

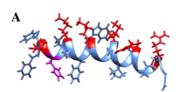
Síntese e estudos de atividade antibacteriana de peptídeos minimizados derivados do ecPis-4s

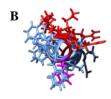
Giovanna P. Araújo (PG)1*; Rodrigo M. Verly (PQ)1

¹ Universidade Federal dos Vales do Jequitinhonha e Mucuri, Departamento de Química, Diamantina, Minas Gerais, Brasil, 39100-000.

*e-mail: giovanna.araujo@ufvjm.edu.br

RESUMO

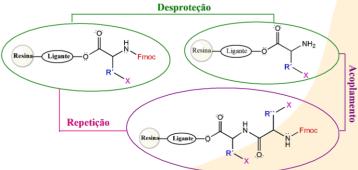

O peptídeo antimicrobiano ecPis-4s, isolado da espécie *Epinephelus coioides*, apresenta ação frente a bactérias Gram-positivas e Gram-negativas, mas sua aplicação é limitada por citotoxicidade e custo de produção. Este estudo teve como objetivo sintetizar e avaliar dez derivados minimizados, com remoção progressiva de resíduos na extremidade C-terminal. Os peptídeos foram sintetizados por SPPS, purificados por CLAE e caracterizados por MALDI-ToF. A atividade antimicrobiana foi avaliada por ensaio de CIM frente a *E. coli* e *S. aureus*. O derivado ecPis-4smn-16 apresentou melhor desempenho, com CIM inferior ao peptídeo original. Derivados com menos de 16 resíduos perderam a eficácia. Os resultados indicam que a porção *N*-terminal mantém os elementos essenciais para a atividade, e que a minimização pode favorecer a seletividade e reduzir custos, justificando estudos futuros de citotoxicidade e interação com membranas.


Palavras-chave: Peptídeos antimicrobianos, ecPis-4s, resistência bacteriana, peptídeos minimizados.

Introdução

O ecPis-4s é um peptídeo antimicrobiano pertencente à família das piscidinas, isolado do peixe Epinephelus coioides e composto por 22 resíduos de aminoácidos⁽¹⁾. Sua eficácia frente a bactérias Grampositivas e Gram-negativas é atribuída à sua estrutura anfipática e carga positiva, que favorecem a interação com membranas bacterianas⁽²⁾⁽³⁾. Estudos anteriores realizados pelo grupo de pesquisa apontam que a porção *N*-terminal do ecPis-4s possui papel predominante na atividade antimicrobiana, enquanto a extremidade *C*-terminal apresenta menor contribuição funcional⁽⁴⁾.

Figura 1. Estruturas de RMN de baixa energia do peptídeo ecPis-4s, mostrando os aminoácidos hidrofílicos em vermelho e rosa e os aminoácidos hidrofóbicos em azul, (A) vista lateral e (B) vista ao longo do eixo da hélice.



Apesar do elevado potencial terapêutico, sua aplicação clínica é limitada devido à citotoxicidade observada em células eucarióticas. Nesse contexto, o presente estudo teve como objetivo sintetizar e avaliar a atividade antibacteriana de dez derivados minimizados do ecPis-4s, obtidos por remoção progressiva de resíduos na extremidade *C*-terminal, com o intuito de otimizar sua atividade biológica e reduzir os efeitos indesejados.

Os peptídeos minimizados foram sintetizados manualmente utilizando a estratégia Fmoc de síntese em fase sólida (SPPS), com resina Fmoc-Rink Amida, com grau de substituição 0,43 mg.mol⁻¹, como suporte sólido. Os derivados de aminoácidos foram acoplados sequencialmente até a formação completa da cadeia peptídica⁽⁵⁾. Após a síntese, os peptídeos foram clivados da resina e submetidos à remoção dos grupos protetores laterais, obtendo-se os compostos em sua forma livre funcional, os quais foram posteriormente liofilizados. Em seguida, os peptídeos foram purificados por cromatografia líquida de alta eficiência (CLAE) em fase reversa e caracterizados por espectrometria de massas MALDI-ToF, a fim de confirmar suas massas monoisotópicas. A atividade antimicrobiana foi avaliada por meio da determinação da Concentração Inibitória Mínima (CIM), utilizando o método de microdiluição em caldo frente às cepas Staphylococcus aureus (ATCC 29313) e Escherichia coli (ATCC 25922), sendo monitorada por adição de resazurina em placas de 96

Figura 2. Esquema geral da síntese de peptídeo em fase sólida. O X representa os grupos protetores da cadeia lateral (R') dos resíduos de aminoácido.

Experimental

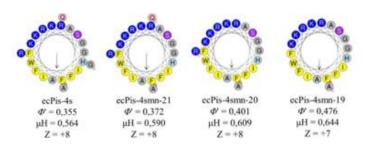
Resultados e Discussão

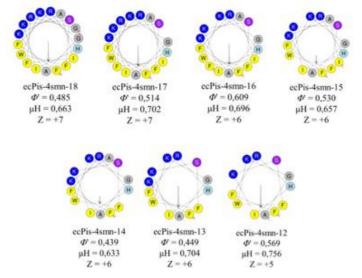
Todos os peptídeos minimizados foram sintetizados com sucesso, purificados e tiveram suas massas confirmadas por espectrometria de massas MALDI-ToF, apresentando valores experimentais compatíveis com os teóricos, conforme demonstrado na Tabela 1.

