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1. Introduction

The pricing kernel, or stochastic discount factor (SDF), plays a central role in fi-

nance and economics as it describes how investors demand compensation for risk. Since

Ait-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg and Engle (2002), index

options have been used to recover the projection of the economy-wide pricing kernel onto

market return states. Empirically, it is now a stylized fact that this projection is often

not monotonically decreasing (Cuesdeanu and Jackwerth, 2018). In a representative in-

vestor framework where the market index proxies for aggregate wealth, the violation of

monotonicity is puzzling as it contradicts risk averse behavior.

The pricing kernel puzzle is intimately related to puzzling patterns observed for index

option returns. Expected returns of both put and call options are too low to be consistent

with standard representative agent models (Coval and Shumway, 2001; Driessen and

Maenhout, 2007; Bakshi, Madan and Panayotov, 2010; Bondarenko, 2014; Chaudhuri

and Schroder, 2015; Baele et al., 2019). This means that, on average, the SDF is high for

both large negative and positive market returns, following a U-shaped pattern. The low

returns of index options are also manifested in a high premium for variance risk (Bakshi

and Kapadia, 2003; Bollerslev, Tauchen and Zhou, 2009; Carr and Wu, 2009).

In this paper, we examine whether net demand in the S&P 500 option market helps

explain the shape of the pricing kernel and puzzles related to it. Our motivation is simple.

While it is counter-intuitive that large positive market returns represent a bad state (and,

thus, high marginal utility) for a representative investor, it is intuitive that they represent

a bad state for investors selling out-of-the-money (OTM) calls. Analogously, marginal

utility for negative market return states would be especially high for investors selling

OTM puts. If the representative agent assumption does not hold, the option-implied

SDF reflects risk preferences of a marginal investor in the option market, such that net

options positions can be informative about risk exposures and compensation for risk.

In fact, the representative investor framework is arguably troublesome to interpret the

pricing kernel recovered from options. The representative agent’s equilibrium demand for

options must be zero as options are in zero net supply, such that the agent’s marginal

utility does not depend on the options. That is, this framework essentially assumes that

options are redundant securities. This is inconsistent with the large trading volumes of

index options and extant empirical evidence that options are nonredundant (Bakshi, Cao

and Chen, 2000; Buraschi and Jackwerth, 2001; Almeida and Freire, 2022). If options are
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nonredundant, they should affect the functional form of the SDF, in a way that depends

on how agents optimally trade the options (Vanden, 2004, 2006). Option demand arises

with heterogeneous agents in the presence of frictions or sources of market incompleteness

(Johnson, Liang and Liu, 2018).

Given our motivation, we investigate empirically the relation between net demand in

the S&P 500 option market and the shape of the option-implied pricing kernel. There are

essentially two types of agents in this market (Garleanu, Pedersen and Poteshman, 2009):

public investors, or “end-users”, who directly seek option exposure, and market makers,

or “dealers”, who provide liquidity by taking the other side of the end-user net demand.

Dealers intermediate the market and must accommodate order imbalances from public

investors, such that their options positions often deviate from the desired level (Muravyev,

2016). Consequently, market makers accumulate large inventories over time and cannot

directly control their risk exposures (Gruenthaler, 2022).

We compute the net amount of new OTM calls and OTM puts that public investors

buy each month, hencefort PNBOC and PNBOP , respectively. This reflects the net

amount that market makers sell in the same period. While on average public investors

are net buyers of these options, they often switch to net sellers, especially during periods

of market turmoil.1 Chen, Joslin and Ni (2019) show that tight financial constraints often

force market makers to aggressively hedge the left tail risk exposures of their inventories

by buying OTM puts. We find a similar pattern for OTM calls, suggesting market makers

are also interested in hedging market upside risk during crises.

To study the shape of the pricing kernel, we analyze the behavior of expected option

returns across strike prices.2 We calculate average call (put) returns for our entire sample

and conditioned to periods where PNBOC (PNBOP ) is positive and negative. Our

unconditional results are in line with the literature. Average call returns are mostly

negative, providing evidence of a U-shaped pricing kernel. As for put options, average

returns are highly negative, indicating that on average the SDF projection has a steep

slope for negative market returns.

However, expected option returns are strikingly different depending on the option net

demand. When public investors are exposed to market upside risk by net selling OTM

1More specifically, over our sample ranging from January 1996 to December 2020, PNBOC
(PNBOP ) is negative for 52% (47%) of the 300 months.

2This approach is fully nonparametric and avoids the need to directly estimate the SDF projection,
which is empirically challenging (see Coval and Shumway, 2001; Bakshi, Madan and Panayotov, 2010;
Chaudhuri and Schroder, 2015; Baele et al., 2019).
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calls, average call returns are more negative than for the whole sample, consistent with

a U-shaped SDF that is steeper in the region of positive market returns. In contrast,

average call returns are highly positive when public investors are net buyers of OTM

calls, aligned with an overall monotonically decreasing projection of the pricing kernel.

Analogously, when public investors are more exposed to market downside risk by net

selling OTM puts, average put returns are more negative than for the whole sample,

i.e., the SDF projection is even steeper for negative market returns. For months where

PNBOP > 0, average put returns are less negative and can even be highly positive if

public investors are net buying large amounts of OTM puts. Our results are robust to

controlling for several alternative determinants of the shape of the pricing kernel and

expected option returns.

Given that option net demand strongly affects expected option returns, it should also

be important to explain the variance risk premium.3 We test that relation nonparamet-

rically by analyzing expected delta-hedged option returns and straddle returns, which

are informative about the premium for variance risk (Coval and Shumway, 2001; Bakshi

and Kapadia, 2003). When public investors are exposed to variance risk by selling OTM

options, the average returns of these strategies are highly negative, indicating a large

positive variance risk premium.4 In contrast, when public investors are protected against

variance risk by buying OTM options, average returns are highly positive, consistent with

a negative variance risk premium. We also run predictive time series regressions of the

V RP measure of Bollerslev, Tauchen and Zhou (2009) on net demand.5 We find that

both PNBOC and PNBOP significantly predict the V RP , with negative coefficients.

Overall, we document that net demand in the S&P 500 option market is fundamental

to explain the shape of the pricing kernel, expected option returns and the variance risk

premium. Our results suggest that public investors can be seen as the marginal investor

in the option market, as their risk exposures align with the shape of the option-implied

pricing kernel and the compensation for variance risk. This contrasts with the common

view that market makers are always hedge-providers to end-users, demanding a high

variance risk premium due to their risk exposure. In fact, the variance risk premium is

3For instance, Baele et al. (2019) show that the variance risk premium can be written as the expected
return on a portfolio of OTM calls and OTM puts with different strike prices.

4As Bollerslev, Tauchen and Zhou (2009) and Baele et al. (2019), we define the variance risk premium
as the difference between the risk-neutral and the physical expected variance of the market return.

5The V RP is calculated as the difference between the squared VIX and the realized variance of S&P
500 returns over the previous month.
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high when public investors provide hedge against variance risk to market makers. This

usually happens in periods of distress where market makers are financially constrained

and willing to pay high prices for options to reduce the risk of their inventories.6

More generally, our findings support equilibrium models with heterogeneous agents

in which options are nonredundant. A recent example of such approach is by Farago,

Khapko and Ornthanalai (2021), who show that a heterogeneous-agent model incorpo-

rating asymmetric preferences rationalizes the dynamics of the put option market. Our

analysis underscores that rationalizing the market for call options is also fundamental to

explain empirical puzzles in the option market. Relatedly, incorporating these features

could also be useful to resolve inconsistencies between sources of risk premia implied by

options and leading asset pricing models (Beason and Schreindorfer, 2022).

The remainder of the paper is organized as follows. After a brief review of the related

literature, we discuss the theoretical framework in Section 2. In Section 3, we describe our

data and empirical design. Section 4 contains the main empirical results, while Section 5

reports the robustness analysis. Section 6 concludes the paper.

1.1. Related literature

Our paper is mainly related to four strands of the literature. The first strand is the

literature on the pricing kernel puzzle, initiated by Ait-Sahalia and Lo (2000), Jackwerth

(2000) and Rosenberg and Engle (2002), who were the first to estimate the projection

of the SDF from option data and document its nonmonotonic shape. The puzzle has

been empirically confirmed by several papers afterwards, with proposed explanations

that range from heterogeneous beliefs (Ziegler, 2007; Bakshi, Madan and Panayotov,

2010), market incompleteness (Hens and Reichlin, 2013) and additional state variables

(Chabi-Yo, Garcia and Renault, 2008; Brown and Jackwerth, 2012; Christoffersen, He-

ston and Jacobs, 2013) to behavioral models (Polkovnichenko and Zhao, 2013; Baele et

al., 2019).7 We show that net demand in the option market is fundamental to explain the

shape of the pricing kernel. Departing from a representative investor framework, a non-

6This is consistent with evidence from Gruenthaler (2022) that, in times of elevated distress, option
sell prices change more than buy prices, suggesting that market makers want to induce public sell orders.
Johnson, Liang and Liu (2018), Chen, Joslin and Ni (2019) and Gruenthaler (2022) argue that option
intermediaries’ appetite to hold risks is normally high but decreases around crises, where the risks are
transferred to public investors.

7See also Barone-Adesi, Engle and Mancini (2008), Beare and Schmidt (2016), Song and Xiu (2016),
Grith, Hardle and Kratschmer (2017), Sichert (2022) and references in Cuesdeanu and Jackwerth (2018).
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monotonic projection of the SDF onto market returns is not puzzling, but rather reflects

the marginal investor’s risk exposures which depend on options positions. More generally,

any alternative explanation for the pricing kernel puzzle should be able to explain the

stylized facts we document.

The second strand of the literature studies empirical patterns in index option returns,

documenting low put returns, low call returns and relating expected option returns to the

shape of the pricing kernel and the variance risk premium (Coval and Shumway, 2001;

Bakshi and Kapadia, 2003; Jones, 2006; Driessen and Maenhout, 2007; Santa-Clara and

Saretto, 2009; Bakshi, Madan and Panayotov, 2010; Bondarenko, 2014; Chaudhuri and

Schroder, 2015; Baele et al., 2019). We document that expected option returns are not

always low, but rather differ substantially once we condition to periods where public

investors are net buyers or net sellers of OTM options.

The third strand of the literature investigates the role of demand in the option market

in explaining asset prices and risk premium. Bollen and Whaley (2004) show that changes

in implied volatility are correlated with signed option volume, while Garleanu, Pedersen

and Poteshman (2009) model the effects of demand pressure on option expensiveness.

Muravyev (2016) analyzes the implications of option order imbalances to equity option

returns. More recently, Chen, Joslin and Ni (2019) show that supply shocks in deep OTM

puts predict excess returns for a variety of assets. Fournier and Jacobs (2020) develop an

option pricing model incorporating the intermediation of risks by market makers, while

Jacobs, Mai and Pederzoli (2022) estimate latent demand and supply for index options.

Gruenthaler (2022) studies how option intermediaries’ risk affect risk premia. We show

that the net demand for S&P 500 options is a key ingredient to explain the shape of the

pricing kernel, expected option returns and the variance risk premium.

The fourth is a growing literature focusing on the pricing kernel of specialized in-

stitutions and financial intermediaries, rather than that of a representative household,

to explain asset pricing behavior (Gabaix, Krishnamurthy and Vigneron, 2007; He and

Krishnamurthy, 2013; Adrian, Etula and Muir, 2014; Brunnermeier and Sannikov, 2014;

He, Kelly and Manela, 2017). We consider the Euler equation for a marginal investor

in the option market instead of the one for a representative investor. Our results sug-

gest that public investors in the S&P 500 option market, which are mostly sophisticated

institutional investors (Chen, Joslin and Ni, 2019), can be seen as marginal investors.
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2. Theoretical framework

The absence of arbitrage is equivalent to the existence of a strictly positive random

variable Mt,T , the pricing kernel, such that the current price Pt of any asset with future

payoff XT satisfies:8

Pt = Et[Mt,TXT ]. (1)

In traditional consumption-based asset pricing models (e.g., Lucas, 1978), the SDF equals

the intertemporal marginal rate of substitution between consumption at time t and T .

More generally, however, the pricing kernel can be a function of multiple state variables

that affect marginal utility. To avoid the issue of specifying these variables, a common

approach is to consider the projection of the SDF onto market returns Rt,T :

mt,T (Rt,T ) = Et[Mt,T |Rt,T ]. (2)

The projected pricing kernel mt,T has the same pricing implications as the economy-wide

SDF Mt,T for assets with payoffs dependent on Rt,T .

The SDF induces a change of measure from the physical measure P to the risk-neutral

measure Q under which one can take simple expectations to calculate the price of an asset.

