i) follows from substituting (L2.2) in (L3.3) and re-arranging; (ii) the second equal-
ity from applying lemma 1 to combine the two normal densities (similarly to the derivation
of (L2.15)); (iii) the third equality follows by using the definition of 8F(2*) in (L2.3). This
completes the proof. O

A.2.4 Proof of Proposition 2

Proof of proposition 2. For the period t = 7°, Z* is degenerate at zero since, by definition,
Z} = p;y — plo. For any other period where a non-zero price change is observed, ¢ = 7% for some
k € Zp k), Z* is degenerate at the value that closes the price gap, that is, Zf = z.« + o (see

measurement equation (5)). This completes the proof. O
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A.2.5 Proof of Proposition 3

Proof of proposition 3. This proof has two blocks. First, a smoothing backward recursion that
holds for any ¢ € (7%, 7%*1) and some k € Zyo, Kk -1 is derived. Second, I verify by induction that
(12) satisfies that recursion for any ¢ € (7%, 7¥*1). To derive the smoothing backward recursion

I start from,
fZ“ZT;@(z*]zT;G) = /fZ;,Z;HZT;®<Z*75*|ZT§9) dz*
:/fzt*+1|ZT@ fZ*|Z are(2t|75 275 0) dz
:/fZ:+1|ZT fZ*|Zt+1 247520 0) dZ*

ok

z

B /fz;HzT;@(g*VT; 0) fz:,,12::0(Z5|2%50) f25121,0 (%25 0)

th*H\Zt;e(g*‘Zt; 0)

fz:., (Z*2%;0) fze 1gr.0(Z*]2T;0
— forizmol \ze/ zinlzio N5 0) gy zmeEl36) (P3.1)

Z* |Zt (Z*’Zt, 0)

This derivation is similar to Kitagawa (1987, equation 2.4) or Sarkka (2013, theorem 8.1). For
any t € (75, 781 the filtered pdf fZ;|Zt;@(z*|zt; 0) is given by (L2.2) whereas the term in the
denominator of the expression inside the integral is given by (L3.2). Let b =t — 7%, substitute
using (L2.2), (L2.11) and (L3.2) and re-arrange to obtain,

(=t ) Tz iz F1750)
)ﬁb( {2 eI’“}/ dz*

C 1
Fonzro(z)T:0) = £ ¢(
ARVA 02 Nb+1> ﬁk ( *)

Ub+1 Tb+1
e | R () o0 P32
+o0(2") = Z .
Ct 0b1+1¢< U:-b:l) 65-&-1(2*)
—o(z)

Let C, = C, /C? and re-arrange terms to obtain,

P k 2* -
Lo (Z24) Lo (222) £y pmo(Z7]2736)
1 —H Sk
o (Tz“) B (2)

A +o(2*)

[rame(27]270) = Cpy (") 1{z" € Ik}/

(P3.3)
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Equation (P3.3) is a smoothing backward recursion as it relates the smoothed pdf at time ¢ to
the smoothed pdf at time ¢t + 1. Whilst (P3.1) holds in general for any Markov state-space
representation, (P3.3) is specific to the state-space representation in (5) to (7) as it uses the
expressions for the filtered density and its auxiliary form derived in lemmas 2 and 3 and that
hold for any ¢ € (7%, 7#*1) for some k € Zjy x—_1j. It remains to be shown that expression (12)
satisfies (P3.3) for any ¢ € (7%, 7) for some k € Zjg x_1;. To do so, the proof proceeds by

induction.

Base case: Let t = 7"+ — 1 so that b = A¥ — 1. In that case, the smoothed pdf at t + 1 is
given by (11). Substituting that in (P3.3),

fZ:k+171|ZT;9(Z*|ZT5 0) = éﬂ'k“—l/@Zk—l(Z*)ﬂ{Z* € Ik}

dz* + o(z*)

1 Fpg 1 (z —(puAt-2* )) ok kel
/ UAk1¢< Oak_1 > ¢ Oe 5(2 ¢ )
X

= Crevry Bpn_ (27) 1{z" € T} +
ﬁ@ﬁ (C “HA k)ﬁk (Ckz—H)
A
. ¢ (z* ity 1) ¢ <Ck+1_ulzk)
5k gk o
—Clc+1 lﬁAk 1( )]1{2 ez‘k} Ak_1 Ak_1 . Ak +O(Z*)
)

