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Abstract: This paper examines the application of probabilistic shaping techniques, specifically Huffman
Shaping (HS) and Geometric Huffman Coding (GHC), to optimize probability distributions in Continuous-
Variable Quantum Key Distribution (CV-QKD) systems. The study focuses on the use of probabilistic shap-
ing methods, in particular HS and GHC, to generate non-uniform discrete constellations. A comparative
analysis is carried out between HS and GHC for generating dyadic probability distributions that approxi-
mate target probability mass functions (PMFs). The performance of the algorithms was evaluated using the
Kullback–Leibler (KL) divergence and the variational distance. Numerical results show that GHC consis-
tently achieves a lower KL divergence than HS for all M-PAM constellations and both target distributions,
indicating a better approximation of the desired distribution. Although the variational distance shows a less
pronounced difference, GHC still attains smaller distances. Furthermore, the paper establishes a crucial
connection between classical and quantum distance measures, showing that for commuting quantum states
(such as those prepared in this context), the quantum trace distance reduces to the classical trace distance
(or half the variational distance). This validates the application of classical distribution matching algorithms
in the analysis of quantum information problems.
Keywords: Quantum Key Distribution, Discrete Modulation, Probabilistic Shaping, Huffman Coding.
Abbreviations: CV-QKD, GHS, HS.

1. Introduction

A quantum key distribution (QKD) protocol is a

cryptographic primitive that makes use of an inse-

cure, noisy quantum channel and an authenticated,

noiseless public channel to generate random se-

cret cryptographic keys by the exchange of non-

orthogonal quantum states through the quantum

channel, and by applying classical processing us-

ing the classical channel. Typically, the legitimate

parties are Alice and Bob, the transmitter and re-

ceiver, respectively, and the protocol is assumed to

run in the presence of an eavesdropper, Eve [1].

QKD was initially implemented using discrete

variables (DV), wherein information is encoded

in the polarization states of single photons [2].

Subsequently, continuous-variable (CV) proto-

cols were developed, encoding information in the

quadratures of the electromagnetic field [3]. The

primary advantage of CV-QKD protocols lies in

their ease of integration with existing fiber optic

network infrastructures, utilizing coherent detec-

tion (homodyne or heterodyne) with commercial

components [4].

Although Gaussian modulated protocols are well

developed, either in the theoretical security proofs

[5] and in the implementations [6], they have

a fundamental limitation due to the require-

ment of a theoretically continuous modulation,

whereas analog-to-digital (ADCs) and digital-to-

analog converters (DACs) have finite precision [7].

As an alternative, CV-QKD protocols can use dis-

crete modulation schemes, leveraging techniques
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well-known from classical communication. Dis-

crete modulated CV-QKD protocols have been

proposed with Phase Shift Keying modulation

(PSK), Amplitude Phase Shift Keying (APSK)

and Quadrature Amplitude Modulation (QAM)

[8, 9, 10]. It is known, from classical information

theory results, that such signaling schemes must

approach a Gaussian distribution to optimize the

system capacity [11].

To generate non-uniform discrete constellations,

probabilistic shaping techniques can be employed

to assign higher occurrence probabilities to lower-

energy symbols, thereby approximating the con-

stellation distribution to an ideal Gaussian. This

process is referred to as distribution matching. Ex-

amples include Huffman Shaping (HS) [12] and

the Geometric Huffman Coding (GHC) [13], both

of which have been extensively studied in classical

optical communications and are readily adaptable

to the continuous-variable QKD context.

This work presents a comparative analysis of HS

and GHC for the generation of dyadic probabil-

ity distributions that accurately approximate target

probability mass functions (PMFs) in the context

of discrete constellations. The evaluation consid-

ers binomial and Gauss–Hermite target distribu-

tions, with performance assessed through the Kull-

back–Leibler divergence (KL) and the variational

distance.

The rest of the paper is organized as follows. sec-

tion 2 gives an overview of CV-QKD protocols

with discrete modulation and the practical need for

distribution matching. In subsubsection 3.1.1, the

distribution matching techniques are detailed, and

the numerical results are presented in section 4.

The final considerations are given in section 6.

2. CV-QKD Protocols with Discrete Modula-

tion

A CV-QKD protocol consists of four general

steps: quantum communication (state preparation,

transmission, and measurement), parameter esti-

mation, information reconciliation, and privacy

amplification. For a CV-QKD protocol using ho-

modyne measurements, there will be an intermedi-

ate step before parameter estimation when Bob an-

nounces which quadrature was measured in each

round. This stage is called sifting.