More specifically, the projected pricing kernel is the ratio of the conditional risk-neutral

and physical distributions of market returns, discounted by the risk-free rate Rf :

mt,T (Rt,T ) =
1

Rf

dQt(Rt,T )

dPt(Rt,T )
. (3)

The literature following Ait-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg

and Engle (2002) calculates the empirical projection of the pricing kernel based on the

equation above. The risk-neutral distribution is obtained from the cross-section of in-

dex option prices at date t with time to maturity T , based on classic spanning results

from Breeden and Lizenberger (1978). The physical distribution is estimated from the

historical time series of market returns.9

8See Cochrane (2001) for a comprehensive treatment of the pricing kernel.
9There is no consensus on how to estimate a conditional physical distribution, which is empirically

challenging. Ait-Sahalia and Lo (2000) and Jackwerth (2000) use kernel densities to smooth the histogram
of recent past market returns, while Rosenberg and Engle (2002), Barone-Adesi, Engle and Mancini
(2008), Christoffersen, Heston and Jacobs (2013), Sichert (2022) and Almeida and Freire (2022) obtain
conditional estimates taking into account time-varying volatility. Linn, Shive and Shumway (2017) and
Barone-Adesi et al. (2020) combine option data with market returns to estimate the physical distribution.
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2.1. The pricing kernel puzzle

To be able to economically interpret the projected pricing kernel, most of the literature

assumes a representative investor framework where the market index is a perfect proxy for

the aggregate wealth. Under these assumptions, the projection of the SDF onto market

returns is equal to the economy-wide SDF, which in turn is proportional to the marginal

utility of the representative investor. Empirically, it has been widely documented that this

projection is often not a monotonically decreasing function of wealth as proxied by the

market index (Cuesdeanu and Jackwerth, 2018). This would imply that the representative

agent is locally risk-seeking, contradicting standard economic theory. Such violation of

monotonicity characterizes the pricing kernel puzzle (Brown and Jackwerth, 2012).

The interpretation above implicitly assumes that options are redundant securities.

Since options are in zero net supply, the representative agent’s marginal utility does not

depend on the options. Therefore, options are merely useful tools for the estimation of the

pricing kernel, playing no role in its interpretation. This is at odds with the tremendous

growth experienced by the index option market over the last few decades. In particular,

the demand for S&P 500 options represents around 26% of total index shares in the recent

sample, which confirms the relative importance of this market in the economy (Farago,

Khapko and Ornthanalai, 2021).

There is also extensive empirical evidence that options are nonredundant. Bakshi, Cao

and Chen (2000) document that call option prices can decrease even if the underlying asset

price increases. Buraschi and Jackwerth (2001) show that option returns are not spanned

by S&P 500 returns, which relates to the widely documented presence of additional priced

risk factors such as stochastic volatility and jumps (Heston, 1993; Bates, 2000; Andersen,

Fusari and Todorov, 2015). Ait-Sahalia, Wang and Yared (2001) find that the risk-

neutral dynamics inferred from option prices is different from that extracted from S&P

500 returns. Almeida and Freire (2022) show that there is no unique well-behaved SDF

estimated from S&P 500 returns that prices all index options in the cross-section.

If options are nonredundant, they should affect the economy-wide SDF, in a way that

depends on how heterogeneous agents optimally trade them. As discussed by Johnson,

Liang and Liu (2018), the main reason for option trading in equilibrium models is for

transferring unspanned market risk (e.g., volatility or jump risk) across investors who can

differ on preferences (Vanden, 2006; Bates, 2008; Bhamra and Uppal, 2009; Chen, Joslin

and Ni, 2019), beliefs (Buraschi and Jiltsov, 2006), portfolio constraints (Vanden, 2004)
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or background risk (Franke, Stapleton and Subrahmanyam, 1998).

Therefore, option demand should be informative about the shape of the pricing kernel.

In the next subsection, we propose a simple framework for interpreting the relation be-

tween options positions of the marginal investor in the option market and the SDF. This

framework would be consistent with a general equilibrium model with heterogeneous

agents and frictions. For instance, in the presence of nonnegative wealth constraints,

Vanden (2004) shows that options are nonredundant and the economy SDF can be inter-

preted as the marginal utility of a pricing agent with smooth utility function trading in

the market and options on the market.

2.2. An alternative economic interpretation

In this subsection, we depart from the representative investor framework and provide

an alternative economic interpretation for the pricing kernel implied by index options.

We start from the more general setup in which there is (at least) one marginal investor

in the index and option markets. Let St denote the market index and Ot,T,j the prices of

j = 1, ..., N − 1 OTM index options with strike price Kj expiring at time T .10 Given the

market returns Rt,T , the option returns are defined by:

f(Rt,T , Kj) =


(StRt,T−Kj)

+

Ot,T,j
if Kj > St (OTM calls)

(Kj−StRt,T )+

Ot,T,j
if Kj < St (OTM puts).

(4)

We stack the returns of the market and the options on an N -dimensional random vector

R and denote by Re ≡ R−Rf1N the vector of excess returns with respect to the risk-free

rate, where 1N is a conformable vector of ones.11 In this setting, the marginal agent’s

SDF m satisfies the Euler equation for the market and the options:

E[mRe] = 0N . (5)

To shed light on the relation between option demand of the marginal investor and

the SDF, we consider a standard optimal portfolio problem where the investor has a

general concave utility function U(W ) defined over next period’s wealth W . The investor

10This is without loss of generality in the sense that, from put-call parity, in-the-money (ITM) options
contain redundant information. This is also consistent with the practice of using only OTM options to
estimate the pricing kernel projection, as they are more liquid and actively traded than ITM options.

11For ease of notation, we drop time subscripts from now on.
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distributes her initial wealth W0 by investing λ = (λ1, ..., λN) in the market and the

options and the remaining W0 −
∑N

j=1 λj in the risk-free asset. Terminal wealth is given

by W (λ) = W0Rf + λRe and the investor maximizes expected utility:

λ∗ = max
λ∈RN

E [U(W (λ))] . (6)

The marginal agent’s first-order condition gives the Euler equation for the market and

the options:

E[U ′(W0Rf + λ∗Re)Re] = 0N , (7)

such that the marginal utility of the investor as a function of her optimal future wealth

serves as the SDF: m(R) = U ′(W0Rf + λ∗Re).

Given the concavity of the utility function, the investor is risk-averse and m∗(R) is

monotonically decreasing in the optimal portfolio returns λ∗Re. However, this is not

necessarily true for the projection of m∗(R) onto market returns. In fact, if options are

nonredundant, the endogenous optimal wealth W (λ∗) will in general be different from

the market index. In this context, the projection of the SDF onto market return states is

not puzzling regardless of its shape. Rather, its shape simply reflects how the marginal

investor trades in the options, as we discuss in the next subsection.

Our interpretation is also motivated by how the projection of the pricing kernel onto

market returns is estimated in practice. A common way of estimating the numerator in

(3) is to choose the risk-neutral probabilities that minimize a convex loss function while

correctly pricing the market index and the options (Jackwerth and Rubinstein, 1996). In

Appendix B, we show that this is equivalent, by duality, to solving precisely the optimal

portfolio problem considered here. That is, using options to estimate the pricing kernel

is equivalent to identifying the SDF of a marginal investor trading in the market index

and the index options. This perspective further shows how troublesome it is to ignore

the role of options in the shape of an SDF estimated from options.

2.3. Implications for the shape of the pricing kernel projection

The marginal investor’s pricing kernel m∗(R), or, equivalently, her marginal utility,

is high (low) for low (high) levels of endogenous wealth, i.e., for negative (positive) real-

izations of the optimal portfolio returns. The shape of the pricing kernel projection onto

market returns will therefore reflect how market returns relate to the optimal portfolio
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returns. This, in turn, depends on the options positions in the portfolio. In the simplest

case possible where portfolio weights for all options are zero, the optimal portfolio is

perfectly correlated with the market index, so that the SDF is monotonically decreasing

in market returns. However, in the more general case that options are nonredundant, the

market index will differ from the endogenous wealth arising from the optimal portfolio.

We now derive necessary conditions on the investor’s optimal portfolio to generate

nonmonotonicity of the projection of the pricing kernel onto market returns. The next

proposition focuses on the shape of the projected SDF in the upside of market returns:

Proposition 1. Suppose the investor is long in the market index.12 Then, if the projec-

tion of the pricing kernel onto market returns is U-shaped, the investor must be selling

OTM call options. Otherwise, the projected pricing kernel is monotonically decreasing in

the region of positive market returns.

Proof. See Appendix A.

The result above is fairly intuitive. In the region of positive net market returns, the only

options that pay off are OTM calls, such that only their returns are informative about

the shape of the SDF projection. In particular, positive market returns are associated

with positive OTM call returns. Therefore, if the investor is long in all OTM call options,

positive market return states represent positive realizations of the optimal portfolio and

the projected SDF is monotonically decreasing. The projected SDF is U-shaped when

the investor sells a sufficiently large amount of OTM calls that offsets the long position in

the market. In this case, the positive call returns in the region of positive market returns

will represent negative realizations of the optimal portfolio, i.e., states of higher marginal

utility. That is, the pricing kernel is U-shaped when the investor is exposed to market

upside risk by selling OTM calls.

In the next proposition, we consider the case that the pricing kernel is increasing in

the downside region of market returns:13

Proposition 2. Suppose the investor is long in the market index. Then, if the projection

of the pricing kernel is monotonically increasing in the region of negative market returns,

12This is the natural starting point where, without the options, the pricing kernel would be monoton-
ically decreasing in the market returns. If the investor is short in the market index, the pricing kernel
trivially violates the monotonically decreasing condition.

13This type of nonmonotonicity would be related to S-shaped pricing kernels that have also been
found empirically in the literature (see Cuesdeanu and Jackwerth, 2018).
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the investor must be buying OTM put options. Otherwise, the projected pricing kernel is

monotonically decreasing in this region.

Proof. See Appendix A.

The intuition is similar to the previous case. In the region of negative net market returns,

only OTM puts pay off, such that only their returns are informative about the shape of the

SDF projection. In particular, negative market returns are associated with positive OTM

put returns. Therefore, if the investor is short in all OTM put options, negative market

return states represent negative realizations of the optimal portfolio and the projected

SDF is monotonically decreasing. The projected SDF is increasing in this region when

the investor buys a sufficiently large amount of OTM puts that offsets the long position

in the market. In this case, the positive put returns in the region of negative market

returns will represent positive realizations of the optimal portfolio, i.e., states of lower

marginal utility. That is, the investor profits from market downside risk.

The implications of the options positions of the marginal investor in the option market

for the shape of the projected pricing kernel can also be cast in terms of implications

for expected option returns and the variance risk premium. We briefly discuss these

implications in the next subsection.

2.4. Implications for expected option returns and variance risk premium

There is a close relation between the shape of the pricing kernel projected onto market

returns and expected index option returns. Coval and Shumway (2001) show that the

SDF is a monotonically decreasing function of market returns if and only if expected call

(put) option returns are positive (negative) and increasing in the strike price. Instead, if

the SDF is U-shaped, Bakshi, Madan and Panayotov (2010) demonstrate that expected

call returns are decreasing in the strike and negative beyond a threshold. The steeper the

slope of the pricing kernel in the region of positive (negative) market returns, the more

negative are the expected call (put) returns.14

Given the relation above, Proposition 1 implies that if the marginal investor buys all

OTM calls, expected call returns are positive and increasing in the strike. In contrast, if

expected call returns are decreasing in the strike and negative beyond a threshold, the

investor must be selling OTM calls. Similarly, Proposition 2 states that if the marginal

14For a more detailed explanation and a visual illustration, see Appendix C.
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investor sells all OTM puts, expected put returns are negative and increase with the

strike. If, instead, expected put returns are positive and decrease with the strike, the

investor must be buying OTM puts.

Moreover, Baele et al. (2019) show that the variance risk premium can be written

as a weighted average of expected returns on OTM calls and OTM puts, with negative

weights. Therefore, our theory implies that if the marginal investor mostly sells OTM

calls and puts, expected call and put returns are negative, and thus the variance risk

premium should be positive. Conversely, if the investor mostly buys OTM calls and

OTM puts, expected call and put returns are positive, and the variance risk premium

should be negative. In other words, there is a negative relation between the net amount

of OTM options that the investor buys and the variance risk premium. Intuitively, by

selling OTM calls and OTM puts, the investor gets exposed to market upside risk and

more exposed to downside risk, respectively. This increases the exposure to variance risk,

such that the investor requires a higher premium to bear it.

In sum, our theoretical framework connects (nonmonotonic) patterns in the shape

of the SDF projection to the options positions of the marginal investor in the option

market. In the next section, we describe our approach to empirically investigate the

relation between net demand in the S&P 500 option market and the pricing kernel.

