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ABSTRACT
We evaluate the performance of Gaussian Process (GP) models of varying depth
(standard GP, two-layer and three-layer Deep Gaussian Process, DGP) in forecast-
ing U.S. real Gross National Product growth, with a particular focus on capturing
regime changes and tackling uncertainty quantification (UQ). We compare these
models to traditional benchmarks, including the Markov-Switching (MS) models and
ARIMA-type models. The results show that the three-layer DGP consistently yields
the most accurate forecasts and best-calibrated predictive distributions across hori-
zons. Notably, the ARIMA model emerges as a competitive benchmark, frequently
rivaling deep models in both point prediction and probabilistic accuracy. These find-
ings underscore the value of hierarchical Bayesian modeling in economic forecasting
and highlight the potential of DGPs as a tool for capturing nonstationarity and
uncertainty in macroeconomic time series.
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1. Introduction

Macroeconomic time series, such as the U.S. real Gross National Product (GNP)
growth rate, are often subject to structural changes driven by evolving economic con-
ditions and policy changes. These transitions, frequently aligned with turning points in
the business cycle, impose challenges for traditional econometric models that assume
stationarity or linearity. As a result, accurate forecasting in such environments re-
quires flexible modeling frameworks and robust uncertainty quantification to support
risk-aware decision-making.

Traditional approaches, including ARIMA models, deterministic trends, and linear
state-space models, often impose restrictive assumptions that fail to capture the non-
linear transitions observed during business cycles, e.g.Beveridge and Nelson (1981),
Nelson and Plosser (1982), and Campbell and Mankiw (1987).

In response, a foundational strand of time series econometrics has focused on struc-
tural change through regime-switching models. These frameworks allow the param-
eters of the data-generating process to shift across regimes, thereby accommodating
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structural breaks, policy changes, and cyclical dynamics, overcoming key limitations
of constant-parameter models in macroeconomic applications.

1.1. Regime-Switching Models: Theory and Evolution

One early strand of this literature is based on threshold models, introduced by Tong
(1983) and surveyed by Potter (1999), where regime changes are triggered determin-
istically when observable variables cross pre-specified thresholds. These models are
particularly appealing when regime shifts are believed to be governed by known eco-
nomic conditions, such as interest rates exceeding a policy threshold.

A more widely adopted and flexible class of models is the family of Markov-switching
models, in which regime transitions are governed by an unobserved discrete-state
Markov process. This framework was pioneered by Goldfeld and Quandt (1973) and
Cosslett and Lee (1985), and brought to prominence by Hamilton (1989), who demon-
strated that U.S. real GDP growth could be characterized by a mean-shifting au-
toregressive process, with the latent regime closely aligned with NBER business cycle
classification. These models allow key parameters (mean, variance, and coefficients) to
switch across regimes, capturing structural changes and nonlinear dynamics in macroe-
conomic behavior.

However, despite their theoretical appeal and strong in-sample performance, these
models often perform poorly in out-of-sample forecasting tasks. As highlighted by
Dacco and Satchell (1999), even when the true model is correctly specified, small
misclassifications in predicting the active regime can lead to higher forecast errors than
simpler models such as a random walk or a random walk with drift. Their findings
suggest that the usefulness of regime-switching models in forecasting is limited by
the difficulty of accurately identifying future regimes, especially when transitions are
latent and not directly observable.

Subsequent developments extended this framework in several directions. Multivari-
ate extensions, such as the Markov-Switching Vector Autoregression (MS-VAR) model
by Krolzig (1997), enabled the joint modeling of multiple macroeconomic indicators.
Meanwhile, regime-switching volatility models, including Markov-switching GARCH
frameworks by Cai (1994), Hamilton and Susmel (1994), and Gray (1996), provided
tools to model abrupt changes in financial market volatility.

Recognizing the limitation of fixed transition dynamics, Filardo (1994) and Diebold
et al. (1994) introduced time-varying transition probability (TVTP) models, in which
the switching behavior evolves with observable covariates. Additionally, Kim et al.
(2003) developed models with endogenous switching, where transitions are correlated
with contemporaneous shocks, enhancing the ability to capture asymmetries and non-
linear responses in macroeconomic series.

Bayesian estimation has played a central role in regime-switching analysis, particu-
larly in addressing parameter uncertainty and latent state inference. Key contributions
include the Gibbs sampling approaches of Kim and Nelson (1998), and the Bayesian
change-point model by Chib (1998), which incorporates a latent Markov process with
constrained transitions. These methods offer robust tools for estimating complex mod-
els with hidden structures.

More recently, advances in Bayesian nonparametrics and machine learning have fur-
ther expanded the regime-switching paradigm. Fox et al. (2011) proposed a Bayesian
nonparametric hidden Markov model using a Dirichlet process prior, allowing for an
unbounded number of latent regimes. Wu et al. (2018) introduced a deep generative
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state-space framework that integrates neural networks with regime-switching dynam-
ics, improving the capacity to learn nonlinear and time-varying patterns directly from
data.

Liu and Nguyen (2015) developed a tree approach to option pricing under a regime-
switching jump diffusion framework. Their method uses a trinomial tree structure
to efficiently model regime-dependent jump dynamics, offering a tractable and inter-
pretable alternative to continuous-time diffusion models, and showcasing the potential
of tree-based approaches in capturing regime-sensitive financial behaviors.

Similarly, Bie et al. (2024) contributed a tree-based macroeconomic regime-
switching model in the context of the Nelson-Siegel yield curve, using a Bayesian
method to choose optimal split candidates based on the marginal DNS likelihood.
Their model reveals regime-dependent predictability in U.S. Treasury yields, partic-
ularly when short-term rates are high and offers interpretability and computational
simplicity relative to traditional Markov-switching methods.

In a related development, Hauzenberger et al. (2024) proposed a Gaussian Process
Vector Autoregression (GP-VAR) framework, combining the flexibility of GPs with
full Bayesian inference to capture nonlinearities in multivariate time series.