S 1 *_'akk— * * * *
= Lkl F ¢< 5 = 1) 52’“—1(2 )XZ’“—I(Z )]l{Z E_’Z,'k}—i—O(Z)

Opak_q

(P3.4)

where: (i) the second equality follows from the properties of the Dirac delta function; (ii)
the third equality uses Crar1_y = Crasr_q/ B4 (cFt1) and lemma 1 to combine the two normal
densities in the numerator as well as the definitions of fif and & in (15); (iii) the fourth equality
simply rearranges terms and uses that x%,_,(z) = 1,V from the recursive definition in (14).*7
This shows that (12) satisfies the smoothing backward recursion (P3.3) for t = 7F+1 — 1.

47In the third equality lemma 1 is invoked with: y = ¢**+!

— * — — — —
,x=2",a=1c=pu, oy =0c, 0 = 0opr_q and
_ .k
Mo = Ak _q-
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Induction step: Consider two time periods ¢, + 1 € (7%, 7%+1) and define b = t — 7*. Suppose
that (12) holds for ¢ 4+ 1 and substitute that in (P3.3) to obtain,

Jzrzm0(2"12750) = CiCra B (2)1{z" € T"}

) / Lo (Z2h) Lo (22} g (8 ) gl (3 (29
i -,
Zk O‘bilqﬁ( O'b+bl+1> /Bb-f—l(z )
=(*)

(P3.5)

where C,,1 denotes the normalisation constant of the smoothed pdf at ¢ + 1. Looking at the

integral term only, we have that:

(x) =

5 sx—pk ~k 5% s*x_rk
Zk _1 Z 7Hb1 ) 1 —fy (Z*) 1 2Ty E o (ax
/ Jb+1¢< Tb+1 ¢ b 6§+1¢ &§+1 Xb+1(z ) ~x
Z

" 1¢<%> dz

Ob+1 Ob+1

1 2 =g 1 ZF - /1113-1-1(2*) ke g~
= T¢< - ) - ¢( - i (2%) dZ*
/_Z’“ g oy T T !
Zk
1 (Z* - ,albg) / 1 ZF - ﬂ]g-q-l(Z*) ke g~
= =% - v - Xby1(27) dz”
oy oy zk Ty G i
1 z* — /:Lk *
_ L ( - b)X’g(z) (P3.6)
Ty Ty

where: (i) the first equality follows from cancelling out the terms 3}, ,(Z*) and by using lemma
1 to combine the first two normal densities in the numerator along with the definitions of
fix(x) and &, in (16); (ii) the second equality follows from cancelling out the first density in
the numerator with the one in the denominator and using again lemma 1 to combine the two
remaining pdfs along with the definitions of jif and ¥ in (17); (iii) the third equality takes out
of the integral terms that do not depend on z*; (iv) the fourth equality follows from using the
definition of xF(-) in (14).%8

48In the first equality, lemma 1 is used with: y = *, 2 = 2*, a = 1, c = p, 0, = 0oy, oy =0 and i = ,u’b“. In
the second equality lemma 1 is again used but now with: y = 2*, . = 2*, a = b/(b+1), c = ¥ /(b+ 1), 0, = 53,
Oy = 6§+1 and p, = ﬂffH.
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Finally, define C; = C,C,,; and plug back (P3.6) into (P3.5) to obtain,

Jziizm0(]2"30) = vkas('z;“b)ﬂb() (U €T Ho(z) (PR)

b
Therefore, (12) is again the solution for the smoothing backward recursion in (P3.3).

This completes the proof. O

A.2.6 Proof of Proposition 4

Proof of proposition 4. This proof is similar to that of proposition 3. I will show that (18) is
the smoothed density for any ¢t € (7%, T]. For the base case t = T, the smoothed pdf must
be equal to the filtered pdf. Therefore, I start from the filtered pdf expression in (L.2.2) with
k=K,t=T and b= A and show that it is equivalent to (18),

* _ K
Frgamol12730) = O~ (T 50 ) 1t €79 + o)

OAK AK
* _ K

= Cr oo (TR B S I €T o) (P
OAK OAK

where C7p is the integration constant for the filtered pdf in (1.2.2) for ¢t = T" and the second
equality follows from (X, (z) = 1 Vz as defined in (14). Therefore, (18) is satisfied. For

K

t € (7%, T), it means that the last period where Z* is known is 7% and, in that case, the

smoothing backward recursion in (P3.3) reads as:

2o Lo (22 ra(212750)
; sb(%) B4 (2")

Ob+1 Ob+1

1 z -
Ub¢> o
fz12.0(2"12"50) = G (2) 14z EIK}/ dz"+o(z")

(P4.2)

where b =t — 7%, Assuming (18) holds for ¢t + 1 € (7%, T}, the induction step simply requires
showing (18) solves (P4.2) . Substituting (18) in the smoothed pdf in (P4.2) yields,

fri12m0(212730) = G Con B () 1{z* € X}

[ R e (B b
75 o (T L ()

(P4.3)

where ét+1 is the normalisation constant of the smoothed pdf at ¢t + 1. Define C, =0, C’t+1,
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cancel out terms inside the integral, bring the first pdf outside the integral and use the definition
of ¥ (x) in (19) to write (P4.3) as,

1 K

friizre(e"1s":0) = Ci—g ( — ) BEE) () 1{z" € TFY + o(2") (P4.4)

Op

Therefore (18) solves the backward smoothing recursion in (P4.2). This completes the proof. [

A.2.7 Proof of corollary 1

Proof of corollary 1. For the cases where 3k € Z k) such that ¢t = 7%, use the definition (21)
along with the smoothed density in (11) to obtain,

7, =E [Z*|ZT; (:)c] = /z*é(z* — Mz =" (C1.1)

This follows from the properties of the Dirac delta function.

For the remaining cases, the key fact to notice is that if x = —oo and & = +o00 then Z* =
1{k = 0}zo + 1{k > 1}¢* — 7 = —oo0 and Z* = 1{k = 0}xg + 1{k > 1}cF — 2 = oo. If the
boundaries of the inaction region diverge, then for a given k € Zjg x_1; and b € [1,A* — 1] or
k= K and b € [1, AX] it holds that 8f(x) = 1, x¥(x) = 1 and f(x) = 1 Vx € R. To formally
verify this consider first the recursion 8 (z) as defined in (13) and verify this by induction. Fix
k equal to some value in Z k). Consider the base case b = 1. By definition, f(z) = 1,Vz € R
so the base case is trivially satisfied. For the induction step, suppose (F(z) = 1,Vx for some
b > 1then using the definition in (13),

By (2) = /Zk L4 (w) By (y) dy = /OO (%cb (w) dy =1 (C1.2)

zk Obp Oy 00 Op

where the last equality follows from the fact that it is an integral of a normal density from —oo
to oo. Similarly, for a given k equal to some value in Z g, it is the case that x%,_ (z) =1 by
definition. For the induction step, suppose that ¥ 1(z) =1 for some b < A¥ — 2. Then using

the definition in (14) and similarly to above,

x'ﬁ(@z/ﬁ kl ¢<y_fl§“(x)) X’§+1(y)dy=/_oo kl cb(y_.’:if“(x))dy:l (C1.3)

zk Opt1 Opy1 o0 Opi1 Opi1

where again the last equality follows from the fact that it is an integral of a normal density

from —o0 to oo. The proof for ¢f(z) is analogous to that of xF(z) in (C1.3).

For ¢ such that 3k € Zy x_1) such that ¢t € (7%, 7%*1) it is the case that,
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0‘??‘

Z\t Z*‘Z

) () ) 1 € T

=
Sk

= jig (CL.4)

For t such that ¢ € (7%, T7] it is the case that,

7 1. T.c| *l Z*—,U,g{ K/ x\ K/ _* * K *
Zt—E[Z|z7@]— = | ——=) By (%) (7)) 1{z* € " }d=

= [y (C1.5)

where in both (C1.4) and (C1.5) the first equality just uses the definition of smoothed estimates
in (21) with the smoothed pdf in (12) and (18), respectively. The second equality holds since,
under the special case with 2 = —oco and T = oo, it is the case that SF(z) = 1, x¥(x) = 1 and
ti(x) =1Vz € Rand Z% =R for any k € Zp g).

This completes the proof. n
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B Computational details for estimation and smoothing

This appendix contains computational details for parameter estimation and for the computation
of the smoothed density estimates as described in section 3.All the procedures here described

are implemented in MATLAB R2015b.%°

B.1 Details for the parameter estimation

Parameter estimation is done in two stages as described in section 3. In this section, I briefly
describe the algorithms used to obtain parameter estimates for common parameters in the first

stage and to obtain the estimates of initial price gaps in the second stage.