The idea is that, if options are nonredundant, net demand should be informative about

investors’ risk exposures and compensation for risk, and, therefore, about the shape of

the pricing kernel projection onto market returns. The framework provided here guides

our interpretation of the empirical patterns we document.

3. Data and empirical design

3.1. Net demand in the S&P 500 option market

To compute net demand in the S&P 500 option market, we use the Chicago Board

Options Exchange (CBOE) Open-Close database, which contains the daily non-market

maker option volume differentiated by who initiates the trade (customer or firm) and

the type of the transaction (open-buy, open-sell, close-buy or close-sell).15 Customers, or

public investors, include retail investors and institutional investors such as hedge funds,

15More specifically, the types of transaction are: open-buy, a buy to open a new long position; open-
sell, a sell to open a new short position; close-buy, a buy to close an existing short position; and close-sell,
a sell to close an existing long position.
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while firms include securities broker-dealers who are not designated market makers. As

broker-dealers are more similar to market makers, we follow common practice of merging

both into one group that trades against the public investors. We also follow Lemmon

and Ni (2014) and Chen, Joslin and Ni (2019) in focusing on open orders, as close or-

ders are mechanically influenced by existing positions and do not solely reflect investors’

perceptions of the future. Our sample ranges from January, 1996 to December, 2020.

We construct two measures of net buying-to-open volume of public investors: one

for OTM calls and one for OTM puts. According to our theoretical framework, these

are the options that are informative about the shape of the projected pricing kernel in

the region of positive and negative net market returns, respectively. We define OTM

calls (puts) as call (put) options with moneyness K/S ≥ 1.03 (K/S ≤ 0.97). We use

volume data for options with time to maturity close to one month, which is the horizon

considered by the literatures on the pricing kernel puzzle and option returns. More

specifically, we focus on short-term OTM options with time to maturity between 15 and

60 calendar days. Considering these options, the public net buying-to-open of OTM calls

(PNBOCt) is defined as the difference between the public open-buy volume and public

open-sell volume of OTM calls in month t. The definition of the public net buying-to-

open of OTM puts (PNBOPt) is analogous. The public net buy reflects the net amount

that market makers sell in the same period.

Garleanu, Pedersen and Poteshman (2009) document that public investors are net

buyers of index options on average. More recently, Chen, Joslin and Ni (2019) show that

the public net demand of deep OTM put options varies substantially over time, being

mostly negative between the 2008 financial crisis and the 2011 European debt crisis. They

argue that tight financial constraints force market makers to aggressively hedge the left

tail risk exposures of their inventories by becoming net buyers of deep OTM puts. The

authors also provide evidence that institutional public investors, which are predominant

in the S&P 500 option market compared to retail investors, are the ones satisfying the

market maker demand in periods of market distress.

Figure 1 plots the time series of PNBOC and PNBOP . As can be seen, both

PNBOC and PNBOP vary considerably over time, being negative for roughly half of the

sample.16 The correlation of the measures is 37.85% and they display some similarities.

This is especially true between 2016 and 2019, where public investors are consistently net

16In fact, the average PNBOC (PNBOP ) is close to zero at the scale of the plot: 0.02 × 105

(0.04× 105).
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buyers of OTM calls and OTM puts. This changes during the COVID crisis, as PNBOC

becomes negative. Before this period, patterns are less comparable. From the beginning

of the sample, PNBOC oscillates from positive to negative, until it becomes negative

for most of the period between 2007 and 2012. Interestingly, public investors become

net sellers of OTM calls right before the global financial crisis. In contrast, PNBOP is

mostly positive until the peak of the financial crisis in October, 2008. After that, public

investors persistently net sell OTM puts to market makers until 2016.

While explaining the time variation in the net demand of OTM calls and OTM puts

is not the focus of our paper, a similar argument as in Chen, Joslin and Ni (2019) may

apply. In normal times, market makers primarily net sell OTM options, accumulating

both left and right tail risk exposures in their inventories. Figure 1 shows that public

investors become net sellers mostly when the market is in distress. These are periods

where market makers face tight intermediary constraints, such as loss of capital and higher

capital requirements. Therefore, to hedge the exposures of their inventories to variance

risk, intermediaries switch to net buyers of OTM options. In Section 5.1, we provide

additional insights by relating option net demand to several risk variables, indicators of

business conditions and measures of funding constraints.

3.2. S&P 500 option returns

To investigate the implications of public option net demand for the shape of the pric-

ing kernel, we rely on the relation between the latter and expected option returns. This

approach is fully nonparametric and avoids the need to explicitly calculate the option-

implied SDF, which depends on the challenging estimation of the conditional physical

distribution and can be misspecified. While this relation holds for expected returns con-

ditional on time t, Coval and Shumway (2001), Bakshi, Madan and Panayotov (2010) and

Chaudhuri and Schroder (2015) condition down by taking unconditional expectations of

option returns.17 We proceed in a similar way, but taking expectations on different sub-

samples of option returns. More specifically, motivated by our theory, we compute average

call and put returns conditioned to months where PNBOC and PNBOP , respectively,

are: very large (above one standard deviation), positive, negative and largely negative

(below minus one standard deviation). In this sense, our results speak to the overall or

“average” shape of the pricing kernel under these different conditioning sets.

17For more details, see Appendix C.
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To calculate the option returns, we obtain end-of-day midquotes of S&P 500 options

from OptionMetrics from January, 1996 to December, 2020. We follow Baele et al. (2019)

in using interpolated prices of call (put) options with fixed deltas ranging from 0.2 to

0.8 (-0.8 to -0.2) and fixed time to maturity equal to 30 calendar days. OptionMetrics

generates these prices by interpolating the implied volatility surface on each day. This

has the advantage that for each day in the sample we have option observations with

exactly the same delta and time to maturity. Thus, for each day and option delta,

we construct the hold-until-maturity option returns by taking the ratio of the realized

option payoff and the option price.18 That is, we have daily overlapping option returns,

which guarantees a large number of observations when we compute average returns under

different conditioning sets.19 We have tested using the traded option quotes instead of

the interpolated ones to calculate option returns, and results are very similar.20

We also investigate the implications of option net demand for the variance risk pre-

mium, which is closely related to the shape of the pricing kernel. More specifically, we

compute expected returns of option strategies that are informative about the variance

risk premium. This approach, again, is fully nonparametric. Bakshi and Kapadia (2003)

show that negative expected delta-hedged option returns correspond to a positive vari-

ance risk premium. Using the data described above, we calculate, for each day for the

at-the-money (ATM) call and put options, the hold-until-maturity return of buying the

option and shorting delta shares of the S&P 500 index, such that the net investment

earns the risk-free rate.21 Then, we analyze average returns conditioned to periods where

public investors are net buyers of OTM options (i.e., protected against variance risk) or

net sellers of OTM options (i.e., exposed to variance risk).

Relatedly, negative expected straddle returns signal a positive variance risk premium

(Coval and Shumway, 2001; Driessen and Maenhout, 2007). For each day, we calculate

the hold-until-maturity return of a long ATM straddle position, which consists of a si-

multaneous purchase of an ATM call and ATM put option. This strategy profits from

increases in market volatility, such that a negative expected return signals a premium

18To calculate the realized option payoff, we use daily data on the S&P 500 index from Bloomberg.
19For instance, if we condition to months where PNBOC > 0, we have 21 observations for each

month t where PNBOCt > 0.
20In this case, options have varying moneyness and time to maturity across different days. Therefore,

for each day and for a given fixed target moneyness y∗, we select the option with time to maturity closest
to 30 calendar days and moneyness closest to y∗, and use this observation to calculate the option return.

21More precisely, following Bakshi and Kapadia (2003), the delta-hedged return of the ATM call option

with price Ot,T is defined as π/Ot,T , where π = max(ST−K, 0)−Ot,T−∆t(ST−St)−rft (Ot,T−∆tSt)×30

and rft is the daily 3-month T-bill. The ATM call (put) is the one with ∆t equal to 0.5 (-0.5).
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for protection against variance risk. We also consider a “crash-neutral” ATM straddle,

consisting of a long position in the ATM straddle and a short position in the -0.2 delta

OTM put option. The return of this strategy is limited during a market crash, such

that its expected return reflects compensation only for variance risk. That is, it isolates

the premium for variance risk from that for crash risk. Again, we compute conditional

average straddle returns based on whether public investors are net buying or net selling

different quantities of OTM options.

3.3. Additional variables

We use a number of additional variables in our empirical analysis. To conduct pre-

dictive time series regressions for the variance risk premium, we adopt a popular semi-

parametric measure for the premium. We follow Bollerslev, Tauchen and Zhou (2009) in

calculating the V RPt as the difference between the squared VIX index at month t and

the (annualized) realized S&P 500 return variance over t− 1 and t. We obtain the VIX

from the CBOE and the high-frequency five-minute S&P 500 returns, which we use to

estimate realized variance (as the sum of the squared log returns), from Tick Data.

We also consider a set of variables which we use as controls in our tests and relate to

PNBOCt and PNBOPt to provide further insights into net demand. First, we include

risk measures. We consider the realized volatility (RVt) as the square root of the realized

variance over month t and the left tail volatility (LTVt) of Bollerslev, Todorov and Xu

(2015), which we obtain from the website of Torben Andersen and Viktor Todorov.22 Sec-

ond, we include macroeconomic variables reflecting expected business conditions. Using

updated data fromWelch and Goyal (2008), we calculate: the term spread (TMSt), as the

difference between the long term (10-year) yield on government bonds and the 3-month

Treasury bill; the credit spread (CRSt), as the difference between the yield on BAA-rated

corporate bonds and the long term yield on government bonds; and the default spread

(DFSt), as the difference between BAA and AAA-rated corporate bond yields.23 We

further obtain the Aruoba, Diebold and Scotti (2009) (ADSt) business conditions index

from the Federal Reserve Bank of Philadelphia. We also construct a dummy variable

that equals one during NBER recession periods and zero otherwise (DNBER
t ).

Third, we include measures of funding constraints. We obtain the TED spread

22https://tailindex.com/index.html. Since LTVt is provided at a daily frequency, we calculate monthly
figures by taking the average within each month. LTVt is only available until December, 2019.

23The data is available at Amit Goyal’s website: http://www.hec.unil.ch/agoyal/.

17



(TEDt), which is the difference between the 3-month LIBOR and the 3-month Trea-

sury bill, from the St. Louis Federal Reserve Economic Data (FRED) database. We also

construct the measure of financial intermediary constraints of Chen, Joslin and Ni (2019)

(CJNt). Their measure is defined as the monthly public net buying-to-open of deep OTM

puts (with K/S ≤ 0.85) times an indicator function that equals one for months where

supply shocks are the dominant driver of price-quantity relations. Within each month t,

a regression of daily V RP on the daily public net buying-to-open of deep OTM puts is

conducted to estimate the slope coefficient bV PR,t.
24 If bV PR,t < 0, there is evidence of a

negative price-quantity relation, such that month t is interpreted as being dominated by

supply shocks, rather than demand shocks.

4. Main empirical results

4.1. Option net demand and the shape of the pricing kernel

To study the shape of the pricing kernel, we analyze expected option returns across

strike prices. We calculate average returns over the whole sample and conditioned to

different months based on option net demand. Our main findings are summarized in

Figure 2. Focusing first on the unconditional average returns, our results are in line with

the literature. Average call returns are decreasing in the strike and negative beyond a

threshold, providing evidence of a U-shaped pricing kernel. As for put options, average

returns are increasing in the strike and highly negative, indicating that on average the

SDF projection has a decreasing steep shape for negative market returns.

However, expected option returns are strikingly different depending on the public

option net demand. The left panel of Figure 2 shows that when public investors are

exposed to upside risk by net selling OTM calls, average call returns are more negative

than for the whole sample, consistent with a U-shaped SDF that is steeper in the region

of positive market returns. In contrast, average call returns are positive and increasing

in the strike when public investors are net buyers of OTM calls, aligned with an overall

monotonically decreasing projection of the pricing kernel. These differences are even more

extreme when public investors are net buying or net selling large amounts of OTM calls.

The right panel of Figure 2 reports the patterns for put options. When public investors

24Daily V RP is defined as the squared VIX for day i minus the (annualized) realized S&P 500 return
variance over the previous 30 calendar days.
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are more exposed to downside risk by net selling OTM puts, average put returns are

even more negative, i.e., the SDF projection is even steeper. This is exacerbated when

PNBOP < −1std, where average put returns get extremely negative. On the other hand,

for months where PNBOP > 0, average put returns are less negative as exposure to

downside risk decreases. However, when public investors are protected against downside

risk by net buying large amounts of OTM puts, average returns of put options are highly

positive and decrease with the strike, suggesting an increasing SDF projection in the

region of negative market returns.