Equally important to accurate modeling regime changes is the ability to quantify
uncertainty around estimates and predictions. Fully Bayesian approaches offer a prin-
cipled framework for robust inference under structural change by producing posterior
distributions over both latent states and model parameters.

In this sense, we decided to adopt a Gaussian Processes (GPs) method. Their prob-
abilistic formulation makes them especially well-suited for uncertainty quantification,
as they provide full posterior distributions over functions rather than point estimates.
This allows uncertainty to be explicitly propagated through forecasts. GPs are par-
ticularly advantageous in settings with small to moderate datasets, a common feature
of macroeconomic time series, which are often observed quarterly or monthly. Unlike
many machine learning models that require large sample sizes to generalize effectively,
GPs naturally adjust their uncertainty in data-scarce regions, reducing the risk of
overfitting.

The kernel function, which defines the covariance structure of the model, encodes
prior beliefs about the underlying data (e.g. smoothness, periodicity, or long-term
trends), enhancing interpretability and allowing for the modular integration of eco-
nomic theory. Moreover, the kernel also acts as a built-in regularizer by controlling
the function space that the GP can explore, helping to prevent overfitting, especially
in noisy or data-sparse environments.

However, standard GPs typically rely on stationary kernels and pairwise input dis-
tances, which assume a constant covariance structure across the input space. This
assumption limits their capacity to capture structural changes, abrupt regime transi-
tions, or time-varying volatility, features often present in macroeconomic data.

1.2. Nonstationary Gaussian Processes: Advances and Approaches

To address the limitations of standard GPs, several approaches have been developed
to accommodate nonstationary behavior in the data. One solution is to replace sta-
tionary kernels with spatially-varying ones. Higdon et al. (1999) introduced process
convolutions, which were later extended by Paciorek and Schervish (2003) and Katz-
fuss (2013) using Matérn kernels, allowing local variation in smoothness and enabling
full Bayesian inference via MCMC. Another approach involves modeling functional hy-
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perparameter, such as input-dependent lengthscales or variances from Heinonen et al.
(2016) or the heteroskedastic GP framework from Binois et al. (2018), which allows
the noise variance to vary across the input space.

Another approach is to partition the input space into subregions and fits local GPs
with distinct kernels or hyperparameters. Known as divide-and-conquer, this includes
Dirichlet process partitioning (Rasmussen and Ghahramani, 2001), partitions defined
from a Voronoi tesselation (Kim et al., 2005), and regression-tree-based such as treed
GPs (Gramacy and Lee, 2008). Local approximate GPs (Gramacy and Apley, 2015)
extend this framework by using local conditioning sets to achieve scalability in large
datasets. While these models offer local adaptivity and computational efficiency, they
may sacrifice global coherence, making uncertainty quantification more challenging
across the full input space.

A more recent and increasingly powerful approach involves learning nonlinear trans-
formations (or warpings) of the input space to induce stationarity in a transformed
representation. Foundational work by Sampson and Guttorp (1992) and Schmidt and
O’Hagan (2003) laid the groundwork for these techniques. Building on this idea, Dami-
anou and Lawrence (2013) introduced Deep Gaussian Processes (DGPs), which model
hierarchical warpings by stacking multiple GP layers. Each layer transforms its input
through a learned GP, allowing the final prediction to be made in a deeply warped
and highly adaptive space. This hierarchical composition enables DGPs to capture
both smooth and abrupt transitions, making them particularly well-suited to settings
characterized by complex, time-varying dynamics.

Inspired by both spatial modeling and deep learning, DGPs have gained popularity
in the machine learning community due to their conceptual connection to deep neural
networks. Modern implementations of DGPs use variational inference or MCMC to
infer the latent transformations and hyperparameters, which retains the fully Bayesian
nature of standard GPs. Although computationally intensive, DGPs have demon-
strated strong performance in nonstationary and high-noise settings.

While kernel-based models emphasize interpretability and divide-and-conquer ap-
proaches prioritize scalability, DGPs stand out for their capacity to model complex
nonstationary structure within a coherent Bayesian framework. Unlike the other meth-
ods, DGPs provide a unified, globally consistent architecture capable of learning in-
tricate, hierarchical structures directly from data. They eliminate the need for hand-
crafted kernels or defined partitions and can flexibly adapt to both local and global
variations in the underlying process. Importantly, DGPs retain the fully probabilistic
treatment of uncertainty that characterizes Gaussian Processes, making them par-
ticularly well-suited for applications where uncertainty quantification is critical for
decision-making.

1.3. Contributions and Forecasting Framework

In this paper, we adopt DGPs to model macroeconomic data subject to regime shifts,
leveraging their ability to learn nonlinear, time-varying relationships directly from
data. Unlike traditional regime-switching models that rely on predefined states or
transition matrices, DGPs can infer regime changes in a flexible, data-driven manner.
Through hierarchical warping, they offer a unified way to model both gradual trends
and abrupt transitions without imposing rigid parametric structures. At the same time,
they maintain full Bayesian inference, enabling uncertainty quantification around trend
estimates and regime shifts.
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This approach aligns with the view that macroeconomic outcomes are shaped by
latent, evolving forces. As emphasized by Neftci (1984) and Sichel (1987), account-
ing for asymmetries and nonlinear dynamics is essential for understanding macroe-
conomic fluctuations. We apply DGPs to model and forecast U.S. real GNP growth,
the same dataset used in the foundational work of Hamilton (1989). Our findings
demonstrate that DGPs are capable of effectively capturing the complex, nonlinear,
and time-varying dynamics characteristic of macroeconomic data, generating improved
predictive performance and more reliable uncertainty quantification.