The discrete modulation takes place in the state

preparation stage, when Alice prepares coherent

states from the ensemble {|α⟩ , p(α)} where α ∈

C is the complex amplitude of the coherent state.

For optimal performance, that is, to approximate

the capacity of a Gaussian modulated protocol, the

probability distribution p(α) must be designed to

result in a mixed state ρ = ∑ p(α) |α⟩⟨α| close to

a Gaussian state. The choice of p(α) is not arbi-

trary, and it must be optimized for each scenario

[14]. Also, several probability distributions are

known to converge to a Gaussian distribution and

approximate the classical capacity of communica-

tion channels [11].
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In this way, practical implementations of CV-QKD

protocols with discrete modulation need to apply

distribution-matching algorithms. Instead of a the-

oretical black-box that generates numbers drawn

following the target distribution p(α), a proba-

bilistic constellation shaping architecture applies a

distribution matching algorithm that takes as input

a sequence of random bits and outputs a sequence

of symbol following an approximation of p(α).

3. Huffman Distribution Matching

For probabilistic constellation shaping, Huffman-

based distribution matching maps symbols to

codes that approximate a dyadic distribution, de-

fined by pi = 2−li , where li ∈N is the code length.

The algorithm requires a non-uniform constella-

tion near a Gaussian distribution [12], such as

Gauss–Hermite or Random Walk (binomial) [1].

Table 1 shows the results of the symbol-to-

codeword mapping process for a 6-PAM constella-

tion based on a target Gauss-Hermite distribution.

Table 1: Example of applying Huffman coding
for mapping uniform PAM constellations to non-
uniform ones.

PAM-Symbols Gauss-Hermite PMF Dyadic PMF Codewords
−3.3243 0.0026 0.125 0,0,0
−1.8892 0.0886 0.125 0,0,1
−0.6167 0.4088 0.25 0,1
0.6167 0.4088 0.25 1,1
1.8892 0.0886 0.125 1,0,1
3.3243 0.0026 0.125 1,0,0

3.1. The Huffman Coding

The Huffman algorithm constructs an optimal pre-

fix code (no codeword is a prefix of another) for

a given probability distribution. The goal is to as-

sign a variable-length binary code to each input

symbol so that no code is a prefix of another (en-

suring unique and instantaneous decoding) and the

average code length (in bits per symbol) is as small

as possible. The central idea is to assign shorter

codes to the most frequent symbols and longer

codes to the less frequent ones [15].

The encoding process involves iteratively combin-

ing the two least probable symbols into a sin-

gle “supersymbol”, with its probability being the

sum of the probabilities of the combined symbols

(x
′
= xm + xm−1). This process continues until

only one symbol remains.

Since Huffman Coding (HC) is designed to find

the code lengths li that minimize the average

length, by mathematical equivalence, it also mini-

mizes the KL divergence DKL(x∥p), where x is the

target distribution and p is the dyadic probability

distribution. However, for communication chan-

nels, we need to minimize DKL(p∥x). The reason

lies in the direct relationship between KL diver-

gence and information loss: when we deviate from

the optimal distribution, we lose transmission ca-

pacity, and this loss is quantified by DKL(p∥x).

This is the fundamental difference between HC

and GHC.

3.1.1. The Huffman Shaping

HS reverses the conventional use of HC by con-

structing a code from the target probability dis-
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tribution p of modulation symbols in an M-ary

constellation, rather than encoding source sym-

bols [12].

3.2. Geometric Huffman Coding

GHC addresses this channel-oriented criterion by

producing a dyadic distribution optimally close to

the target, rather than simply minimizing average

code length. For this purpose, the GHC algorithm

updates the probabilities based on the geometric

mean during the construction of the Huffman tree.

Its computational complexity remains O(m logm),

where m is the number of input symbols, matching

that of standard Huffman coding [13].

Assuming a vector x = (x1,x2, . . . ,xm) with non-

negative entries, ordered such that (x1 ≥ x2 ≥ ·· · ≥

xm) [13]:

x′ =

xm−1, se xm−1 ≥ 4xm

2
√

xmxm−1, se xm−1 < 4xm.