The empirical results above show that the shape of the pricing kernel strongly depends

on option net demand. This is consistent with our economic interpretation of the pricing

kernel implied by index options. In particular, the compensation for risk reflected in

the pricing kernel aligns with the risk exposures of public investors, suggesting that they

can be seen as the marginal investor in the option market. Therefore, we can use our

theoretical framework to interpret the relation between the options positions of public

investors and the pricing kernel.

When public investors are net buyers of OTM calls, positive market returns represent

“good” states of the world for them, such that the SDF is monotonically decreasing in

this region. In contrast, when public investors net sell OTM calls, they are exposed

to market upside risk and have higher marginal utility in positive market return states,

leading to a U-shaped SDF. Moreover, when public investors net buy (sell) large amounts

of OTM calls, exposure to upside risk decreases (increases), such that they require less

(more) compensation for that risk with a steeper decreasing (increasing) SDF projection.

Analogously, when public investors are net sellers of OTM puts, they are more exposed

to market downside risk, demanding more compensation for that risk with a steeper

decreasing SDF projection. This is exacerbated when they net sell large amounts of

OTM puts, as this increases even more the exposure to negative market return states.

In contrast, exposure to downside risk is smaller when public investors net buy OTM

puts.25 However, when they net buy large amounts of OTM puts, negative realizations of

the market represent positive realizations of the investors’ portfolios and states of lower

marginal utility. That is, the pricing kernel is monotonically increasing in the region of

negative market returns.

25If the long positions in OTM puts are not enough to offset the long position in the market index, neg-
ative market returns are still painful to the investors, such that the SDF projection is still monotonically
decreasing in this region, albeit with a flatter slope.
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In sum, we document that the magnitude of average option returns and how they

vary with the strike depend on the quantities of OTM options that public investors are

net buying or net selling in the S&P 500 option market. Our findings indicate that the

SDF projection in the region of positive (negative) market returns can be monotonically

decreasing or increasing depending on the trading quantities of OTM calls (OTM puts).

In particular, the compensation for risk reflected in the pricing kernel is in agreement with

the risk exposures of public investors. In Appendix D, we report the results in further

details and provide formal tests of the monotonicity of expected option returns across

strikes. Importantly, we show that all the findings above are statistically significant.

4.2. Option net demand and the variance risk premium

To study the relation between option net demand and the variance risk premium,

we analyze expected delta-hedged option returns. Bakshi and Kapadia (2003) show that

a negative (positive) expected return of this option strategy corresponds to a positive

(negative) variance risk premium. We follow them in focusing on ATM options, which

are the most sensitive to volatility and thus most informative about the variance risk

premium. We calculate average returns over the whole sample and conditioned to periods

where public net demand is above or below different thresholds for both OTM calls and

OTM puts at the same time. The motivation is to investigate the compensation for

variance risk when public investors are exposed to (protected against) this risk by net

selling (buying) OTM options.

Figure 3 reports the results. Consistent with Bakshi and Kapadia (2003), the uncon-

ditional average delta-hedged returns of both calls and puts are negative (−9.39% and

−15.72%, respectively), indicating the presence of a positive variance risk premium in

the whole sample. However, average returns change substantially once we condition to

different quantities of net demand for OTM options. When public investors are net selling

OTM options, average delta-hedged returns are even more negative, implying a larger

variance risk premium. The opposite happens when these investors are net buying OTM

options, where average returns actually become positive and large for higher amounts

of net demand, reaching up to 49% for calls and 39% for puts. That is, the variance

risk premium gets highly negative. These patterns are not only economically, but also

statistically significant.

We also analyze the expected returns of ATM straddles. These option strategies
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essentially represent long positions in volatility and thus contain information about the

variance risk premium (Coval and Shumway, 2001; Driessen and Maenhout, 2007). Our

approach is analogous to that for the delta-hedged option returns. Figure 4 depicts the

results. Unconditionally, both the ATM straddle and crash-neutral straddle earn negative

average returns (−12.56% and −3.37%, respectively), which is aligned with the previous

literature. This means that there is a positive variance risk premium as a hedge against

variance risk loses money on average.

However, when public investors are exposed to variance risk by net selling OTM

options, average returns are even more negative and often twice as large in absolute value,

signaling a positive and large variance risk premium. In contrast, when these investors

are protected against variance risk by net buying OTM options, average returns become

positive, suggesting a negative premium for this risk. The higher the quantities of OTM

options that public investors net buy, the higher are the average returns of the straddle

and crash-neutral straddle, reaching up to 43.81% and 31.14%, respectively. Again, these

results are statistically significant. The evidence from the crash-neutral straddle further

shows that our findings are not driven by compensation for crash risk.

The compensation for variance risk reflects the risk exposures of public investors,

reinforcing the idea that they represent marginal investors in the option market. The

patterns we find are, again, consistent with our theory. When public investors net sell

OTM calls and OTM puts, they get exposed to market upside risk and more exposed

to downside risk, respectively. That is, exposure to market variance risk increases and

they require more compensation to bear it, such that the variance risk premium is higher.

Conversely, when public investors net buy OTM calls and OTM puts, they profit from

positive net market returns and are more protected against negative net market returns,

respectively. This means that exposure to variance risk decreases, as does the premium

to bear it. In fact, the premium gets even negative.

In sum, we provide new evidence that the variance risk premium is not generally

positive and large, but depends on the trading quantities of public investors. The vari-

ance risk premium is positive (negative) when public investors are exposed to (protected

against) variance risk by net selling (buying) OTM options. The compensation for vari-

ance risk is aligned with the risk exposures of public investors. In Section 5.3, we provide

further evidence of the negative relation between option net demand and the variance

risk premium using the semi-parametric V RP measure.
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4.3. Discussion

The empirical results in this section show that the shape of the pricing kernel, ex-

pected index option returns and the variance risk premium strongly depend on option

net demand. This is in agreement with our economic interpretation of the pricing kernel

implied by options. In particular, we find that the compensation for risk reflected in the

pricing kernel aligns with the risk exposures of public investors instead of those of market

makers, which is consistent with the structure of the option market. Public investors are

the end-users who directly seek option exposure and trade in options to optimize their

portfolios. In contrast, market makers intermediate the market and cannot directly con-

trol their options positions, as they must accommodate order imbalances from end-users

(Muravyev, 2016). In fact, market makers’ main source of income from option trading is

the revenue from the bid-ask spread, which is their compensation for providing liquidity

(Gruenthaler, 2022).

The risk exposures of public investors are also aligned with the observed variance risk

premium. This is at odds with the common view that market makers are always providing

hedge (against downside risk or variance risk) to end-users, demanding as such a high

premium for their exposure to variance risk. In fact, Figure 1 shows that there are periods

where public investors are actually net selling OTM options and thus providing hedge to

market makers. We document that it is precisely during those periods that the variance

risk premium is high. These are usually periods of market distress where market makers

are constrained in their role as intermediaries and willing to pay high prices for OTM

options to reduce the variance risk of their inventories.26 This is consistent with evidence

that option intermediaries’ appetite to hold risks decreases around crises (Johnson, Liang

and Liu, 2018; Chen, Joslin and Ni, 2019; Gruenthaler, 2022). In contrast, when public

investors are protected against variance risk by net buying OTM options, the variance

risk premium is low or even negative. These are usually periods where market makers’

risk appetite is high and they can appropriately intermediate the market.

More generally, the stylized facts we document would be difficult to reconcile with

representative agent models in which options play no role. Our findings support equilib-

rium models with heterogeneous agents in which options are nonredundant. In particular,

while some attention has been given in the literature to model the market for OTM puts

26This is aligned with evidence from Gruenthaler (2022) showing that in times of elevated distress
market makers try to induce public sell orders as sell prices change more than buy prices.
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(Bates, 2008; Chen, Joslin and Ni, 2019; Farago, Khapko and Ornthanalai, 2021), our

evidence highlights that taking OTM call options into account is also fundamental to

explain empirical puzzles in the S&P 500 option market. Modeling option trading among

heterogeneous agents may also help reproduce sources of risk premia implied by options

that are inconsistent with leading asset pricing models (Beason and Schreindorfer, 2022).

5. Option net demand and alternative determinants

In this section, we regress PNBOCt and PNBOPt on a number of risk variables,

business conditions indicators and funding constraints measures in order to provide ad-

ditional insights into the time series of option net demand. We also show that the effects

of option net demand on the shape of the pricing kernel and the variance risk premium

are robust to and remain relevant after including several controls in the analysis.

5.1. Relation to risk, business conditions and funding constraints

Table 1 reports the results from univariate contemporaneous regressions of PNBOCt

and PNBOPt on different variables as indicated by the columns. Focusing on the first col-

umn, it can be seen that there is a highly significant negative relation between PNBOCt

and the dummy variable for NBER recessions. This indicates that public investors tend

to be net sellers of OTM calls during recessions. In contrast, there is a positive relation

between PNBOPt and DNBER
t . This is consistent with Figure 1 that shows that dur-

ing recessions periods public investors were mostly net buying OTM puts. In fact, they

switch to net sellers right after the global financial crisis and COVID crisis.

The second column contains the results for realized volatility. PNBOCt is strongly

negatively related to RVt, suggesting that during periods of high volatility public in-

vestors are net sellers of OTM calls. As for PNBOPt, it is strongly positively related

to RVt, which resonates the previous result for DNBER
t as volatility is usually high dur-

ing recessions. We also consider the LTVt, which captures the expected volatility that

stems from large negative price jumps, being thus related to jump tail risk. A strong

negative relation between PNBOCt and LTVt suggests that when jump tail risk is high

public investors tend to net sell OTM calls. The relation between PNBOPt and LTVt is

insignificant.

We next focus on indicators of expected business conditions. The TMSt measures the

23



slope of the yield curve and is often regarded as a pro cyclical variable: steepening of the

slope signals expansion of the economy, while flattening indicates contraction. Table 1

shows that both PNBOCt and PNBOPt display a strong negative relation with TMSt.

This suggests that prior to expansions as predicted by TMSt public investors are mostly

net selling OTM options. The CRSt, on the other hand, is counter cyclical as it widens

during weak business conditions to compensate investors for an increased probability of

default. Only PNBOCt is significantly related to CRSt, with a negative coefficient.

That is, public investors tend to net sell OTM calls during periods of weak business

conditions where CRSt is high. As for the DFSt, it has a similar interpretation to

CRSt, but capturing credit riskiness within the corporate sector. Again, only PNBOCt

is significantly related to DFSt, where the coefficient is negative. The seventh column

contains results for the ADSt index, which tracks real business conditions based on a

number of underlying economic indicators. Positive (negative) values indicate better

(worse) than average conditions. As can be seen, ADSt is only significantly related to

PNBOPt. The observed negative coefficient suggests that when business conditions are

weak public investors tend to net buy OTM puts. This, again, resonates the fact that

during NBER recessions PNBOPt was mostly positive.

Finally, we relate option net demand to measures of funding constraints. We focus

first on the measure of Chen, Joslin and Ni (2019). A low CJNt is a sign of tight

intermediary constraints, as it represents a low net demand for deep OTM puts due to

supply shocks. Both PNBOCt and PNBOPt are strongly positively related to CJNt,

indicating that when option intermediaries are more constrained, public investors tend

to be net sellers of OTM options. This is aligned with the idea that when market makers

are financially constrained they need to hedge their tail risk exposures and thus become

net buyers of OTM options. As for the TEDt, which measures the credit risk of banks, it

is significantly negatively related to PNBOCt. This indicates that when the default risk

on interbank loans is high public investors are mostly net selling OTM calls. In contrast,

there is a strong positive relation between PNBOPt and TEDt.

In sum, PNBOCt and PNBOPt are significantly related to a number of risk vari-

ables, macroeconomic indicators and funding constraints measures. These relations are

interpretable and provide further insights into the dynamics of option net demand. In

particular, while PNBOCt and PNBOPt share similarities, they also differ in a number

of ways. Given such relations, one potential concern could be that option net demand
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is simply a proxy for alternative determinants of the shape of the pricing kernel and the

variance risk premium. We address this concern in the next subsections, where we show

that including these variables as controls in the analysis does not affect the explanatory

power of option net demand for the empirical puzzles in the option market.

5.2. Option net demand, controls and the shape of the pricing kernel

In this subsection, we investigate the effects of option net demand on the shape of the

pricing kernel after controlling for a number of alternative determinants. More specifically,

we analyze how expected index option returns vary with the strike conditional on different

levels of several control variables and net demand for OTM options.