Building on this foundation, our paper contributes to the literature by employing
DGPs for macroeconomic forecasting in the presence of structural changes. This ap-
proach allows the model to learn both smooth and abrupt regime transitions directly
from the data, infer nonstationary patterns without the need for manually specified
latent states or transition rules, and generate coherent predictive distributions. As
shown in the results section, the DGP framework consistently outperforms standard
GP and traditional forecasting models such as ARIMA and Markov-Switching, par-
ticularly in its ability to generalize across forecast horizons and quantify predictive
uncertainty more effectively.

2. Methodology

In this section we define and discuss GPs and DGPs, as well as their posterior inference
based on Markov chain Monte Carlo (MCMC) approximations. In what follows, the
U.S. real Gross National Product (GNP) growth rate is the yi variable, while the
time index is the xi variable. More specifically, the relationship between the response
variable y and the vector of explanatory variables x is as follows, assuming a Gaussian
noise, for i = 1, . . . , n,

yi = f(xi) + ϵi, ϵi ∼ N (0, σ2), (1)

for an yet to be specified function f and noise variance σ2. More compactly,

y = f(x) + ϵ, ϵ ∼ N (0, σ2I), (2)

which yields the likelihood for the entire dataset:

p(y|f ,x, σ2) =

n∏
i=1

N (yi|f(xi), σ2) (3)

2.1. Gaussian Processes

GPs provide a flexible, nonparametric Bayesian framework for modeling functions. A
GP defines a distribution over functions f(x), such that any finite collection of function
values follows a multivariate normal distribution. Formally, a GP is fully specified by
a mean function and a covariance (kernel) function. The mean function is:

µ(x) = E[f(x)] (4)
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And the covariance function:

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] (5)

This is written in the form of a prior distribution for the unknown f function

f(x) ∼ GP(µ(x), k(x,x′)) (6)

Given a data set D = {(xi, yi)}ni=1, where xi ∈ Rd are input vectors (in our case
the time index) and yi ∈ R are corresponding scalar responses, the goal is to infer the
underlying latent function f(xi) that generated observation yi.

2.1.1. Posterior inference

Posterior inference proceeds by modeling the observed data through a joint Gaussian
prior over the latent function values, combined with a likelihood function that relates
those latent values to the observations. This yields a tractable posterior distribution
for prediction and uncertainty quantification.

Applying Bayes’ rule, the posterior distribution over the latent function is obtained
by combining the prior with the likelihood:

p(f |X,y) =
p(y|f) p(f)

p(y)
(7)

Due to the conjugacy between the Gaussian prior (Eq. 6) and the Gaussian likelihood
(Eq. 3), the posterior distribution remains Gaussian and can be computed in closed
form. This posterior not only provides point predictions but also quantifies uncertainty
around them via predictive variances.

Figure 1.: Samples from a GP prior (left) and posterior (right) conditioned on observed
data (black points). The right panel uses a Radial Basis Function (RBF) kernel with
optimized hyperparameters. The shaded red region denotes the 95% credible intervals.

In GP regression, making predictions at new points involves conditioning the joint
prior distribution on the observed training data. Assuming the standard Gaussian
observation model (Eq. 2), we model the observations y ∈ Rn as noisy realizations of an
underlying latent function f , evaluated at input locations X ∈ Rn×d. Assuming µ(x) is
equal to zero, we can express joint beliefs over training outputs y and predicted outputs
f∗ at new test locations X∗ ∈ Rn∗×d as a single multivariate Gaussian distribution:
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[
y
f∗

]
∼ N

0,

K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

 .

Here, K(·, ·) denotes the covariance matrix constructed using the kernel function.
Conditioning this joint Gaussian on the observed data (X,y), we obtain the predictive
distribution for the function values f∗ at test inputs X∗. The resulting conditional
distribution is also Gaussian, given by:

f∗ |X,y,X∗ ∼ N
(
f̄∗, cov(f∗)

)
, (8)

where the mean and covariance are computed analytically as:

f̄∗ = K(X∗,X)
[
K(X,X) + σ2I

]−1
y, (9)

cov(f∗) = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2I

]−1
K(X,X∗). (10)

The predictive mean f̄∗ represents the expected value of the function at the test
points, while the predictive covariance cov(f∗) quantifies the associated uncertainty,
taking into account both the prior and the observed data.

2.1.2. Choice of the kernel

In this work, we employ the Squared Exponential (SE) kernel, also known as the Radial
Basis Function (RBF) kernel, to define the prior covariance structure. This kernel is
widely used for its flexibility and analytical tractability. It is given by:

K(x,x′) = σ2 exp

(
−||x− x′||2

2θ2

)
+ g Ii=j , (11)

where:

• σ2 is the signal variance, controlling the vertical amplitude of function values;
• θ is the characteristic length-scale, determining how quickly correlation decays

with distance;
• g is the noise variance (or nugget), included on the diagonal to account for
observation noise or to improve numerical stability.

The SE kernel ensures smooth, infinitely differentiable function realizations and is
often a default choice in many applications. Its hyperparameters, denoted by ϑ =
(σ2, θ, g)′, are typically learned from data by maximizing the marginal likelihood or
through fully Bayesian treatment.

Despite its strong performance in many settings, the SE kernel assumes homogene-
ity and stationarity across the input domain, which may be too restrictive. In the
context of macroeconomic time series, where structural changes and local behaviors
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are common, these limitations motivate the exploration of nonstationary extensions
such as Deep Gaussian Processes, which are introduced in the following subsection.

2.2. Deep Gaussian Processes

To capture complex, hierarchical relationships in data that may exhibit non-
stationarity, heteroskedasticity, or structural changes, we employ Deep Gaussian Pro-
cesses. DGPs extend the flexibility of standard GPs by stacking multiple layers of
latent functions, where the outputs of one GP serve as the inputs to the next. This
recursive structure allows the model to learn a series of non-linear transformations,
effectively warping the input space and capturing deeper abstractions in the data.

Formally, in a two-layer DGP, we define the model as follows:

W ∼ GP(0,K1(X,X′)), Y ∼ GP(0,K2(W,W′)), (12)

where X represents the observed input data, W is a latent variable capturing an in-
termediate, warped representation of the input space, and Y is the observed response.
Each layer has its own covariance function, which may differ in functional form or
hyperparameterization, thus increasing the model’s flexibility.