B.1.1 Algorithm for estimation of common parameters

s
jlt>1

parameters ¢; and the vector of primitive shocks used to generate that panel of simulated data
& = {{@J’t,ym,t}zé;}ijl.g’o More precisely, one should write Aps,_ . = f(£°,6;) where the

function f(-) is implicitly defined by the state-space representation in (5) to (7). Moreover, for

In general, the vector of simulated price changes A . depends on the vector of common

a sequence of S vectors of shocks = = [£1, ..., €], let G(Apjji>+1,0;,Z) denote the value of (9)

where Apj~.1 be the vector of price changes excluding the first observed in the data.
Algorithm 1 The algorithm for minimisation of G(Apjji~,1,6;,Z) is as follows:
1. Draw 50 vectors of shocks conform with the data template. Let Z° denote that vector.

2. Choose an initial value for the vector of parameters, say Hﬁo).

3. Use a global search algorithm to search for the minimiser of G(Apjs,1,0;,2%).%!

4. The search is subject to the restrictions: z; <0, z; > 0, o.; > 0 and \; € [0, 1].

Some points about algorithm 1 above are worth emphasising. First, in step 3 I use global
search methods since in preliminary simulations gradient based methods failed to converge in
many instances. Second, the simulated data is generated according to the same data tem-
plate observed in the actual data in accordance with the general principle in simulated based
estimation of treating real and simulated data as similarly as possible. Third, the vectors of

O are drawn only once at the beginning of the algorithm and kept fixed

primitive shocks in =
when searching for a minimum. Otherwise, the algorithm would not numerically converge and

the asymptotic statistical properties would no longer be valid.?? Fourth, for each product I run

49Codes used for parameter estimation and computation of smoothed estimates are available from the author
upon request.

%0Note that the drawings of the shocks are done such that in simulated data the number of quote lines and
their respective starting and ending dates exactly match those that are observed in actual data.

1T use the algorithm patternsearch in MATLAB R2015b with the default options

2Gee, for instance, p. 29 in Gouriéroux and Monfort (1996).
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steps 2 to 4 twice starting two different initial conditions in step 2.%3 In case the results differ,

I choose the value of parameters that results in the smallest objective function.

B.1.2 Algorithm for estimation of initial price gaps

For the estimation of initial conditions of quote-lines of a given product, the minimisation
problem in (10) has to be solved once for each quote-line that has at least one non-zero price
change. Given the large number of such quote-lines performing separate global search methods
for each quote line individually as for the estimation of common parameters (algorithm 1) would
be infeasible. Instead, I perform the minimisation on a grid of possible values of z; ;o. More
precisely, to estimate the initial conditions for all the quote-lines of a given product I implement

the following algorithm:

Algorithm 2 The algorithm for estimating initial conditions is as follows:

1. Determine the number of panels to be simulated as S = [10*/N;].%

2. Generate S vectors of primitive shocks conform with the data template, = = [¢}, ... £°].
50 k A
3. Create a grid G = [z ”)0, o ,xijB] where xfj)o 5+ (50111) (T — ;).

4. Set § =6 and z; ;0 = Z(] 0, Vi and use (5) to (7) and = to generate S panels of data.

5. For a given collection of panels compute f(x ”)0) (SN;)™* Zle vazjl h(Apf’j(xl(-?yo, éj))

6. Repeat steps 4 and 5 for each ngo € G and store F = {f(z ”0) P

& ~(1) ~(50,000)

% 1 i—1 50
i, 5 () g | G- _,60 )

7. Create a new grid G = | where Z; 5o = @3 ;o + Gogooy (T30 — Tijo

(k)

8. For each jid’ (4) ) 55

0 € G use a cubic spline on the values in F to approximate f (Zij0)-
i 2
9. For each x 0 € G compute H(Ap”, E?o: = H( (Ap; ;) — f(z E}o)) @ h(Ap; ;) )

10. For a given quote-line with at least one price change take Z; ;o = arg min ]:I(Apivj, a, éj)
acg

11. Repeat steps 9 and 10 for each quote-line with at least one non-zero price change.

12. For quote-lines without price changes, set ; ;o equal to the average of values in step 11.

Some points about algorithm 2 are worth emphasising. First, in step 9 the deviations of data

moments from their simulated counterparts are expressed as percentage deviations of the data

53The first set of initial conditions is designed to be an educated guess for a model that is closer to a pure
menu cost model. In that case, I set the initial values for —z; and —%; to be equal to the average values of
positive and negative log price changes, respectively, whereas initial value for A; is equal to 25% of the frequency
of price changes in the data. The second initial condition is designed to be an educated guess for a model that is
closer to a pure Calvo model. In that case, I set —z; and —z; to be equal to the 95th and 5th percentiles of the
distribution of log price changes, respectively, and A; equal to 75% of the frequency of price changes observed
in the data.