5.2.1. NBER Recessions

We first investigate how the effects of option net demand on the shape of the pricing

kernel change if we exclude the months indicated as recessions by the NBER. That is,

we first condition on months where there is no recession, and then on different quanti-

ties of net demand. We analyze average option returns calculated under these different

conditioning sets. Figure 5 reports the results. Excluding recessions, average call returns

are slightly higher than for the whole sample, but still provide evidence of a U-shaped

pricing kernel as average returns are decreasing in the strike and eventually negative. As

for puts, average returns outside of recessions are more negative than for the whole sam-

ple, indicating a steeper monotonically decreasing pricing kernel in the region of negative

market returns.

The left panel of Figure 5 shows that the effects of PNBOC conditional on no reces-

sions are essentially the same as for the whole sample. When public investors are exposed

to upside risk by net selling OTM calls, average call returns are more negative, consis-

tent with a steeper U-shaped SDF. In contrast, average call returns are highly positive

and increasing in the strike when these investors are net buying OTM calls, indicating a

monotonically decreasing projection of the pricing kernel on average. That is, the effects

of PNBOC do not depend on NBER recessions.

The right panel of Figure 5 plots the patterns for put options. When public investors

are more exposed to downside risk by net selling OTM puts, results are the same as for the

whole sample: average put returns are even more negative, providing evidence of a steeper

monotonically decreasing SDF projection. Results are also similar when PNBOP > 0,
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where average returns are less negative as exposure to downside risk decreases. However,

when PNBOP > 1std, it is no longer the case that average put returns are positive and

decreasing with the strike. This means that the SDF is increasing in negative market

returns only when public investors net buy large quantities of OTM puts during recessions.

This result is not necessarily inconsistent with our theory. Outside of recessions, large

trading quantities of OTM puts may not be enough to offset the long position in the

market, such that the marginal investor is still exposed to downside risk and the pricing

kernel is monotonically decreasing.

In sum, all our previous empirical results for the shape of the pricing kernel hold

outside of recessions, with the exception of the nonmonotonicity of the pricing kernel in

the region of negative market returns when PNBOP > 1std. This finding is informative

as it tells us that such nonmonotonicity is concentrated in recession periods. That is,

public investors only get effectively protected against downside risk when they are net

buying large quantities of OTM puts during recessions.

5.2.2. Volatility

We now investigate whether the effects of option net demand depend on volatility,

which is arguably the most relevant variable to control for based on the literature. First,

there is empirical evidence that the shape of the pricing kernel depends on volatility.

Barone-Adesi et al. (2020) and Sichert (2022) show that standard empirical estimates

of the pricing kernel implied by index options are U-shaped in periods of high volatility.

On the other hand, Schreindorfer and Sichert (2022) document that the pricing kernel is

steeper in the region of negative market returns during periods of low volatility.

Second, volatility has been considered as an additional state variable to explain the

pricing kernel puzzle. Brown and Jackwerth (2012) posit that the pricing kernel is mono-

tonically decreasing in states of low and high volatility but with a different slope, such

that taking the expectation over volatility would yield a pricing kernel that is a nonmono-

tonic function of market returns. Christoffersen, Heston and Jacobs (2013) generalize the

Heston and Nandi (2000) GARCH model by assuming that the pricing kernel depends

not only on returns but also on volatility. Their parametric specification implies that

the pricing kernel is a quadratic function of market returns, which by construction is

U-shaped whenever the variance risk premium is positive.

We start by analyzing nonparametrically the relation between volatility and the shape
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of the pricing kernel. We compute average option returns for the whole sample and

conditioned to months of very low, low, high and very high realized volatility. Figure

6 contains the results. Focusing first on the left panel, average call returns are more

negative and decrease with the strike at a faster rate during periods of high volatility,

providing stronger evidence of a U-shaped SDF compared to the whole sample. This

confirms the semi-parametric evidence of Barone-Adesi et al. (2020) and Sichert (2022).

During periods of low volatility, average call returns are higher and mostly positive but

still decrease with the strike, suggesting a U-shaped SDF with a flatter slope on average.

In contrast, average returns increase with the strike when volatility is very low, indicating

a pricing kernel that is mostly monotonically decreasing for positive market returns.

The evidence above is inconsistent with the explanation of Brown and Jackwerth

(2012). Their theory would imply that, once we condition to low or high volatility, the

pricing kernel is monotonically decreasing but with different slopes, i.e., average call

returns are positive and increase with the strike but at different rates. Instead, there is

only evidence for a monotonically decreasing pricing kernel when volatility is very low.

The GARCH model of Christoffersen, Heston and Jacobs (2013) rationalizes the U-shape

with a fixed positive parameter for the variance risk premium. However, for the same

fixed parameters, the model does not account for the fact that the pricing kernel can be

monotonically decreasing (e.g., when RV is very low).27

The right panel of Figure 6 reports the patterns for put options. When volatility

is low, average put returns are more negative than for the whole sample, suggesting a

monotonically decreasing pricing kernel that is steeper for negative market returns. In

contrast, when volatility is high, average returns are less negative, indicating a flatter

monotonically decreasing SDF projection. This confirms the semi-parametric evidence

of Schreindorfer and Sichert (2022) that negative market returns are more painful to

investors during periods of low volatility.

We next compute average option returns conditioned to option net demand after

conditioning on high or low volatility states. The results appear in Figure 7. The effects

of option net demand mostly survive after controlling for volatility. When volatility is

27It is also worth noting that the explanation of Christoffersen, Heston and Jacobs (2013) for the
pricing kernel puzzle is conceptually very different from ours. They propose a parametric model for
the pricing kernel that has a U-shape if the variance risk premium in the economy is positive. That is,
a premium for variance explains the U-shape. In our case, we link observable measures of option net
demand to the shape of the pricing kernel, which in turn determines expected option returns and the
variance risk premium.
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high, there is less evidence of a U-shaped pricing kernel when public investors are net

buyers of OTM calls (average call returns are flatter for PNBOC > 0 and increasing

in the strike for PNBO > 1std). The results for puts during high volatility periods are

essentially the same as those without controlling for RV : average put returns are more

negative when public investors are net sellers of OTM puts, and are highly positive and

decreasing with the strike when they are net buying large quantities of OTM puts.

The lower panels of Figure 7 display the patterns for low volatility periods. Results

for calls are very similar to those without controlling for RV . When public investors

are net selling OTM calls, average call returns are negative and strongly decrease with

the strike, providing evidence of a steep U-shaped SDF. In contrast, when they are net

buyers of OTM calls, average returns are positive and increasing in the strike, suggesting

a monotonically decreasing SDF shape for positive market returns. As for the lower right

panel, when volatility is low average put returns are highly negative and do not change

much with PNBOP . This would be consistent within our framework with the long

position in the market being dominant over put positions during low volatility periods.

In sum, we show that volatility is an important determinant of the shape of the

pricing kernel, which complements previous empirical evidence from the literature. Even

so, most of the effects of option net demand remain after controlling for RV . Overall, it is

clear that option net demand provides unique information about the shape of the pricing

kernel that is not captured by volatility and is consistent with our theoretical framework.

5.2.3. Demand and supply shocks

The distinction between demand and supply shocks plays an important role in the

option demand literature. Garleanu, Pedersen and Poteshman (2009) show that demand

shocks can generate a positive relation between option net demand and option expen-

siveness. Chen, Joslin and Ni (2019) show that such relation is negative during periods

dominated by supply shocks. To the extent that option expensiveness can be related to

the shape of the pricing kernel and expected option returns, it is pertinent to control for

demand and supply shocks in our analysis. More specifically, our goal is to investigate

whether the explanatory power of option net demand for the shape of the pricing kernel

comes from capturing public investors’ risk exposures or from being an indirect proxy for

demand and supply shocks.

To that end, we follow the identification strategy of Chen, Joslin and Ni (2019) to
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determine if a given month is dominated by demand or supply shocks. Within each month

t, we regress daily V RP on the daily public net buying-to-open volume of deep OTM

puts to estimate the slope coefficient bV RP,t.
28 Deep OTM puts are used as they are more

informative about intermediary constraints. If bV RP,t > 0 (bV RP,t < 0), there is evidence

of a positive (negative) price-quantity relation, such that month t is considered to be

dominated by demand (supply) shocks. The higher the coefficient (in absolute value),

the stronger the price-quantity relation.

Figure 8 plots average option returns across strikes conditioned to months dominated

by demand shocks and months dominated by supply shocks. The left panel shows that

average call returns are more negative during periods where supply shocks dominate,

indicating a steeper U-shaped pricing kernel. When bV RP > 0, average returns are positive

but still decrease with the strike, suggesting a flatter U-shaped SDF. When the price-

quantity relation is strongly positive, there is evidence of a monotonically decreasing

pricing kernel. As for the right panel, it can be seen that average put returns do not

change much with bV RP . The exception is when there is a strongly positive price-quantity

relation, where there is some evidence of nonmonotonicity of the SDF projection as

average put returns decrease with the strike.

Figure 9 contains the results for option net demand after conditioning on demand

or supply shocks. As can be seen from the left panels, regardless of demand or supply

shocks, the pricing kernel is a steeper U-shaped function of market returns when public

investors are exposed to upside risk by net selling OTM calls, while there is evidence for

a monotonically decreasing pricing kernel when they are net buyers of OTM calls. As

for the right panels, average put returns are more (less) negative when public investors

are net sellers (net buyers) of OTM puts, both when bV RP > 0 and bV RP < 0. The

main difference is that an increasing SDF projection in the region of negative market

returns only appears when public investors are net buying large quantities of OTM puts

during months dominated by demand shocks. This suggests that public investors only get

protected against downside risk when market makers can appropriately provide liquidity,

as they are mostly unconstrained when demand shocks prevail.

In sum, the relation between option net demand for OTM options and expected option

returns is mostly unaffected by demand and supply shocks. This provides further evidence

that the shape of the pricing kernel reflects compensation for the risk exposures of public

28Variables are standardized to have unit variance such that bV RP,t is comparable over time.
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investors’ new options positions. We also find that the nonmonotonicity of the pricing

kernel in the region of negative market returns when PNBOP > 1std is concentrated in

periods dominated by demand shocks.

5.2.4. Business conditions

To further investigate the robustness of our findings to different macroeconomic con-

ditions, we consider as a control the ADS real business conditions index. We also have

results for the remaining risk, macroeconomic and funding constraints measures in Sec-

tion 5.1, which we omit for brevity. Importantly, the relation between option net demand

and the shape of the pricing kernel is robust to controlling for all these other variables.

Figure 10 plots average option returns conditional on high or low values of the ADS

index. The left panel shows that the pricing kernel is a steeper (flatter) U-shaped function

of market returns when business conditions are worse (better) than average, as average

call returns decrease with the strike and are more (less) negative. As for the right panel,

average put returns are more (less) negative when business conditions are better (worse)

than average. This resonates the result for volatility, in the sense that the SDF pro-

jection is a steeper monotonically decreasing function of negative market returns (i.e.,

compensation for downside risk is higher) during calm market periods.

Figure 11 contains the results conditioned to option net demand after conditioning on

high or low ADS. Irrespective of better or worse than average business conditions, the

pricing kernel is a steeper U-shaped function of market returns when public investors net

sell OTM calls, while the evidence provides more support to a monotonically decreasing

SDF when these investors net buy OTM calls. The results for puts during worse than

average conditions are similar to those without controlling for ADS. In contrast, option

net demand is not very informative about the shape of the pricing kernel in the region of

negative market returns when business conditions are better than average. Again, this

resonates the result for low volatility periods.

In sum, most of the effects of PNBOC and PNBOP are robust to controlling for real

business conditions, providing further evidence that option net demand contains unique

information about the shape of the pricing kernel that cannot be explained by different

macroeconomic conditions.
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5.3. Option net demand, controls and the V RP

In this subsection, we use the semi-parametric measure V RPt for the variance risk

premium from Bollerslev, Tauchen and Zhou (2009). An observable time series for the

variance risk premium allows us to conduct standard predictive regression analysis, pro-

viding additional robustness to our findings. Moreover, we can also include a number

of controls simultaneously and test whether the effects of net demand remain the same.

More specifically, we first regress V RPt+1 on PNBOCt, PNBOPt and the control vari-

ables separately to investigate the univariate predictive relations. Then, we run a multi-

variate predictive regression including all controls at the same time.29 In addition to the

variables in Section 5.1, we also include as controls the S&P 500 return (S&Pt), which

Carr and Wu (2009) show is related to variation in the variance risk premium, and the

contemporaneous V RPt.

Table 2 presents the predictability results. Focusing first on the univariate regressions,

columns (1) and (2) show that both PNBOCt and PNBOPt have strong predictive

power for the variance risk premium, with statistically significant negative coefficients.