This hierarchical construction enables DGPs to capture highly non-linear and non-
stationary relationships while maintaining the Bayesian benefits of standard GPs, such
as principled uncertainty estimation. Moreover, the composition of multiple layers al-
lows the model to represent functions with varying degrees of smoothness or local
structure, which are otherwise difficult to model using shallow architectures or sta-
tionary kernels alone.

The basic two-layer DGP can be naturally extended to deeper architectures by
stacking additional Gaussian Process layers. In a three-layer DGP, for instance, the
model is defined as:

Z ∼ GP(0,K1(X,X′)), W ∼ GP(0,K2(Z,Z
′)), Y ∼ GP(0,K3(W,W′)), (13)

where Z and W are intermediate latent layers that encode representations of the input
X. Each layer applies a GP prior with potentially distinct kernel functions, allowing
the model to successively warp and enrich the representation of the data. This recur-
sive construction can be generalized to any number of layers, thereby increasing the
capacity of the model to capture complex, hierarchical, and non-stationary patterns.

However, deeper architectures also introduce greater computational and inferential
complexity, along with an increased risk of overfitting. In the results section, we detail
the regularization strategies employed to mitigate these challenges and ensure robust
generalization. In the next section, we will detail the algorithm used for sampling from
the posterior.

2.2.1. Posterior Sampling Algorithm

Exact inference in DGPs is analytically intractable due to the nested GP structure and
the requirement to integrate over multiple layers of latent variables. To make inference
feasible, we adopt a hybrid MCMC approach as proposed by Sauer et al. (2023), which
effectively balances computational tractability and statistical efficiency.

Specifically, our approach combines two sampling strategies:
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• Metropolis-Hastings (MH) is used to update the hyperparameters of the
covariance functions, including those governing both observed and latent layers.

• Elliptical Slice Sampling (ESS) is employed to sample the latent layer W,
exploiting its Gaussian process prior for efficient posterior exploration.

This hybrid sampler allows us to perform fully Bayesian inference over both the
latent variables and model hyperparameters, even in the presence of non-Gaussian
posteriors and complex hierarchical dependencies.

To facilitate posterior inference in our hierarchical model, we derive the log marginal
likelihoods needed for evaluating acceptance probabilities in our MCMC sampler, inte-
grating out the scale parameter under a reference prior. These likelihoods are computed
conditionally on the latent variables and form the backbone of the MH and ESS steps.

The log marginal likelihood of the model, conditional on the latent layer W, is given
by:

logL(Y | W, θy, g) ∝ −n

2
log(nσ̂2)− 1

2
log

∣∣Kθy(W) + gIn
∣∣ , (14)

where

σ̂2 =
Y⊤(Kθy(W) + gIn)

−1Y

n
, (15)

and Kθy(W) is the covariance matrix from the second-layer GP, parameterized by θy,
and g is the noise variance.

For the full two-layer model, the joint log-likelihood becomes:

logL(Y | W,X, θ, g) = logL(Y | W, θy, g) + logL(W | X, θw). (16)

The joint log-likelihood decomposes into two distinct components: the likelihood of
the observed response given the latent representation, and the likelihood of the latent
representation given the original inputs. Specifically, the term logL(Y | W, θy, g) cor-
responds to the second GP layer and measures how well the latent variables W explain
the observed outputs Y, conditioned on the output-layer kernel hyperparameters θy
and noise variance g. The second term, logL(W | X, θw), represents the marginal
likelihood of the latent layer W under a GP prior with input X and hyperparameters
θw.

The joint posterior distribution over the latent variables and hyperparameters in
the two-layer DGP is expressed as:

π(W, θ, g | Dn) ∝ L(Y | W,X, θ, g) · π(θ, g), (17)

where L(Y | W,X, θ, g) denotes the joint marginal likelihood of the observed data,
and π(θ, g) represents the prior distribution over the model’s hyperparameters.

In our framework, we place Gamma priors on the kernel length-scale parameters
and noise variance:

θ ∼ Gamma(3/2, bθ), g ∼ Gamma(3/2, bg), (18)

where bθ and bg are rate parameters selected based on empirical analysis, depending
on the nature and scale of each hyperparameter. A more detailed explanation can be
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found in Booth (2024).
As said before, we adopt a hybrid MCMC approach to perform posterior inference.

This method combines MH updates for the hyperparameters with ESS for the latent
variables. Posterior sampling proceeds iteratively as follows:

(1) Sample the noise variance g(t) ∼ π(g | Y,W(t−1), θ
(t−1)
y ) using MH.

(2) Sample the output-layer kernel hyperparameters θ
(t)
y ∼ π(θy | Y,W(t−1), g(t))

using MH.

(3) Sample the latent-layer kernel hyperparameters θ
(t)
w ∼ π(θw | W(t−1)) using MH.

(4) Sample the latent variables W(t) ∼ π(W | Y,X, θ
(t)
y , g(t)) using ESS, which

leverages the Gaussian prior structure on W to generate rejection-free proposals.

This inference scheme allows us to jointly learn both the structural properties of
the GP layers and the latent representations, accessing uncertainty across all model
components.

The ESS step for sampling W proceeds by:

(1) Drawing a prior sample Wprior ∼ N (0,Kθw(X)).
(2) Sampling a rotation angle γ ∼ Uniform(0, 2π).
(3) Proposing W∗ = W(t−1) cos γ +Wprior sin γ.
(4) Accepting W∗ with probability:

α = min

(
1,

L(Y | W∗, θy, g)

L(Y | W(t−1), θy, g)

)
.

(5) If rejected, the bracket is shrunk and another angle is proposed until acceptance.