54This ensures the simulator is based on at least 10 thousand individual price trajectories.

951 use the function interp! in MATLAB R2015b with the option ’spline’.
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moments and that is necessary with equally weighted moments to ensure that one moment
condition does not receive a disproportional weight simply due to differences in scale. Second,
once the grid for the approximation of the moment is constructed (steps 1 to 8) it can be
used as the moment simulator for other quote-lines, in practice, this implies that only steps
9 and 10 need to be repeated at the quote-line each speeds up the calculations. Third, the
initial grid F could be equivalently generated by simply generating 10,000 separate individual
price trajectories all starting from a given initial condition and computing average over those.
The construction in steps 1 to 6 simply takes advantage of some functions used to generate

simulated data for the estimation of common parameters.

B.2 Details on the computation of smoothed estimates

From a purely computational perspective, once a vector of parameters is estimated the key chal-
lenge to compute smoothed estimates is to be able to numerically evaluate integrals sufficiently
fast so that such estimates can be computed for the millions of observations in micro price
data. In order to do that, I numerically approximate integrals using Gauss-Legendre quadra-
ture methods.®® As in the main text, and without loss of generality, henceforth I consider an
arbitrary quote-line with &K > 0 non-zero price changes and fix £ equal to some value Z ). For
that quote-line, 7% denotes the period on which the k-th non-zero price change is observed and
7% denotes the initial period. In addition, let n denote the number of Gauss-Legendre nodes
used in the approximation, let z be a n x 1 vector of Gauss-Legendre nodes in the interval
[ZF, Z*] and w be the associated n x 1 vector of Gauss-Legendre weights. Finally, let z; and w;

denote the i-th elements of z and w, respectively.?”

Matrix notation Specifically to describe the algorithms in this subsection, I use: 7' as a
superscript to denote matrix transposition; a,; to denote the j-th column of the matrix A;
a; « to denote the i-th row of A; I,, denotes the identity matrix of order n; 1,,x, denotes an
m X n matrix of ones; ® denotes the Kronecker product; ® denotes the Hadamard product;
@ denotes the Hadamard division and the exponent °~! the Hadamard inverse. Finally, for a
given function f: R — R and a matrix A € R™*" the notation B = f o (A) is equivalent to
bij = f(a;;) for i =1,...,mand j = 1,...,n. Any other notation is as defined in the main

text.

B.2.1 Smoothed estimates based on the the pdf in Proposition 3

Consider first the case where k < K. Fori=1,...,nand j =1,...,A* — 1, define:

6See, for example, Judd (1998, section 7.2).

5TTo compute the Gauss-Legendre nodes and associated weights on an arbitrary interval [a, b], I use the lgwt
function provided by Greg von Winckel on File Exchange and available for download here. Here I describe the
computations for a general number of Gauss-Legendre notes n. In practice, in any integral numerical evaluation
I use 50 Gauss-Legendre nodes.
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1 P — T
aj=— ¢ (Z vk%> (B.2.1.1)
J J
bij=1{j > 1} [lewl R ( . 1l )> by | +1{j=1} (B.2.1.2)
=0 Tj-1

¢y =1{j < A" -1} [lewl 0 ( 1 )) | +1{j=A—1} (B.2.1.3)

0j11 0j11

For a given j € Zp ak_q), the smoothed estimates as defined in (21) can be obtained as:

R Yowiagbcz
= (B.2.1.4)

Th4j n
dowiagbyje
=1

Matrix form For computational efficiency it is preferable to implement the calculation in
(B.2.1.4) in matrix form. For that purpose, first define f¥ = [af,..., 745, ] and ¢F =
k

[6F,...,0%, ,]. Let A be an x (AF —1) matrix given by,

A=l @ (@) 0 [po ((Lixary @2 —lpa @) © (Ia ®6F))]  (B2.1.5)