Interestingly, the statistical significance and adjusted R2 are both higher for PNBOCt

than for PNBOPt. This suggests that the net demand for OTM calls may play a more

important role in explaining the variance risk premium. Among the remaining predictors,

only LTVt has predictive power, where the higher the volatility from large negative jumps,

the higher the V RPt+1. This is consistent with Bollerslev, Todorov and Xu (2015), who

show that LTVt captures an important share of the variance risk premium related to

compensation for jump tail risk. Contemporaneous V RPt is also a significant predictor

of future V RPt+1, indicating some persistence in the variance risk premium.

The last column of Table 2 reports the results for a multivariate regression with all the

predictors. As can be seen, the predictive power of PNBOCt and PNBOPt remains after

including the controls, with statistically significant negative coefficients. The statistical

significance of LTVt and V RPt also survives the inclusion of the controls. Now two

additional variables become significant: S&Pt and CJNt. The positive relation between

market returns and the variance risk premium is consistent with Carr and Wu (2009). The

positive coefficient for CJNt indicates that the V RPt+1 tends to be lower following periods

with tight intermediary constraints. The remaining variables continue to be insignificant.

29The predictive regressions use monthly data from January, 1996 to December, 2019, as the LTVt is
only available until 2019.
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The adjusted R2 of the multivariate regression is substantially higher compared to each of

the univariate regressions, suggesting that the predictors offer complementary information

about the variance risk premium.

The significant negative relation between public net demand of OTM options and

the variance risk premium is consistent with our theory and the interpretation that the

premium for variance risk reflects the compensation for the risk exposures of public

investors. Intuitively, when public investors net sell OTM calls and OTM puts, they get

exposed to market variance risk and require more compensation to bear it, increasing the

variance risk premium. Conversely, when public investors net buy OTM calls and OTM

puts, their exposure to variance risk decreases, as does the premium to bear it.

As a final test, we also analyze how the average premium for variance risk changes

depending on the net demand in the option market. This analysis is similar to that in

Section 4.2, but using directly the V RP measure. More specifically, Figure 12 reports the

average of the V RPt+1 calculated in the months t + 1 following the months t where net

demand is below or above several thresholds. Over the whole sample, the average variance

risk premium is 1.73%. As the left panel of the figure shows, the average V RPt+1 is higher

when public investors are exposed to market upside risk by net selling OTM calls, and

considerably lower when they are net buying these options. In fact, the average premium

can be even negative (although not statistically different from zero) when PNBOC is

very large. The middle panel displays a similar pattern when conditioning on PNBOP :

the average V RPt+1 is higher when public investors are more exposed to market downside

risk by net selling OTM puts, and much lower when they are net buying these options.

Our theory predicts that exposure to market variance risk, and compensation for that

risk, should be even higher (lower) when public net demand is negative (positive) for both

OTM calls and OTM puts at the same time. The right panel of Figure 12 reports the

average variance risk premium when both PNBOC and PNBOP are below or above

several fractions of their respective standard deviations. As expected, the differences

in the average V RPt+1 are even more extreme in this case (albeit with less statistical

precision due to smaller samples). In particular, when public investors are net selling

large quantities of OTM options, the average premium is almost twice as high as for the

whole sample. In contrast, the average V RPt+1 is highly negative when public investors

are net buying large quantities of both OTM calls and OTM puts.

The relation between demand in the option market and the V RP has been previously
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investigated in the literature in different ways. Garleanu, Pedersen and Poteshman (2009)

find that public net demand for all options is positively related to the variance risk pre-

mium. Their interpretation is that demand pressure increases the relative expensiveness

of the options, as measured by the V RP . With a longer sample period, Chen, Joslin and

Ni (2019) document a negative relation between different measures of net demand and

V RP , arguing that supply shocks to market makers, which mostly occur when they are

financially constrained, have a predominant effect on option expensiveness over demand

shocks. Moreover, Fournier and Jacobs (2020) show that the variance risk premium is

higher when market makers’ inventory risk is high, which happens when the accumulation

of past net-buying volumes of public investors for all options is positive and large.

Our findings are novel as we distinguish between net demand for OTM calls and OTM

puts and show that both negatively predict the V RP . This negative relation cannot be

explained by demand pressure (as in this case the sign should be positive) and is robust

to measures of intermediary and funding constraints. Therefore, the empirical evidence

supports that the negative relation results from the compensation required by public

investors for variance risk arising from the exposure of new OTM options positions. In a

broad sense, this is consistent with Chen, Joslin and Ni (2019) and Fournier and Jacobs

(2020). When market makers face tight financial constraints and high inventory risk, they

need to buy OTM options to decrease their inventories’ variance risk. Public investors are

only willing to sell these options at relatively high prices to compensate for the exposure

to variance risk of these new positions, thus increasing the V RP .

6. Conclusion

The pricing kernel recovered from option prices is usually locally increasing in market

returns, which contradicts risk averse behavior in a representative investor framework.

Call and put index option returns are also too low to be consistent with standard asset

pricing theory. Relatedly, the observed premium for bearing variance risk is considerably

high. In this paper, we connect these puzzles to net demand in the option market. If

options are nonredundant, trading quantities in the option market should be informa-

tive about the risk exposures, and, consequently, compensation for risk of the marginal

investor in this market.

Empirically, we document strikingly different patterns in average option returns and,
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consequently, in the shape of the pricing kernel, depending on the option quantities that

public investors net buy or net sell in the S&P 500 option market. We also show that

there is a strong negative relation between option net demand for OTM options and the

variance risk premium. These novel empirical patterns are consistent with our theoretical

framework and the idea that public investors can be seen as the marginal investor in the

option market. More generally, our empirical evidence supports heterogeneous-agent

equilibrium models in which options are nonredundant.
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A. Proofs

Since the option returns are functions f(R,Kj) of the market returns R, we can write

Re = g(R), where g(R) = [f(R,K1), f(R,K2), ..., f(R,KN−1), R]T − Rf1N , such that

g′(R) = [f ′(R,K1), f
′(R,K2), ..., f

′(R,KN−1), 1]
T. Therefore, let m∗(R) = U ′(W0Rf +

λ∗g(R)) be the option-implied pricing kernel. Let also: λN denote the portfolio weight

for the market; λj, j = 1, ..., Nc, denote the weights for the OTM calls, where Kj/St > 1;

and λj, j = Nc + 1, ..., N − 1, denote the weights for the OTM puts, where Kj/St < 1.

A.1. Proposition 1

We consider that the investor associated with the pricing kernel is long in the market

index, that is, λ∗
N > 0. We now assume, by contradiction, that the pricing kernel is a

U-shaped function of R and that the investor is long in all OTM calls. More precisely,

we assume that m∗′(Ru) > 0 at an upper market return Ru > 1 and that λ∗
j > 0 for

j = 1, ..., Nc. Taking the derivative of m∗(Ru) with respect to Ru, we obtain:

m∗′(Ru) = U ′′(W0Rf + λ∗g(Ru))λ
∗g′(Ru). (A.1)

First, note that since U(.) is a concave function, U ′′(W0Rf + λ∗g(Ru)) < 0. Second,

for Ru > 1, we have for all OTM put options that f(Ru, Kj) = 0, and, hence, that

f ′(Ru, Kj) = 0. For OTM call options, we have f ′(Ru, Kj) > 0 for Kj/St < Ru and

f ′(Ru, Kj) = 0 for Kj/St > Ru. Therefore, g′(Ru) ≥ 0. Finally, if λ∗
j > 0 for all

j = 1, ..., Nc OTM calls, we have λ∗g′(Ru) > 0 and, hence,m∗′(Ru) < 0, which contradicts

the initial assumption. To have m∗′(Ru) > 0, we need at least one OTM call with λ∗
j < 0.

A.2. Proposition 2

We consider that the investor associated with the pricing kernel is long in the market

index, that is, λ∗
N > 0. We now assume, by contradiction, that the pricing kernel is an

increasing function of R at a low market return and that the investor is short in all OTM

puts. More precisely, we assume that m∗′(Rd) > 0 at a low market return Rd < 1 and

that λ∗
j < 0 for j = Nc + 1, ..., N − 1. Taking the derivative of m∗(Rd) with respect to

Rd, we obtain:

m∗′(Rd) = U ′′(W0Rf + λ∗g(Rd))λ
∗g′(Rd). (A.2)
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First, note that since U(.) is a concave function, U ′′(W0Rf + λ∗g(Rd)) < 0. Second,

for Rd < 1, we have for all OTM call options that f(Rd, Kj) = 0, and, hence, that

f ′(Rd, Kj) = 0. For OTM put options, we have f ′(Rd, Kj) < 0 for Kj/St > Rd and

f ′(Rd, Kj) = 0 for Kj/St < Rd. Therefore, g′(Rd) ≤ 0. Finally, if λ∗
j < 0 for all

j = Nc + 1, ..., N − 1 OTM puts, we have λ∗g′(Rd) > 0 and, hence, m∗′(Rd) < 0, which

contradicts the initial assumption. To have m∗′(Rd) > 0, we need at least one OTM put

with λ∗
j > 0.

B. Pricing kernel estimation and marginal investor

interpretation

Consider the excess returns Re of the market index and the index options defined in

Section 2.2. In this setting, an admissible SDF is a random variable m such that:

E[mRe] ≡
∫

mRe dP = 0N , (B.1)

where P is the given physical measure. In the absence of arbitrage, there exists a strictly

positive admissible SDF, which in turn defines a risk-neutral measure via the change of

measure dQ = m
E[m]

dP:

∫
Re m

E[m]
dP =

∫
Re dQ ≡ EQ[Re] = 0N . (B.2)

Under the restriction that Q is absolutely continuous with respect to P, dQ/dP is a

Radon-Nikodym derivative.30

Consider now the problem of estimating the risk-neutral measure that minimizes a

general convex loss function ϕ with respect to the physical measure, while correctly pricing

the market index and options:

Q∗ = arg min
Q

E
[
ϕ

(
dQ
dP

)]
≡

∫
ϕ

(
dQ
dP

)
dP, s.t. EQ [Re] = 0N , (B.3)

where the risk-neutral measure must also be nonnegative and integrate to one. Rubinstein

30That is, given the probability space (Ω,F ,P), dQ
dP

: Ω → [0,∞) is a measurable function such that

for any measurable set A ⊆ F , Q(A) =
∫
A
dQ
dP

dP.
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(1994), Jackwerth and Rubinstein (1996) and Stutzer (1996) consider similar problems

for specific loss functions. In the absence of arbitrage, problem (B.3) is equivalent to the

simpler dual problem below (Almeida and Garcia, 2017; Almeida and Freire, 2022):

max
λ∈Λ

E [−ϕ∗
+(1− λRe)], (B.4)

where ϕ∗
+ denotes the convex conjugate of ϕ and Λ = {λ ∈ RN : (1− λRe) ∈ dom ϕ∗

+}.31

More precisely, the solution to (B.3) is obtained from the first order condition of (B.4):

dQ∗(R)

dP
= (ϕ∗

+)
′(1− λ∗Re), (B.5)

where the row-vector λ is composed of the Lagrange multipliers coming from the Euler

equations in (B.3) for the basis assets, i.e., the market index and the index options. That

is, the assets that enter the pricing kernel are those that the SDF is required to price.

The pricing kernel is recovered as m∗(R) = 1
Rf

(ϕ∗
+)

′(1− λ∗Re).

The dual problem (B.4) can be economically interpreted as a standard optimal portfo-

lio problem for an investor maximizing a general concave utility function (u = −ϕ∗
+) over

future wealth, where λ are the portfolio weights for the market index and the options.32

In this sense, m∗(R) is monotonically decreasing in the optimal portfolio returns λ∗Re

and proportional to the marginal utility of the risk averse investor. From the first order

condition of the dual problem, the Euler equations for the market index and the index

options are satisfied, such that the investor is marginal in the index and option markets.

A distinctive feature of the dual problem solution is that it identifies the pricing kernel

as a function of the basis assets returns. As an implication, one can project m∗(R) onto

the returns of any of the basis assets, and, in particular, of the market index. This

provides an interpretation for the standard approach in (3): m(R) is the projection

of m∗(R) onto market return states. Importantly, given a physical distribution, this

interpretation is valid in population regardless of the approach used to estimate m(R)

due to the uniqueness of the risk-neutral distribution and, hence, of the pricing kernel

projection, for a sufficiently large cross-section of options.33

31The convex conjugate is given by ϕ∗
+(z) = sup

w∈[0,∞)∩dom ϕ

zw − ϕ(w), while the domain of ϕ∗
+(z) is

defined as the values of z for which the function is finite (ϕ∗
+(z) < ∞).

32In particular, if the loss function ϕ belongs to the Cressie and Read (1984) family, Almeida and
Freire (2022) show that the dual problem is equivalent to the maximization of a hyperbolic absolute risk
aversion (HARA) utility function.