ESS offers a robust and efficient alternative to traditional Metropolis-Hastings al-
gorithms, particularly in the context of DGPs. Unlike Metropolis-Hastings, which of-
ten suffers from poor mixing and low acceptance rates in hierarchical models, ESS
provides rejection-free proposals that are well-suited for exploring high-dimensional,
multi-modal, and highly correlated posteriors. Its tuning-free nature enhances com-
putational efficiency and makes it especially effective for latent Gaussian models. By
improving mixing and scalability, ESS enables a fully Bayesian treatment of DGPs in
complex applications such as nonstationary time series forecasting. A fully Bayesian
MCMC implementation of this framework is available through the deepgp R package,
which is publicly accessible on CRAN Booth (2024).

3. Results

3.1. Dataset Overview

We utilize quarterly U.S. Real GNP data obtained from the Federal Reserve Economic
Data (FRED) database, spanning the period from 1947 to 2024. This dataset is widely
used in macroeconomic modeling and policy analysis and notably served as the basis
for Hamilton (1989).

To contextualize the regime-switching nature of macroeconomic fluctuations, we
incorporate the National Bureau of Economic Research (NBER) recession indicator
(USREC), which classifies each quarter as either a recession (1) or an expansion
(0). This binary labeling provides a meaningful framework to assess the ability of
probabilistic models to detect structural shifts in economic activity.
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Figure 2 displays the real GNP growth rate over time alongside shaded regions cor-
responding to NBER defined recession periods. These episodes of economic contraction
are clearly associated with sharp declines in output growth, highlighting the relevance
of regime aware modeling strategies for capturing such nonlinear dynamics.

Figure 2.: Real GNP growth with NBER recession classification.

The results section is organized into two main parts: an in-sample model fit and an
out-of-sample forecasting evaluation. In the first part, we assess the in-sample perfor-
mance of a standard GP, a two-layer DGP, and a three-layer DGP, using quarterly
U.S. Real GNP data over the period from 1952Q2 to 1984Q4, consistent with the
sample window analyzed in Hamilton (1989). This evaluation focuses on the models’
ability to fit historical data and capture regime-dependent dynamics. In the second
part, we conduct a comprehensive out-of-sample forecasting exercise using a 12-step-
ahead rolling window approach from 1984 to 2024. To benchmark performance, we
include the classical Markov-Switching model and ARIMA as a references.

While deeper DGP architectures offer enhanced expressiveness and the capacity to
model nonstationary and hierarchical relationships, they also introduce an increased
risk of overfitting. To mitigate this, and in line with the framework proposed by Sauer
et al. (2023), we constrain the depth of the DGP to a maximum of three layers, limit
the dimensionality of latent variables (typically matching or remaining below the input
dimensionality), and adopt a fully Bayesian inference approach via MCMC to integrate
over the posterior distribution and avoid overconfident point estimates.

For evaluation, we computed two key metrics: Root Mean Squared Error (RMSE),
which measures the average accuracy of point predictions, and the Continuous Ranked
Probability Score (CRPS), which assesses the quality of the entire predictive distri-
bution and is particularly informative for evaluating uncertainty quantification. The
formulas and a more detailed explanation of the metrics is provided in the Appendix.

This dual analysis allows us to compare models in terms of both in-sample flexibility
and out-of-sample generalization, with a particular focus on their ability to accommo-
date nonlinearities, non-stationarity, and structural changes in macroeconomic time
series.

3.2. In-Sample Model Fit

To evaluate each model’s ability to represent historical macroeconomic dynamics, we
begin by examining their in-sample performance over the period 1952Q2–1984Q4 using
the specified architectures. We first analyze the posterior plots of each model’s fit.
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Figure (a) shows the posterior fit of a standard GP with a single layer. The model
captures local fluctuations in the data but appears overly sensitive to short-term noise.
The fit is highly variable, with narrow credible intervals that suggest overconfidence in
uncertain regions. This behavior is typical of shallow GPs with stationary kernels ap-
plied to nonstationary data. They may struggle to capture broader structural patterns
and instead focus on short-range correlations.

Figure (b) presents the output of a two-layer DGP. Compared to the shallow GP,
this model captures smoother transitions and exhibits greater robustness to noise. The
posterior mean more clearly tracks medium-run variations, while the credible inter-
vals appropriately widen during volatile periods, indicating more realistic uncertainty
quantification. This layered architecture enables the model to learn latent representa-
tions that better capture the evolving dynamics of the time series.

Figure (c) illustrates the predictive distribution of a three-layer DGP. This model
provides the smoothest and most structured fit among the three. It successfully cap-
tures both long-term trends and localized changes in the data, while maintaining
well-calibrated uncertainty bounds.

Overall, model depth appears to enhance the capacity to model macroeconomic
dynamics with greater flexibility and more credible uncertainty estimates. While the
shallow GP is prone to overfitting high frequency noise, deeper DGPs demonstrate
superior smoothing, adaptability, and uncertainty quantification.
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(a) Standard GP model with 1 layer
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(c) Three-layer Deep Gaussian Process

Figure 3.: Comparison of GP models by depth: (a) shallow, (b) two-layer, and (c)
three-layer. The blue line represents the posterior mean function, the blue dashed
lines denote the credible intervals, the gray lines correspond to prior GP samples, and
the black dots indicate the observed values.

Now let´s analyze the performance metrics. As shown in Table 1, the standard GP
achieves the lowest in-sample RMSE and a competitive CRPS, suggesting a strong fit
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Model RMSE CRPS

One-layer GP 1.159 0.689
Two-layer DGP 1.304 0.773
Three-layer DGP 1.194 0.679

Table 1.: In-sample RMSE and CRPS for GP models trained on U.S. Real GNP
(1952Q2–1984Q4).

to the training data.
The two-layer DGP exhibits higher in-sample RMSE and CRPS, which may reflect

its greater model complexity and the added uncertainty introduced by latent transfor-
mations. The three-layer DGP offers a more favorable trade-off: it marginally improves
upon the RMSE of the standard GP while achieving the lowest CRPS among all mod-
els. This indicates better-calibrated uncertainty estimates and more reliable predictive
distributions.