(1)

Böcherer and Mathar show that, for discrete mem-

oryless channels, the search for good dyadic in-

put PMFs is equivalent to minimizing DKL(p ∥

p∗) over all dyadic PMFs p, where p∗ repre-

sents the PMF achieving channel capacity. More-

over, GHC asymptotically achieves channel ca-

pacity when the block length k → ∞, as the nor-

malized KL divergence DKL
(

p(k) ∥ p∗(k)
)
/k con-

verges to zero. [13]

4. Numerical Results

To evaluate the effectiveness of HS and GHC in

constructing dyadic PMFs that approximate target

distributions, binomial and Gauss–Hermite dis-

tributions were generated for M-PAM constella-

tions, with M even and M ∈ {4,6,8, . . . ,32}. Sub-

sequently, the dyadic PMFs obtained from each

method were compared to the target distributions

using KL divergence and variational distance, en-

abling an assessment of each algorithm’s effi-

ciency across different PAM constellation scenar-

ios.

In Figure 1, we plot the KL divergence between

the target distributions and those obtained with HS

and GHC. For all M-PAM constellations and both

target distributions, it can be observed that GHC

yields a systematically lower DKL than HS, indi-

cating a better approximation of the desired distri-

bution.

Figure 1: KL divergence for M-PAM using Bino-
mial and Gauss–Hermite with HS and GHC.

For the Binomial distribution, the divergences ob-

tained by GHC have an average of ≈ 0.05 bit, with
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a maximum observed divergence of ≈ 0.09 bit.

In comparison, HS has an average value of ≈

0.12 bit, and a maximum observed divergence

of ≈ 0.26 bit.

For the Gauss-Hermite distribution, the gap be-

tween the techniques is more pronounced. GHC

achieves an average result of ≈ 0.07 bit, with a

maximum observed divergence of ≈ 0.14 bit. In

contrast, HS reaches a maximum DKL of ≈ 1.2 bits

for small constellations, gradually decreasing as

the constellation size increases, with an average of

≈ 0.57 bit.

For the variational distance, the difference be-

tween the GHC and HS methods is less pro-

nounced compared to the KL divergence, as shown

in Figure 2. Although GHC achieves smaller

variational distances, the curves converge more

closely, especially for the Binomial distribution.

For the Binomial distribution, the average distance

for GHC is ≈ 0.22, with a maximum observed dis-

tance of ≈ 0.31. In contrast, HS has an average

of ≈ 0.24 and a maximum observed distance of

≈ 0.5. For the Gauss-Hermite distribution, GHC

achieves an average of ≈ 0.24, whereas HS has an

average of ≈ 0.33.

5. Classical and Quantum Trace Distances

In the field of information theory, both classical

and quantum, the ability to quantify the closeness

between different information states is fundamen-

tal. In this context, the trace distance emerges as

Figure 2: Variational distance for M-PAM using
Binomial and Gauss–Hermite with HS and GHC.

one of the most important and widely used mea-

sures.

In the context of classical information theory, the

trace distance is a measure used to compare the

closeness between two probability distributions,

px and qx, defined over the same set of indices x.

This measure is defined by [16]:

D(px,qx) =
1
2 ∑

x
|px −qx|. (2)

This quantity provides an operational interpreta-

tion that quantifies the distinguishability between

two probability distributions. An interesting fact

about the trace distance is its similarity to the con-

cept of variational distance. The variational dis-

tance between two probability distributions t =

(t1, t2, . . .) and t̂ = (t̂1, t̂2, . . .) is given by [17]:

|t− t̂|1 = ∑
i
|ti − t̂i|. (3)

The result of this distance measures how well a

distribution t̂ approximates a target distribution t.
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There are similarities between the classical trace

distance and the variational distance: both are

based on the L1 distance and quantify the “dis-

tance” between two classical probability distribu-

tions. However, there is a difference in how they

are defined in the literature. The classical trace

distance is defined by including a normalization

factor of 1/2, which makes its value range from 0

(identical distributions) to 1 (perfectly distinguish-

able distributions). The variational distance, on

the other hand, does not include the normalization

factor.

It is in this context that we introduce the concept

of quantum trace distance. Mathematically, the

quantum trace distance is the generalization of the

classical trace distance to the domain of quantum

states, represented by density operators ρ and σ ,

and is defined as [16]:

D(ρ,σ)≡ 1
2

tr|ρ −σ |. (4)

The definition presented in (4) is a generalization

of the definition for probability distributions in (2).

The relevance of this generalization becomes par-

ticularly evident when the density operators ρ and

σ commute [16]. The commutator between two

operators A and B is defined as [A,B] ≡ AB−BA.