33The spanning properties of option prices also imply that the specific convex loss function ϕ in (B.3)

37



C. Shape of the pricing kernel and expected option

returns

The shape of the pricing kernel is directly related to the expected returns of call and

put options, µc
t and µp

t , respectively. Expected option returns can be defined as below:34

µc
t(ST , K) =

Et[(ST −K)+]

Et[(ST −K)+mt,T (ST )]
− 1, (C.1)

µp
t (ST , K) =

Et[(K − ST )
+]

Et[(K − ST )+mt,T (ST )]
− 1, (C.2)

where x+ = max(x, 0), K is the strike price and ST = StRt,T is the value for the market

index at time T .35 The numerator in (C.1) and (C.2) is the expected payoff of the option

under the physical measure, while the denominator is the expected payoff under the

risk-neutral measure, i.e., the option price.

Coval and Shumway (2001) show that if mt,T (ST ) is monotonically decreasing, both

calls and puts have expected returns that increase with the strike price.36 Intuitively, a

monotonically decreasing mt,T (ST ) shifts probability mass towards states where the call

(put) option is less (more) valuable. Therefore, as the strike increases, the call price

decreases by more than the expected payoff, increasing the expected return. Conversely,

as the strike decreases, the put price decreases by less than the expected payoff, decreasing

the expected return. They also demonstrate that expected call (put) returns are positive

(negative) under a monotonically decreasing pricing kernel.37

Bakshi, Madan and Panayotov (2010) consider the alternative scenario where the

pricing kernel is a U-shaped function of market returns.38 In this case, they show that

expected call returns are decreasing in the strike and negative beyond a strike threshold,

where the steeper the slope of the SDF in its increasing region, the more negative are the

expected returns. The intuition is that mt,T (ST ) shifts probability mass towards states

where the call option is more valuable, such that the call price decreases by less than

is unimportant, as the pricing restrictions for the options completely determine the solution.
34To see that, note that Et[

(ST−K)+

Et[(ST−K)+ mt,T (ST )] ] =
Et[(ST−K)+]

Et[(ST−K)+ mt,T (ST )] .
35Note that it is equivalent to denote the projected pricing kernel as mt,T (ST ) or mt,T (Rt,T ).
36Chaudhuri and Schroder (2015) generalize this result by showing that the expected returns of payoffs

in the log-concave class are increasing in the strike under a monotonically decreasing pricing kernel.
37More precisely, they show that expected put returns should be below the risk-free rate, but in

practice expected put returns are virtually always negative if the SDF is monotonically decreasing.
38That is, there exists an upper market return Ru such that m′

t,T (Rt,T ) > 0 and m′′
t,T (Rt,T ) > 0 for

Rt,T > Ru, where Ru ≥ Rd and mt,T is monotonically decreasing for Rt,T < Rd.
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the expected payoff as the strike increases. This decreases the expected returns, which

eventually reach negative values. Since a U-shaped SDF is still declining in the region

of negative market returns that is relevant for put options, the implications for expected

put returns are the same as under a monotonically decreasing SDF.

To illustrate the relations above, we construct hypothetical pricing kernels with dif-

ferent shapes and show their implications for expected option returns. More specifically,

we take as the hypothetical physical measure the unconditional physical distribution of

30-day market returns over our sample period, and specify pricing kernels as distinct

functions of those market returns. Figure C.1 reports the results. In the upper pan-

els, we have the implications of monotonically decreasing pricing kernels with different

slopes. Consistent with Coval and Shumway (2001), expected call (put) returns are posi-

tive (negative) and increase with the strike. In particular, the steeper the pricing kernel,

the higher (more negative) are the expected call (put) returns.

The middle panels of Figure C.1 illustrate the patterns for monotonically increasing

pricing kernels with different slopes. In this case, implications are the opposite of those

of a monotonically decreasing SDF. Expected call (put) returns are negative (positive)

and decrease with the strike. This is because the pricing kernel shifts probability mass

towards states where the call (put) option is more (less) valuable. The steeper the pricing

kernel, the more negative (higher) are the expected call (put) returns. The lower panels

depict the implications of a U-shaped SDF. Aligned with Bakshi, Madan and Panayotov

(2010), expected call returns are negative and decrease with the strike. On the other

hand, since the SDF is still monotonically decreasing for negative (net) market returns,

expected put returns are negative and increase with the strike.

The relations described above hold for expected option returns and the pricing kernel

conditional on time t. Working with these objects empirically is challenging as the condi-

tional physical distribution dPt is required to compute Et. There is no consensus on how

to estimate dPt such that it reflects the same conditioning information set that investors

have available when setting option prices (see, e.g., the discussion in Linn, Shive and

Shumway, 2017). To circumvent this issue, Coval and Shumway (2001), Bakshi, Madan

and Panayotov (2010) and Chaudhuri and Schroder (2015) condition down by taking un-

conditional expectations of option returns, which can be directly obtained by computing

averages of realized option returns.

As discussed by Chaudhuri and Schroder (2015), a rejection of increasing monotonicity
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of expected returns across strikes based on unconditional returns implies rejection with

conditional returns (if the unconditional expectation of return differences across strikes is

negative, the conditional expectation cannot be a.s. positive). In other words, a rejection

based on unconditional expected returns suffices to identify that there is nonmonotonicity

of the pricing kernel in at least one date (and likely on most dates) of the sample. On the

other hand, failure to reject increasing monotonicity of expected returns across strikes

based on unconditional returns does not imply that for every t the conditional pricing

kernel is monotonically decreasing. Rather, it indicates that at least for most dates the

pricing kernel is monotonically decreasing, i.e., that this is the overall shape in the sample.

D. Option net demand and expected option returns

Table D.1 reports the average call option returns calculated over the whole sample

and conditioned to different months based on PNBOC. The observed values are the

same as those depicted in the left panel of Figure 2, with the difference that in the figure

the deltas are replaced by the average moneyness of the options for a given delta. The

table also presents the average difference between the returns of the option in the current

column and the previous one. From left to right, we observe average returns of calls with

increasing strike, going from ITM to OTM. We report whether values are statistically

different from zero based on bootstrap draws from the respective sample of option returns.

The results for the whole sample are in line with the previous literature (Bakshi,

Madan and Panayotov, 2010; Chaudhuri and Schroder, 2015; Baele et al., 2019). Average

call option returns are positive for ITM calls, but decrease as the strike increases until

they become negative for OTM calls. The decrease of the average return with respect to

the strike is statistically significant from delta equal to 0.50 to lower deltas. This evidence

rejects the monotonicity of the pricing kernel for the whole sample, supporting an overall

U-shaped SDF projection.

However, the patterns in average call returns are remarkably different once we condi-

tion to months where public investors are net buyers or net sellers of OTM calls. When

PNBOC > 0, average returns are always positive and increase with the strike. While

there is a small decrease in the average return between deltas 0.20 and 0.25, the difference

is not statistically different from zero. In contrast, when PNBOC < 0, average returns

are substantially smaller than for the whole sample and decrease with the strike at a
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faster rate, becoming significantly negative from delta 0.45 onwards. The average return

difference is always negative and significant, i.e., average returns decrease with the strike.

The findings above suggest that the evidence from unconditional expected call returns

calculated in the whole sample masks the different patterns in call returns when public

investors are net buying or net selling OTM calls. When PNBOC > 0, average call

returns are consistent with a monotonically decreasing projection of the pricing kernel in

the region of positive net market returns. On the other hand, when public investors are

net selling OTM calls, the average returns of call options provide much stronger evidence

of a U-shaped pricing kernel than that obtained from unconditional average returns.

The different patterns in average call returns are even more striking once we consider

months where PNBOC > 1std and PNBOC < −1std. When public investors are net

buying large amounts of OTM calls, average returns are highly positive and increase with

the strike at a fast rate, where all average return differences are positive and statistically

significant. This indicates a steep monotonically decreasing projection of the SDF in the

market upside. On the other hand, in months where public investors net sell large amounts

of OTM calls, the average call returns are highly negative and decrease significantly with

the strike, supporting a steeper U-shaped SDF projection.

In Table D.2, we report the average put option returns calculated over the whole

sample and conditioned to different months based on PNBOP . Observed values are the

same as those depicted in the right panel of Figure 2. From left to right, we observe

average returns of puts with increasing strike, going from OTM to ITM. Again, the

results for the whole sample are in line with the previous literature. Average put option

returns are highly negative and increase with the strike. This indicates that the SDF is

monotonically decreasing in the region of negative net market returns, with a steep slope.

Once we condition to months where PNBOP > 0 (PNBOP < 0), average put

returns are less (more) negative and increase with the strike at a slower (faster) rate,

consistent with a flatter (steeper) decreasing SDF projection. The SDF projection gets

even steeper when PNBOP < −1std, with extremely negative average put returns.

However, a strikingly different pattern arises when PNBOP > 1std. In this case, average

put returns are highly positive and decreasing in the strike. With the exception of the

options with deltas from −0.70 to −0.80, all average returns are statistically different

from zero. The decrease of the average return with respect to the strike is statistically

significant for all cases. This rejects the decreasing monotonicity of the pricing kernel in
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the region of negative net market returns, supporting an increasing SDF projection.
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Table 1: Option net demand and alternative determinants

Dependent Variable: PNBOCt

DNBER
t RVt LTVt TMSt CRSt DFSt ADSt CJNt TEDt

Slope −0.18*** −0.28*** −0.13** −0.28*** −0.13** −0.22*** 0.02 0.20*** −0.18***
(−3.25) (−5.04) (−2.24) (−5.07) (−2.21) (−3.93) (0.36) (3.52) (−3.26)

Adj. R2 (%) 3.10 7.56 1.38 7.64 1.29 4.63 −0.29 3.68 3.13

Dependent Variable: PNBOPt

DNBER
t RVt LTVt TMSt CRSt DFSt ADSt CJNt TEDt

Slope 0.11* 0.16*** 0.01 −0.36*** 0.01 −0.01 −0.18*** 0.44*** 0.17***
(1.94) (2.82) (0.25) (−6.62) (0.02) (−0.06) (−3.24) (8.65) (3.13)

Adj. R2 (%) 0.92 2.28 −0.33 12.56 −0.34 −0.33 3.09 19.83 2.87

This table presents the results for univariate monthly regressions of PNBOCt (PNBOPt) on a set of regressors indicated
by the columns. Variables are standardized to have unit variance to facilitate interpretation. Each row reports the
estimated slope coefficient and, in parenthesis, t-statistics, with the exception of the last row which depicts the adjusted
R2. The intercept is included in the regressions but is not reported in the table for brevity. *, ** and *** represent
statistical significance at the 10%, 5% and 1% levels, respectively. The sample ranges from January, 1996 to December,
2020, with the exception of the regression on LTVt which ends at December, 2019.
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Table 2: Variance risk premium predictability

Dependent Variable: V RPt+1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Intercept 0.72*** 0.71*** 0.70*** 0.54** 0.12 0.61*** 0.65** 0.62** 0.74*** 0.71*** 0.79*** 0.53*** 0.08
(10.91) (11.18) (9.16) (2.22) (0.60) (6.12) (2.32) (2.46) (13.95) (10.80) (4.69) (6.11) (0.30)

PNBOCt −0.19*** −0.15**
(−4.81) (−2.14)

PNBOPt −0.14*** −0.08**
(−2.66) (−2.00)

S&Pt 0.09 0.17***
(0.78) (2.72)

RVt 0.09 0.18
(0.56) (1.03)

LTVt 0.23*** 0.29**
(2.80) (1.98)

TMSt 0.06 −0.12
(0.92) (−1.19)

CRSt 0.02 −0.11
(0.19) (−0.88)

DFSt 0.04 0.05
(0.33) (0.37)

ADSt 0.12 0.14
(0.64) (0.77)

CJNt 0.01 0.07**
(0.28) (2.13)

TEDt −0.06 −0.14
(−0.38) (−1.17)

V RPt 0.25** 0.21**
(2.55) (2.38)

Adj. R2 (%) 3.13 1.72 0.38 0.46 5.04 −0.02 −0.31 −0.20 1.20 −0.34 0.04 6.18 17.98

This table presents the results for monthly predictive regressions of the variance risk premium on a set of predictors indicated by the rows. Columns
(1) to (12) contain the results for univariate regressions, while column (13) contains the results for a multivariate regression including all the predictors.
Variables are standardized to have unit variance to facilitate interpretation. Each row reports the estimated coefficient and, in parenthesis, Newey-
West t-statistics with a lag length equal to one, with the exception of the last row which depicts the adjusted R2. *, ** and *** represent statistical
significance at the 10%, 5% and 1% levels, respectively. The sample ranges from January, 1996 to December, 2019.
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Table D.1: Option net demand and average call option returns