However, these results should be interpreted with caution. A good in-sample fit may
result from overfitting the training data, which can lead to poor generalization and
degraded performance in out-of-sample forecasting scenarios.

3.3. Out-of-Sample Forecasting (12-Step Horizon)

To evaluate the models’ generalization capabilities beyond the training window, we
perform a 12-step-ahead rolling forecast exercise over the period 1984 to 2024. At each
step of the rolling window, the models are re-estimated and forecasts are generated for
the subsequent twelve quarters. This iterative procedure ensures that each prediction is
made using only past information, thereby mimicking real-world forecasting conditions
and reducing look-ahead bias.

Forecasts are produced using the same time windows across all models. The GP
models vary in depth but are otherwise matched in terms of noise assumptions and
kernel families. This controlled setup allows us to isolate the effect of hierarchical
composition and the use of non-stationary modeling on forecast performance.

To build intuition about the behavior of each model during the initial stages of
forecasting, we visualize predictions for the first 12-step horizon. These plots offer
qualitative insights into how well each model captures short-term dynamics and han-
dles the transition from in-sample fitting to out-of-sample forecasting.

Figure (a) presents the forecast produced by the standard GP. This model produces
highly fluctuating forecasts with overly narrow credible intervals that reflect underes-
timation of predictive uncertainty. The forecast trajectory appears to extrapolate the
local behavior of the last observed points rather than capturing underlying economic
shifts.

Figure (b) shows the forecasts from the two-layer DGP, which demonstrates a clear
improvement in both predictive smoothness and uncertainty calibration. The posterior
mean exhibits a more coherent pattern that aligns with medium-run dynamics, and the
credible intervals expand in regions of heightened uncertainty. Notably, the red points
fall mostly within the credible bands, highlighting the model’s improved generalization
capacity relative to the shallow GP.
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(a) Standard GP model with 1 layer
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(b) Two-layer Deep Gaussian Process
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(c) Three-layer Deep Gaussian Process

Figure 4.: Comparison of GP models by depth: (a) shallow, (b) two-layer, and (c) three-
layer. The blue line represents the posterior mean function, while the blue dashed lines
and gray shaded areas indicate the credible intervals. The black dots correspond to
observed values in the training sample, and the red dots represent the actual out-of-
sample observations.

Figure (c) presents the forecasts from the three-layer DGP, which delivers the most
stable and realistic predictions among all models. The posterior mean effectively cap-
tures long-term trends while remaining resilient to short-term fluctuations. The cred-
ible intervals display adaptive behavior, narrowing in periods of high confidence and
appropriately widening during more uncertain transitions. The majority of the ac-
tual observations (red points) lie within the posterior predictive intervals, reflecting
accurate uncertainty quantification and strong forecasting performance.

In summary, the rolling 12-step-ahead forecast evaluation highlights the strengths
and weaknesses of each model architecture. While shallow models may overfit to re-
cent trends and fail to extrapolate meaningfully, deeper DGPs demonstrate greater
resilience and robustness when confronted with complex, evolving macroeconomic dy-
namics.

Model RMSE CRPS
One-layer GP 0.9222 0.5570
Two-layer DGP 0.5775 0.3934
Three-layer DGP 0.3776 0.3217

Table 2.: Out-of-sample RMSE and CRPS for GP models trained on U.S. Real GNP
(1952Q2–1984Q4) and evaluated using a 12-step-ahead forecast.
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Table ?? presents the out-of-sample forecasting performance of the Gaussian Process
models, evaluated using RMSE and CRPS over a 12-step-ahead horizon.

The one-layer GP performs the worst across both metrics, with an RMSE of 0.9222
and a CRPS of 0.5570. These values suggest that the shallow GP, constrained by its
stationary kernel and limited representational power, struggles to generalize beyond
the training period, despite having shown strong in-sample performance. The two-layer
DGP significantly improves upon the shallow GP, reducing the RMSE to 0.5775 and
the CRPS to 0.3934. This improvement reflects the model’s ability to better capture
nonstationary and hierarchical features in the data through its latent representation
layer.

The three-layer DGP yields the best performance, achieving the lowest RMSE
(0.3776) and CRPS (0.3217), which demonstrates its superior ability to model com-
plex macroeconomic dynamics and uncertainty. The results corroborate the graphical
analysis and suggest that the additional depth enables the model to learn nuanced
transformations of the input space and produce more robust long-horizon forecasts.

To comprehensively evaluate each model’s predictive capacity, now we analyze fore-
cast accuracy across all out-of-sample windows using step specific metrics. Then we
report RMSE and the CRPS averaged by forecast horizon for the 12-step-ahead rolling
forecasts spanning from 1984 to 2024.

Steps M-S ARIMA GP 2-DGP 3-DGP
1 0.7014 0.5921 0.6392 0.6945 0.5466
2 0.8025 0.5801 0.6890 0.7552 0.5826
3 0.8174 0.5912 0.7574 0.7851 0.6285
4 0.8138 0.5830 0.7744 0.7668 0.5672
5 0.8470 0.5797 0.8031 0.7721 0.5581
6 0.8054 0.5768 0.8177 0.7718 0.5490
7 0.8338 0.5629 0.8343 0.7001 0.5540
8 0.8169 0.5723 0.8482 0.7757 0.5681
9 0.8208 0.5790 0.8629 0.7293 0.5611
10 0.8351 0.5822 0.8687 0.7160 0.5556
11 0.8248 0.5809 0.8692 0.7435 0.5843
12 0.8221 0.5811 0.8700 0.7505 0.5805

Table 3.: Average RMSE by forecast horizon (1984–2024)

The evaluation of forecast accuracy over a rolling 12-step horizon (Tables ?? and ??)
highlights substantial performance differences among the models.