Note that the (i,j) element of A in (B.2.1.5) is equal to (B.2.1.1). Moreover, let B,C €
R (A*=1) e such that bi1 = Lnx1 and ¢, k1 = 1yx1 and the remaining columns are defined

recursively according to:

1 -
X ¢ o (~ (]lnxl Xz — /vb_]; o (Z ® ]]-nxl))) © (]l'n,Xl ® b*,j—l):|

(B.2.1.6)

5

1 1 ..
C*,j = [In®wT] [Uk X ¢O (k (]1n><1®Z—M§O(Z®]1nX1))> ®<]1n><1®c*,j+l)]

(B.2.1.7)

The (i, ) element of B and C are equal to those defined in (B.2.1.2) and (B.2.1.3). Finally,

the smoothed estimates can be obtained as:
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ZF = [T (Liar- ©2) ©AOB6C)] 0 [wT (AOBG Q) (B.2.1.8)

where ZF € R(A*=1) and the j-th element of Z* is equal to ijﬂ, as given in (B.2.1.4).

B.2.2 Smoothed estimates based on the the pdf in Proposition 4

For k = K the smoothed pdf is given by (18). Numerically, the computation of the smoothed

estimates is similar to that in the previous section. For i =1,...,nand j = 1,..., AX, define:

.k
dy=16 (zz “J’) (B.2.2.1)

e;; = 1{j < AK} [Z": W, Uiqﬁ (w) eml} +1{j = AK) (B.2.2.2)

O¢

For a given j € Z,«x 1), the smoothed estimates as defined in (21) can be obtained as:

Ywidijbjer;z
S =1
Zhe,, ==L (B.2.2.3)
> widy ;e
=1

Matrix form Again, for computational efficiency I implement the computation of (B.2.2.3)
in matrix form. First, define p, = [u1,...,pax] and o, = [01,...,0ax]. Let D be a n x AK

matrix given by,

D = [lyx1 ® (0.)"'] O [0 (Lixar @2 = Lnx @ 1) @ (Lnx1 ® 04) )] (B.2.2.4)

Note that the (i,7) element of D is equal to (B.2.2.1). Let B,E € R™2" be such that
5*,1 = 1,x1 and e, ox = 1,5;. The remaining columns of B are defined recursively according

to (B.2.1.6) and the remaining columns of E according to:

1 1
€xj = [In X WT} — X ¢o y (L1 ®2z — (plpx1 +2) @ Lixr) | © (Lnxa @ €xjt1)
Oe Oj+1
(B.2.2.5)

Finally, the smoothed estimated after the last non-zero price change are computed from:

~

7K — [wT ((nlxw_l) ©z) ©DOBO E)] 2 [wT (D oBo Eﬂ (B.2.2.6)
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where ZK € R™A" and the j-th element of 75 is equal to 2:_K+j as given in (B.2.2.3).
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C Frictionless inflation in the basic new Keynesian model

The underlying model and all the notation are identical to the basic new Keynesian model in
Gali (2008, chapter 3). I focus only on the key equations to derive: (i) the relation between
frictionless inflation and the output gap; (ii) the difference in the responses of inflation and

frictionless inflation to a monetary policy shock.

C.1 Relationship between the inflation, frictionless inflation and the output gap

Under monopolistic competition and a demand function arising from a CES aggregator with

elasticity of substitution e, frictionless prices satisfy:

Py = My, (C.1.1)

where 1y, are the nominal marginal costs of a firm changing prices at time ¢t and M =¢/(e —1)
is a constant markup that monopolist would charge at every time period in the absence of
constraints on the frequency of price adjustment, also referred to as the desired or frictionless
markup. Dividing both sides of (C.1.1) by P, and taking logs yields,

pi —pe=mec, —me (C.1.2)

where me = —log(M) is the steady state value of marginal cost and mc; is the log of the
economy’s average real marginal cost. Since the log of deviation of real marginal cost from
steady state is proportional to the log deviation of output from its flexible price counterpart, I
use equation (20) in Gali (2008, p. 48) to obtain,

" pray .
—p = + C.1.3
Dy — Pr <U 1_@)3/1% ( )
where ¥, is the output gap, defined as the log deviation of output from its flexible part counter-
part, o is the elasticity of intertemporal substitution, ¢ is the Frisch elasticity of labor supply
and 1 — « € [0, 1] is the exponent of labor in the production function. Lagging (C.1.3) by one
period and subtracting from (C.1.3),

7Tz( — Ty = CAgt (014)

where C' = (0 + %) > 0. Taking the covariance between m; — 7} and Ag, gives equation (26),
that is,

COV(WI‘/ - ﬂ-; gt)
Var ()

=-C<0 (C.1.5)
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Tests for this prediction in the UK data are presented in table 3.