Delta 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20

Whole Sample

Avg. Ret. 4.46*** 4.59*** 4.75*** 4.72*** 4.65*** 4.41*** 3.80** 2.94* 1.80 0.05 −2.32 −5.65** −10.70***
Avg. Diff. 0.13 0.15 −0.03 −0.06 −0.25 −0.61*** −0.86*** −1.15*** −1.75*** −2.37*** −3.33*** −5.06***

PNBOC > 0

Avg. Ret. 5.99*** 6.90*** 7.93*** 8.78*** 9.62*** 10.48*** 11.23*** 12.06*** 12.88*** 13.70*** 14.63*** 15.29*** 14.68***
Avg. Diff. 0.92*** 1.03*** 0.85*** 0.84*** 0.86*** 0.76*** 0.82** 0.82** 0.82* 0.93* 0.66 −0.61

PNBOC < 0

Avg. Ret. 3.07*** 2.49** 1.84 1.00 0.12 −1.13 −2.98 −5.37*** −8.31*** −12.40*** −17.79*** −24.75*** −33.87***
Avg. Diff. −0.58*** −0.65*** −0.84*** −0.88*** −1.25*** −1.85*** −2.39*** −2.94*** −4.09*** −5.39*** −6.96*** −9.12***

PNBOC > 1std

Avg. Ret. 10.09*** 12.82*** 15.78*** 18.67*** 21.59*** 24.84*** 28.31*** 32.09*** 36.39*** 40.93*** 45.77*** 51.11*** 55.98***
Avg. Diff. 2.73*** 2.96*** 2.89*** 2.92*** 3.25*** 3.46*** 3.78*** 4.30*** 4.54*** 4.84*** 5.35*** 4.86**

PNBOC < −1std

Avg. Ret. −4.48* −6.35** −8.27*** −10.42*** −12.57*** −14.86*** −17.97*** −21.69*** −25.49*** −29.75*** −34.27*** −39.40*** −45.73***
Avg. Diff. −1.87*** −1.92*** −2.14*** −2.15*** −2.29*** −3.11*** −3.72*** −3.80*** −4.26*** −4.51*** −5.14*** −6.32***

This table reports the average 30-day call option returns (in %) for all months in the sample and conditioned to months where PNBOC is positive, negative, above one standard
deviation of its time series and below minus one standard deviation. Also reported is the average difference (in %) between the returns of the current column and the previous
one. Call options have deltas ranging from 0.2 to 0.8. The number of observations for each of the panels, from top to bottom, is: 6293, 3003, 3290, 753 and 613. *, ** and ***
represent statistical significance at the 10%, 5% and 1% levels, respectively. Statistical significance is based on 25,000 bootstrap draws from the respective sample of option returns
(and pairwise bootstrap draws for the return differences). The sample ranges from January 4, 1996 to December 31, 2020.
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Table D.2: Option net demand and average put option returns

Delta −0.20 −0.25 −0.30 −0.35 −0.40 −0.45 −0.50 −0.55 −0.60 −0.65 −0.70 −0.75 −0.80

Whole Sample

Avg. Ret. −53.21*** −45.94*** −40.49*** −36.34*** −32.78*** −29.92*** −27.61*** −25.50*** −23.52*** −21.68*** −19.89*** −18.14*** −16.31***
Avg. Diff. 7.27*** 5.45*** 4.16*** 3.56*** 2.86*** 2.31*** 2.11*** 1.98*** 1.83*** 1.79*** 1.75*** 1.83***

PNBOP > 0

Avg. Ret. −39.42*** −33.10*** −28.45*** −25.13*** −22.40*** −20.29*** −18.72*** −17.35*** −16.10*** −14.90*** −13.68*** −12.40*** −11.03***
Avg. Diff. 6.31*** 4.65*** 3.32*** 2.73*** 2.12*** 1.57*** 1.37*** 1.25*** 1.19*** 1.22*** 1.28*** 1.38***

PNBOP < 0

Avg. Ret. −68.52*** −60.18*** −53.85*** −48.77*** −44.29*** −40.61*** −37.47*** −34.55*** −31.75*** −29.21*** −26.78*** −24.51*** −22.17***
Avg. Diff. 8.34*** 6.33*** 5.08*** 4.48*** 3.68*** 3.14*** 2.92*** 2.80*** 2.54*** 2.43*** 2.27*** 2.34***

PNBOP > 1std

Avg. Ret. 60.45*** 53.14*** 46.08*** 40.06*** 34.82*** 30.11*** 25.67** 21.54** 17.72** 14.08* 10.84 7.96 5.48
Avg. Diff. −7.31** −7.06*** −6.01*** −5.24*** −4.71*** −4.44*** −4.13*** −3.82*** −3.65*** −3.24*** −2.88*** −2.48***

PNBOP < −1std

Avg. Ret. −76.62*** −68.81*** −62.76*** −57.23*** −52.23*** −48.19*** −45.00*** −42.36*** −39.63*** −36.95*** −34.32*** −31.92*** −29.37***
Avg. Diff. 7.81*** 6.05*** 5.52*** 5.00*** 4.04*** 3.19*** 2.64*** 2.73*** 2.68*** 2.64*** 2.39*** 2.55***

This table reports the average 30-day put option returns (in %) for all months in the sample and conditioned to months where PNBOP is positive, negative, above one standard
deviation of its time series and below minus one standard deviation. Also reported is the average difference (in %) between the returns of the current column and the previous one.
Put options have deltas ranging from -0.8 to -0.2. The number of observations for each of the panels, from top to bottom, is: 6293, 3310, 2983, 629 and 844. *, ** and *** represent
statistical significance at the 10%, 5% and 1% levels, respectively. Statistical significance is based on 25,000 bootstrap draws from the respective sample of option returns (and pairwise
bootstrap draws for the return differences). The sample ranges from January 4, 1996 to December 31, 2020.
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Fig. 1: PNBOC and PNBOP. This figure plots in the upper (lower) panel the monthly
time series of PNBOC (PNBOP ). The red dashed lines denote one standard deviation and
minus one standard deviation of PNBOC (PNBOP ). Shaded areas depict National Bureau
of Economic Research (NBER) recession dates. The sample ranges from January, 1996 to
December, 2020.
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Fig. 2: Average option returns and PNBO. This figure plots in the left (right) panel
average 30-day call (put) returns calculated over the whole sample and conditioned to months
where PNBOC (PNBOP ) is: above one standard deviation of its time series, above zero,
below zero and below minus one standard deviation. Call (put) options have deltas ranging
from 0.2 to 0.8 (-0.8 to -0.2) and their average returns are plotted against the corresponding
average moneyness (K/S) over the whole sample. The sample ranges from January 4, 1996 to
December 31, 2020.
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Fig. 3: Average delta-hedged option returns and PNBO. This figure plots in the left
(right) panel average 30-day delta-hedged ATM call (put) returns calculated conditioned to
months where both PNBOCt and PNBOPt are: below several thresholds (ranging from minus
one standard deviation of their time series to zero) and above several thresholds (ranging from
zero to one standard deviation of their time series). The red dashed lines denote one-standard
error bands based on 1,000 bootstrap draws from the respective sample of returns. The black
horizontal line is the average return over the whole sample. The sample ranges from January,
1996 to December, 2020.
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Fig. 4: Average straddle returns and PNBO. This figure plots in the left (right) panel
average 30-day straddle (crash-neutral straddle) returns calculated conditioned to months where
both PNBOCt and PNBOPt are: below several thresholds (ranging from minus one standard
deviation of their time series to zero) and above several thresholds (ranging from zero to one
standard deviation of their time series). The red dashed lines denote one-standard error bands
based on 1,000 bootstrap draws from the respective sample of returns. The black horizontal
line is the average return over the whole sample. The sample ranges from January, 1996 to
December, 2020.
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Fig. 5: Average option returns and PNBO controlling for no recession. This figure
plots in the left (right) panel average 30-day call (put) returns calculated over months without
recession and conditioned to months where there is no recession and PNBOC (PNBOP ) is:
above one standard deviation of its time series in this sample, above zero, below zero and below
minus one standard deviation. Call (put) options have deltas ranging from 0.2 to 0.8 (-0.8 to
-0.2) and their average returns are plotted against the corresponding average moneyness (K/S)
over the whole sample. The sample ranges from January 4, 1996 to December 31, 2020.
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Fig. 6: Average option returns and RV . This figure plots in the left (right) panel average
30-day call (put) returns calculated over the whole sample and conditioned to months where
RV is: above its 80% quantile (very high), above its median (high), below its median (low) and
below its 20% quantile (very low). Call (put) options have deltas ranging from 0.2 to 0.8 (-0.8 to
-0.2) and their average returns are plotted against the corresponding average moneyness (K/S)
over the whole sample. The sample ranges from January 4, 1996 to December 31, 2020.
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Fig. 7: Average option returns and PNBO controlling for RV . This figure plots in the
upper left (right) panel average 30-day call (put) returns calculated over months where RV is
above its median (high) and conditioned to months where RV is above its median and PNBOC
(PNBOP ) is: above one standard deviation of its time series in this sample, above zero, below
zero and below minus one standard deviation. The lower panels plot analogous results when
RV is below its median (low). Call (put) options have deltas ranging from 0.2 to 0.8 (-0.8 to
-0.2) and their average returns are plotted against the corresponding average moneyness (K/S)
over the whole sample. The sample ranges from January 4, 1996 to December 31, 2020.
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Fig. 8: Average option returns and bV RP . This figure plots in the left (right) panel average
30-day call (put) returns calculated over the whole sample and conditioned to months where
bV RP is: above one standard deviation of its time series, above zero, below zero and below
minus one standard deviation. Call (put) options have deltas ranging from 0.2 to 0.8 (-0.8 to
-0.2) and their average returns are plotted against the corresponding average moneyness (K/S)
over the whole sample. The sample ranges from January 4, 1996 to December 31, 2020.
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Fig. 9: Average option returns and PNBO controlling for bV RP . This figure plots in the
upper left (right) panel average 30-day call (put) returns calculated over months where bV RP is
above zero and conditioned to months where bV RP is above zero and PNBOC (PNBOP ) is:
above one standard deviation of its time series in this sample, above zero, below zero and below
minus one standard deviation. The lower panels plot analogous results when bV RP is below
zero. Call (put) options have deltas ranging from 0.2 to 0.8 (-0.8 to -0.2) and their average
returns are plotted against the corresponding average moneyness (K/S) over the whole sample.
The sample ranges from January 4, 1996 to December 31, 2020.
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Fig. 10: Average option returns and ADS. This figure plots in the left (right) panel average
30-day call (put) returns calculated over the whole sample and conditioned to months where
ADS is: above its 80% quantile (very high), above its median (high), below its median (low)
and below its 20% quantile (very low). Call (put) options have deltas ranging from 0.2 to 0.8
(-0.8 to -0.2) and their average returns are plotted against the corresponding average moneyness
(K/S) over the whole sample. The sample ranges from January 4, 1996 to December 31, 2020.
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Fig. 11: Average option returns and PNBO controlling for ADS. This figure plots
in the upper left (right) panel average 30-day call (put) returns calculated over months where
ADS is above its median (high) and conditioned to months where ADS is above its median and
PNBOC (PNBOP ) is: above one standard deviation of its time series in this sample, above
zero, below zero and below minus one standard deviation. The lower panels plot analogous
results when ADS is below its median (low). Call (put) options have deltas ranging from
0.2 to 0.8 (-0.8 to -0.2) and their average returns are plotted against the corresponding average
moneyness (K/S) over the whole sample. The sample ranges from January 4, 1996 to December
31, 2020.
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Fig. 12: Variance risk premium and PNBO. This figure plots the average of the variance
risk premium calculated in the months t+1 following the months t where PNBOCt is, PNBOPt

is, and both PNBOCt and PNBOPt are, respectively: below several thresholds (ranging from
minus one standard deviation to zero) and above several thresholds (ranging from zero to
one standard deviation). The red dashed lines denote one-standard error bands based on 1,000
bootstrap draws from the respective sample of V RPt+1. The black horizontal line is the average
V RPt+1 over the whole sample. The sample ranges from January, 1996 to December, 2020.
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Fig. C.1: Hypothetical pricing kernels and expected option returns. This figure plots
hypothetical pricing kernels as a function of market returns in the left panel, and the implied
expected call (put) returns in the middle (right) panel. To construct the figure, we rely on a daily
sample of overlapping 30-calendar day market returns between January 4, 1996 and December
31, 2020 (i.e., we take the unconditional physical distribution). We specify different pricing
kernels as a function of those market returns (upper panel: linear and monotonically decreasing,
with different slopes; middle panel: linear and monotonically increasing, with different slopes;
lower panel: U-shaped). Then, we report the corresponding implied expected call and put
returns (with the same color), which are computed as the ratio between the expected option
payoff under the physical measure and the expected option payoff under the risk-neutral measure
(implied by the pricing kernel).
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