The RMSE results show that the three-layer DGP consistently achieves the best
predictive accuracy across all forecast horizons, maintaining the lowest error values
from short- to long-term forecasts. At horizon 1, for instance, it yields an RMSE of
0.5466, outperforming all other models, including the standard GP (0.6392), the M-S
model (0.7014), the two-layer DGP (0.6945), and ARIMA (0.5921). This performance
advantage persists throughout the evaluation window. By horizon 12, the three-layer
DGP still leads with an RMSE of 0.5805, followed closely by ARIMA at 0.5811, while
the two-layer DGP (0.7505), standard GP (0.8700), and M-S model (0.8221) lag further
behind. The ARIMA model demonstrates particularly strong and stable performance,
ranking second overall and consistently outperforming the M-S, GP, and even the
two-layer DGP models at nearly every step.

This performance advantage demonstrates the three-layer DGP’s ability to general-
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Steps M-S ARIMA GP 2-DGP 3-DGP
1 0.5180 0.4872 0.5104 0.5786 0.4603
2 0.6226 0.4907 0.5583 0.7064 0.4786
3 0.6260 0.4960 0.5988 0.7653 0.5136
4 0.6299 0.4938 0.6133 0.7715 0.4771
5 0.6539 0.4908 0.6271 0.7395 0.4718
6 0.6195 0.4925 0.6336 0.7728 0.4724
7 0.6384 0.4794 0.6444 0.7164 0.4908
8 0.6212 0.4877 0.6502 0.7602 0.4944
9 0.6289 0.4912 0.6539 0.7199 0.4813
10 0.6380 0.4901 0.6568 0.6798 0.4836
11 0.6342 0.4892 0.6567 0.7190 0.5105
12 0.6335 0.4888 0.6569 0.7676 0.4819

Table 4.: Average CRPS by forecast horizon (1984–2024)

ize well over longer horizons, capturing both short-term and persistent nonlinearities.
In contrast, the standard GP, constrained by its stationary kernel, tends to extrapolate
local trends without adapting to structural changes, which leads to increasing forecast
errors over time. The two-layer DGP performs moderately, outperforming the other
models in mid-range horizons, but remaining inferior to the three-layer DGP overall.
It is worth mentioning that the ARIMA model shows robust and consistent accuracy
across all forecast steps, offering a strong parametric benchmark that frequently sur-
passes the M-S and GP models, and approaches the performance of the three-layer
DGP.

Turning to the CRPS, the three-layer DGP again dominates, yielding the lowest
values across nearly all forecast horizons, which underscores its superior ability to
quantify predictive uncertainty. For example, at horizon 1, it achieves a CRPS of
0.4603, outperforming all other models, including the standard GP (0.5104), the M-S
model (0.5180), and ARIMA (0.4872). As the forecast horizon increases, the three-
layer DGP continues to deliver stable and relatively low CRPS values, adapting well
to growing uncertainty in long-term forecasts. Among the remaining models, ARIMA
consistently shows strong and reliable performance, often ranking just behind the
three-layer DGP and surpassing both the M-S and standard GP models at every step.

Interestingly, both the standard GP and the M-S model exhibit relatively flat CRPS
trajectories across forecast horizons, suggesting a limited capacity to adapt to the
increasing uncertainty associated with longer-term predictions. The two-layer DGP,
despite its added complexity, often yields higher CRPS values than the standard GP,
indicating that the introduction of intermediate latent layers may inject additional
uncertainty without providing sufficient representational power to effectively capture
the underlying dynamics. In contrast, the ARIMA model displays a consistently low
and stable CRPS profile, outperforming the M-S and GP models at all horizons and
frequently surpassing the two-layer DGP as well.

Overall, the results reinforce the utility of deeper Gaussian Process architectures
in macroeconomic forecasting. The three-layer DGP clearly emerges as the most ef-
fective model, offering the best trade-off between accuracy and calibrated uncertainty
across all horizons. This supports the hypothesis that nonstationary, hierarchical la-
tent structures are critical to capturing the evolving dynamics of real-world economic
data, especially over long forecasting windows.
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Figure 5.: Boxplot comparison of model performance across forecast horizons (1 to 12
steps ahead) for four architectures: Markov-Switching (MS), standard Gaussian Pro-
cess (GP), two-layer Deep Gaussian Process (2-DGP), and three-layer Deep Gaussian
Process (3-DGP). The top panel reports Root Mean Squared Error (RMSE), and the
bottom panel reports Continuous Ranked Probability Score (CRPS). Lower values in-
dicate better performance.

Figure ?? provides a comparative visualization of model performance across multiple
forecast horizons, utilizing RMSE and CRPS. Each boxplot summarizes the distribu-
tion of forecasting errors at each horizon step (from 1 to 12) for the five models: the
Markov-Switching (MS) model, the ARIMA model, the Standard Gaussian Process
(GP), the Two-layer DGP (2-DGP), and the Three-layer DGP (3-DGP).

In the upper panel, we observe that both the three-layer DGP and ARIMA mod-
els consistently achieve the lowest median RMSE values across all forecast horizons.
ARIMA performs particularly well in the short to mid-range horizons (1–6), often
outperforming all other models, including the 3-DGP. At longer horizons (7–12), the
three-layer DGP tends to slightly edge out ARIMA, suggesting its strength in captur-
ing long-term nonlinear dynamics. Notably, both models also display tight interquartile
ranges and relatively few outliers, reflecting high precision and stability. The two-layer
DGP ranks close behind, though with somewhat greater variance and slightly elevated
errors, indicating that while additional depth helps, a two-layer configuration may not
be sufficient to fully model the complexity of the series. In contrast, the standard GP
and Markov-Switching models exhibit higher RMSE values and greater dispersion, es-
pecially as the forecast horizon increases. These results suggest that both GP and MS
struggle to adapt to evolving temporal structures, with GP limited by its stationarity
assumptions and MS constrained by its rigid regime-switching framework.