C.2 Impulse responses to a monetary policy shock

I consider the responses of inflation and frictionless inflation under an interest rate rule as in
Gali (2008, section 3.4.1). The stochastic component in the interest rate is v; and it is assumed
to follow an AR(1) process, that is, v; = p,v;_1 + €}* where p, € [0,1) and &}" is the monetary

policy shock. From (C.1.4) and any given horizon h > 0 we have that,

) _ OTtiih _ OAYt1n
Oe} e} e

(C.2.6)

So the relationship between the impulse responses of frictionless inflation and inflation can be
inferred from the sign of the impulse response of the changes in the output gap. Using the

method of undetermined coefficients, the solution for the output gap is given by,

Goan = —(1— Bpy) Ay v (C.2.7)

where [ is the representative household discount factor and A, is a convolution of structural
parameters that and takes only positive values.®® Finally, in terms of impulse responses it is
the case that,

OAGt1n OV, OVign
——— =—(1-08p,) Ay — C.2.8
oey" (1= Bp.) ey e ( )
Note that for the case h = 0, the last term in brackets in (C.2.9) is equal to one since

Ov,_1/0ef™ = 0. Since the term (1 — p,)A, is positive, it follows that the expression above
is negative and, hence, Or} /0] < Omy/0e}”. Moreover, since the solution for inflation is given
by my = —k A, v; where k > 0 is the slope of the new Keynesian Phillips curve and, hence,
Om /0] < 0. Therefore, (28) holds. Finally, for any h > 0 expression (C.2.9) simplifies to,

OBdeih _ (1 _ gy Auph! (pu—1) >0 (C.2.9)
86? ~ - N———

~
>0 <0

Therefore, On},,,/0} > O /0 as stated in (29). As an endnote, notice that the sign of
Teen /0] cannot be determined unambiguously. More precisely using the solutions for 7, and
Ag; and the relationship in (C.1.4),

Omfyn _ KA, ot (1= Bpy)(1 = py) _

= kA, ; 2.1
Bet v y p (C.2.10)

58For values of structural parameters that ensure equilibrium uniqueness which is maintained assumption,
see Gali (2008, equation 27).
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where ) is a positive constant that is a convolution of structural parameters. The sign of the

last term in square brackets will depend on the specific calibration of structural parameters.

80



	Introduction
	The microeconomic dynamic of prices with menu costs
	Microfoundation: a random menu cost model
	A state-space representation of price setting
	Semi-structural representation
	Generalizations and special cases

	Constructing a measure of frictionless inflation
	Frictionless inflation estimation: a smoothing problem
	Parameter estimation: A two-stage procedure
	First stage: common parameters
	Second stage: initial price gaps

	The smoothed density function
	Smoothed estimates

	Frictionless inflation: Monte Carlo evidence
	Monte Carlo setup
	Monte Carlo results
	First stage: common parameters
	Second stage: initial price gaps


	Micro Price Data
	Sample Selection
	Product substitutions, sales and quote-line gaps
	From price quotes to price indices

	A measure of frictionless inflation
	Reduced form parameter estimates
	Model fit
	A measure of frictionless inflation for the United Kingdom: 1997 - 2018

	Frictionless inflation and the basic New Keynesian model
	The inflation wedge and the output gap
	Differential responses to a monetary policy shock

	Can frictionless inflation help to forecast published inflation?
	Conclusion
	References
	Proofs of propositions and auxiliary results
	Proof of results for the estimation block
	Proof of results for filtering and smoothing
	Auxiliary fact on the product of normal distributions
	The filtered density: main result
	The filtered density: auxiliary result
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of corollary 1


	Computational details for estimation and smoothing
	Details for the parameter estimation
	Algorithm for estimation of common parameters
	Algorithm for estimation of initial price gaps

	Details on the computation of smoothed estimates
	Smoothed estimates based on the the pdf in Proposition 3
	Smoothed estimates based on the the pdf in Proposition 4


	Frictionless inflation in the basic new Keynesian model
	Relationship between the inflation, frictionless inflation and the output gap
	Impulse responses to a monetary policy shock