Tabela 1. Massas monoisotópicas teóricas e experimentais dos peptídeos encurtados do ecPis-4s.

Peptídeo	Resíduos	[M+H]+teo	$[M+H]^+_{obs}$
ecPis-4smn-21	21	2550,43	2550,50
ecPis-4smn-20	20	2422,37	2422,20
ecPis-4smn-19	19	2266,27	2266,40
ecPis-4smn-18	18	2195,23	2195,40
ecPis-4smn-17	17	2138,21	2138,20
ecPis-4smn-16	16	1982,11	1982,10
ecPis-4smn-15	15	1835,04	1835,10
ecPis-4smn-14	14	1721,95	1721,90
ecPis-4smn-13	13	1650,92	1650,9
ecPis-4smn-12	12	1522,82	1522,6

Com as massas devidamente confirmadas, os peptídeos foram avaliados quanto à atividade antimicrobiana. Os ensaios antimicrobianos apresentaram atividade em diferentes níveis, expressos em μ M. Os valores de CIM foram obtidos a partir da média aritmética dos ensaios realizados em triplicata ou quadruplicata, conforme disponibilidade experimental. A Tabela 2 apresenta os valores médios e desvios-padrão dos peptídeos frente às cepas *Escherichia coli* e *Staphylococcus aureus*.


Tabela 2: Valores médios de CIM (μM) \pm DP frente às cepas testadas.


Peptídeo	E. coli	S. aureus
ecPis-4smn-21	$59,22 \pm 29,30$	$50,76 \pm 0$
ecPis-4smn-20	$58,82 \pm 40,10$	$48,13 \pm 24,07$
ecPis-4smn-19	$64,23 \pm 31,15$	$64,23 \pm 31,15$
ecPis-4smn-18	$89,19 \pm 25,48$	$89,19 \pm 25,48$
ecPis-4smn-17	$80,51 \pm 23,00$	$81,75 \pm 20,52$
ecPis-4smn-16	$65,27 \pm 31,66$	$49,91 \pm 29,07$
ecPis-4smn-15	-	-
ecPis-4smn-14	-	-
ecPis-4smn-13	-	-
ecPis-4smn-12	-	-

A redução da cadeia peptídica impactou diretamente a atividade biológica dos análogos. Derivados com menos de 16 resíduos perderam completamente a eficácia, enquanto o ecPis-4smn-16 manteve desempenho relevante frente às duas cepas, com valores de CIM inferiores ao peptídeo original.

Para aprofundar essa observação, foi realizada a análise das rodas helicoidais por meio da ferramenta HeliQuest (Figura 3).

Figura 3. Representações das rodas helicoidais dos peptídeos ecPis-4s e seus análogos minimizados, geradas pelo HeliQuest, destacando a separação entre resíduos hidrofóbicos (amarelos), polares (cinza), básicos (azul) e aromáticos (roxo). São indicados os valores calculados de momento de dipolo (μ H), hidrofobicidade média (Φ ') e carga líquida total (Z) para cada peptídeo.

A análise das rodas helicoidais mostra que a remoção da extremidade C-terminal preservou a organização anfipática da hélice α e, em alguns casos, aumentou a separação entre as faces hidrofóbica e hidrofílica. Os análogos ecPis-4smn-17, 13 e 12 apresentaram momento hidrofóbico (μ H) superior ao do peptídeo original, indicando maior potencial de inserção na membrana. No entanto, 13 e 12 não demonstraram atividade antimicrobiana, sugerindo que a redução da carga positiva prejudicou a interação inicial com a membrana bacteriana. Em contrapartida, os peptídeos 16 e 17 mantiveram boa atividade, reforçando que a eficácia depende do equilíbrio entre anfipaticidade, carga e hidrofobicidade.

Esses dados reforçam que a porção *N*-terminal concentra os elementos estruturais essenciais para a atividade antimicrobiana. A manutenção da eficácia em um peptídeo mais curto sugere vantagens em termos de seletividade e síntese, além de justificar estudos complementares de citotoxicidade e interação com membranas.

Conclusões

A minimização racional do ecPis-4s permitiu identificar um derivado mais curto e eficaz. O análogo ecPis-4smn-16 demonstrou bom potencial antimicrobiano, reforçando a viabilidade da estratégia de truncamento como caminho para otimização de peptídeos bioativos. Esses resultados apoiam sua continuidade como candidato para futuras aplicações terapêuticas.

Agradecimentos

Este trabalho foi apoiado pela Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/COFECUB programa 88881.879071/2023-01), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Rede Mineira de Peptídeos Bioativos (Rede-PEPBio).

Referências

- 1. Z. R. ZHUANG, et al. Fish & Shellfish Immunology. 2017, 66, 240-253.
- 2. A. P. D. Souza, et al. Materials Chemistry and Physics. 2023, 307, 128101.
- 3. H. J. Huo, et al. Developmental and comparative immunology. 2022, 131, 104394.
- 4. K. R. Souza. Tese de Doutorado, University of Strasbourg, 2023.
- 5. W. Chan, P. White. Shikimic Acid Metabolism and Metabolites Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Oxford, 1999.