The lower panel reports CRPS, which assesses the models’ ability to produce well-
calibrated probabilistic forecasts. Here, ARIMA consistently achieves the lowest me-
dian CRPS values across all horizons. The three-layer DGP performs almost as well,
trailing ARIMA only slightly and maintaining low CRPS with tight spreads, reinforc-
ing its strength in both accuracy and calibration. The two-layer DGP shows moderate
performance, often ranking third, but with greater variance and less consistent sharp-
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ness. Meanwhile, the standard GP and MS models again exhibit higher and more
dispersed CRPS values, indicating poorer calibration and less reliable predictive dis-
tributions. Overall, these results reveal that ARIMA and the three-layer DGP are the
most effective models, excelling in both point and probabilistic forecasting, while the
remaining models offer more limited predictive performance.

In general, the results in Figure ?? reinforce the advantages of incorporating depth
and hierarchical latent structure in Gaussian Process models. The strong performance
of the three-layer DGP across both point prediction and uncertainty quantification
underscores its suitability for complex forecasting tasks characterized by nonstation-
arity, structural breaks, and long-range dependencies, conditions commonly observed
in macroeconomic time series.

These findings offer compelling empirical support for the use of deeper architec-
tures in probabilistic forecasting frameworks. At the same time, ARIMA’s consistently
strong results highlight its rare combination of simplicity and robustness, delivering
reliable and well-calibrated forecasts without the computational and modeling com-
plexity associated with deep learning approaches.

4. Conclusion

This study assessed the performance of Gaussian Process models of varying depth
(standard GP, two-layer DGP, and three-layer DGP) in modeling and forecasting
U.S. real GNP. A key limitation of the standard GP lies in its reliance on stationary
kernels, which assume constant statistical properties over time. While this assumption
allows for smooth interpolation within local regions of the training data, it restricts
the model’s ability to accommodate structural breaks, evolving dynamics, and regime-
dependent behavior, common in macroeconomic time series.

Empirical results confirm that the standard GP achieves the lowest RMSE during
in-sample evaluation, reflecting a high degree of fit to the training data. However,
this performance does not generalize well out-of-sample. The standard GP exhibits
poor adaptability in long-horizon forecasts, with narrow credible intervals and frequent
miscoverage during periods of transition. This overconfidence stems from its restrictive
stationarity assumption, which undermines its flexibility in dynamic environments.

By contrast, deeper architectures such as the three-layer DGP demonstrate substan-
tial gains in both predictive accuracy and uncertainty quantification. The hierarchical
composition of latent layers enables the model to capture nonstationary behavior,
complex temporal dependencies, and smooth structural shifts without requiring ex-
plicit specification of regimes. The three-layer DGP consistently outperforms shallower
alternatives across forecast horizons, delivering well-calibrated posterior distributions
and robust out-of-sample performance. While the two-layer DGP offers moderate im-
provements over the standard GP, its performance is less consistent and more sensitive
to forecast horizon, suggesting that additional depth is critical in highly nonlinear set-
tings.

Importantly, the results also highlight the strong performance of the ARIMA model.
Despite its simplicity, ARIMA proves to be a competitive benchmark, often matching
or even surpassing the deep models, especially in probabilistic calibration (CRPS).
Compared to the Markov-Switching model, which captures regime-dependent dynam-
ics via discrete state transitions, the three-layer DGP achieves better performance
while offering a more flexible and continuous representation of structural change.
Whereas the MS model requires pre-specifying the number of regimes and assumes
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abrupt transitions, the DGP framework learns gradual, smooth variations directly
from the data, enabling more nuanced generalization across time.

In summary, while the standard GP may suffice in stable environments, it fails to
address the complexities inherent in real-world macroeconomic forecasting. Deeper
DGP architectures, particularly the three-layer variant, provide a principled Bayesian
approach to modeling nonstationarity, hidden structure, and forecast uncertainty.

A natural extension of this work is to incorporate additional variables within a
Vector Autoregression (VAR) framework. Given the importance of interpretability
in economics, a key objective moving forward is to develop a method that not only
captures nonlinear dynamics but also enables the identification of regimes and the
calculation of regime probabilities in a transparent and interpretable manner.
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Appendix A. Forecast Evaluation Metrics

To assess forecast performance, we employ two complementary metrics: the Root Mean
Squared Error (RMSE) and the Continuous Ranked Probability Score (CRPS).

The RMSE is a widely used metric, that quantifies accuracy of point estimates. It
is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

where yi denotes the observed values and ŷi the corresponding forecasts. Lower
RMSE values indicate higher point forecast accuracy.

In contrast, the CRPS evaluates the quality of a full predictive distribution rather
than a single point estimate. Given a cumulative distribution function F associated
with a forecast and an observed value y, CRPS is defined as:

CRPS(F, y) =

∫ ∞

−∞
(F (x)− 1{x ≥ y})2 dx

Here, 1{x ≥ y} is an indicator function that steps from 0 to 1 at the observed value
y. The CRPS can be interpreted as the squared distance between the predictive CDF
and a step function representing the actual outcome. It rewards forecasts that assign
high probability mass near the true value, thus capturing both calibration and sharp-
ness of the distribution. As with RMSE, lower CRPS values denote better forecasting
performance. The CRPS belongs to a broader class of proper scoring rules, which are
designed to evaluate the quality of probabilistic forecasts as we can see in Gneiting
and Raftery (2007).

Figure A1 provides a visual explanation of the CRPS computation. The area be-
tween the forecast cumulative distribution function and the step function defined by
the actual observation represents the score. The smaller this area, the more accurate
and better calibrated the forecast.
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Figure A1.: Illustration of CRPS computation. The red curve represents the predictive
cumulative distribution function F (x), while the blue step function corresponds to
the observation indicator 1(x>y), where y is the realized value. The shaded red area
quantifies the Continuous Ranked Probability Score (CRPS), measuring the squared
distance between the predicted distribution and the observed outcome. Lower CRPS
values indicate better-calibrated probabilistic forecasts.
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