We say that two operators commute if AB−BA =

0, which implies AB = BA [16]. In quantum terms,

this means that the order in which the operations

are performed does not matter.

If ρ and σ commute, they can be diagonalized in

the same orthonormal basis [16]. In this specific

case, the quantum trace distance reduces to the

classical trace distance between the eigenvalues of

ρ and σ [16]. If

ρ = ∑
i

ri|i⟩⟨i| e σ = ∑
i

si|i⟩⟨i| (5)

(ri and si are the eigenvalues corresponding to the

respective eigenstates |i⟩), then [16]:

D(ρ,σ) = D(ri,si). (6)

Therefore, the commutation between quantum

states ensures that the calculation of the quantum

trace distance reduces to the classical trace dis-

tance between the probability distributions of the

eigenvalues. Note that:

D(ri,si) =
1
2 ∑

i
|ri − si|=

1
2
∥r− s∥1. (7)

The second equality follows directly from the def-

inition of the variational distance (3). Therefore,

for commuting quantum states, the quantum trace

distance is exactly the variational distance of the

eigenvalues corresponding to the respective eigen-

states |i⟩:

D(ρ,σ) = D(ri,si) =
1
2
∥r− s∥1. (8)

This result is of utmost importance for understand-

ing distribution matching algorithms. In such al-

gorithms, a target distribution p(x) is approxi-
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mated by a distribution q(x). The quality of this

approximation is often measured by the variational

distance ∥p− q∥1 [17], which is equivalent to the

classical trace distance.

Consider the case in which we have a mixture

of states ρx and a distribution matching process

yields the distribution q(x). We say that, at the

transmitter output, we prepare ρ
′
x instead of ρx,

where ρx = ∑x p(x)|x⟩⟨x| e ρ
′
x = ∑x q(x)|x⟩⟨x|. In

these expressions, the states |x⟩ are vectors of an

orthonormal basis. This means that if we repre-

sent these operators as matrices in this basis |x⟩,

they will be diagonal matrices. The (i, i) element

of the matrix ρxρ
′
x will be p(i) ·q(i). And the (i, i)

element of the matrix ρ
′
xρx will be q(i) · p(i). Since

scalar multiplication is commutative (p(i) · q(i) =

q(i) · p(i)), all the diagonal elements of the two

products will be identical. All the off-diagonal

elements of both products will be zero, since the

original matrices are diagonal. Therefore, ρxρ
′
x =

ρ
′
xρx. This directly implies that the commutator is

zero: [ρx,ρ
′
x] = 0.

A direct consequence of ρx and ρ
′
x commuting is

given by the equalities in equation (8). Therefore,

if ρx and ρ
′
x commute, we have:

D(ρx,ρ
′
x) = D(p,q) =

1
2
∥p−q∥1. (9)

Therefore, if we have a distribution algorithm that

converges to the target distribution, the constella-

tion or mixture of quantum states resulting from

this approximated distribution will converge to

the target mixture of quantum states. This result

serves as a kind of guarantee that the classical

distribution matching algorithms presented here

make sense when we analyze the problem from the

perspective of quantum information.

6. Conclusion

This study investigated the optimization of prob-

ability distributions in CV-QKD systems through

probabilistic shaping techniques: HS and GHC.

The motivation lies in the need to use discrete

modulations in CV-QKD due to the finite preci-

sion of digital converters, aiming to approximate

the constellation distribution to an ideal Gaussian.

Numerical results showed that GHC consistently

outperformed HS in approximating the target dis-

tributions. GHC achieved a significantly lower KL

divergence (e.g., an average of ∽ 0.05 bits for bi-

nomial and ∽ 0.07 bits for Gauss–Hermite, com-

pared to ∽ 0.12 bits and ∽ 0.57 bits for HS, re-

spectively), indicating better adherence to the de-

sired distribution.

Additionally, we discussed the connection be-

tween classical and quantum distance measures.

This connection validates the application of classi-

cal distribution matching algorithms in the analy-

sis and optimization of quantum information prob-

lems. It ensures that if a classical algorithm con-

verges to the target distribution, the resulting mix-

ture of quantum states will also converge to the
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target mixture of quantum states.

In summary, the work highlights GHC as a more

effective technique for probabilistic shaping in

CV-QKD and provides the theoretical foundation

that justifies the use of classical information the-

ory tools to optimize quantum communication sys-

tems.
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