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Abstract

In this paper our main goal is to compare time series forecasting accuracy for several
candidates within a wide collection of machine learning methods. In addition to the vast
number of existing methods in the literature, we propose a new variation of the Elastic
Net (ENet), the Weighted Lag Adaptive ENet (WLadaENet), which combines the popular
Ridge Regression with a regularization method tailored for time series, the WLAdaLASSO
(Konzen and Ziegelmann, 2016)). The motivating idea is to increasingly penalize the coef-
ficients of lagged variables as the lag increases. To achieve our goal, we carry out Monte
Carlo simulation studies as well as a real data analysis of USA inflation. In our Monte
Carlo implementations, the WLadaENet presents a good performance both in terms of
variable selection when the true model is sparse and in terms of forecasting accuracy even
when the model is not sparse and nonlinearities are included. WLadaENet also performs
well to forecast the USA inflation. Nevertheless, L,Boost is the best inflation forecaster
for the USA data in the analyzed period.
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1. Introduction

High-dimensional machine methods have become increasingly important in the litera-
ture over the last few decades. In the context of time series analysis, the main reasons for
this are certainly 1) the forecasting accuracy gain obtained from a model which is built hav-
ing a large number of potential covariates to select from, and ii) the availability of modern
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methods capable of performing selection, estimation and forecasting in high-dimensional
problems.

Many of the traditional methods present some drawbacks within the high-dimensional
context (see Tibshirani, [1996; [Fan, 2014), for instance:

1. Estimates often have low bias but large variance, reducing the accuracy of the fore-
casts.

2. They can lack model interpretability. Considering a large set of predictors, it is
preferable to determine a smaller subset of predictors that most explain the variabil-
ity of the response variable.

3. When the number of predictors exceeds the sample size, ordinary least squares
(OLS) does not produce an identifiable solution.

4. Spurious correlation can play a strong negative role.

Machine learning (ML) methods are able to handle some of the issues above. These
methods are designed to improve out-of-sample prediction. |Gu et al. (2020) and Mul-
lainathan and Spiess|(2017) point out some key characteristics of (high-dimensional) ML
methods: ML contains a diverse collection of high-dimensional methods for statistical
prediction that combine two elements, namely, regularization and empirical tuning. The
high-dimensional nature of these methods enhances their flexibility relative to more tradi-
tional econometric prediction techniques (Gu et al., [2020). ML methods typically have a
regularizing element associated with them and the empirical tuning allows one to choose
the level of regularization appropriately (Mullainathan and Spiess, [2017)).

In a seminal work, Tibshirani/ (1996)) introduces the least absolute shrinkage and selec-
tion operator (LASSO), which soon became a benchmark in the regularization literature.
/0u/(2006) investigates the oracle properties of LASSO, showing that it is not consistent in
variable selection in some situations. Then the adalLASSO (adaptive LASSO) is proposed
by Zou|(2006), with distinct penalties for each of the coeflicients, inheriting consistency in
variable selection under very general assumptions. Medeiros and Mendes|(2016) study the
asymptotic properties of adalLASSO in sparse, high-dimensional, linear time-series mod-
els and find that its properties allow the adalLASSO to be applied to a variety of applica-
tions in empirical finance and macroeconomics. The authors also present an application to
forecast U.S. inflation using many predictors, where adalLASSO delivers superior forecasts
compared to traditional benchmarks such as autoregressive and factor models. Medeiros
and Vasconcelos|(2016) employ high-dimensional methods (LASSO-family and bagging)
to forecast macroeconomic variables, and show that these methods provide smaller fore-
cast errors than autoregressive and factor models. |Medeiros et al. (2016) use LASSO
and adalLASSO to forecast Brazilian inflation and observe that LASSO-based methods
have the smallest errors for short-horizon forecasts. |Konzen and Ziegelmann! (2016)) test



LASSO-type penalty methods for covaraite selection and forecasting, and propose the
WLadalLASSO (which is based on further penalizing lagged predictors) method, having
good results for U.S. risk premium and U.S. inflation forecasting. Medeiros et al. (2019)
added a variety of high-dimensional methods to forecast U.S. inflation, such as bagging,
Ridge Regression, Elastic Net (and its adaptive version) and Jackknife Model Averag-
ing JMA), finding that Random Forests (RF) robustly outperforms the other methods. |Gu
et al. (2020) provide a comparative analysis of methods in the machine learning repertoire,
using these methods to forecast stock returns, and identify the best performing methods as
trees-based models and neural networks.

In this work we employ a variety of ML methods (including methods based on shrink-
age, regression trees and boosting) to perform time series forecasting. In particular, we
propose a method we call WLadaENet (weighted lag adaptive Elastic Net), which com-
bines quadratic regularization (ridge) with adaptive weighted LASSO shrinkage similarly
to adaENet introduced by Zou and Zhang (2009), but further penalizes coeflicients of
higher lag order terms as the WLadalLASSO proposed by |[Konzen and Ziegelmann|(2016)).
To compare the finite sample performances of the ML methods considered in our work,
particularly against WLadaENet, a Monte Carlo (MC) simulation study is carried out, with
three different data-generating processes. In summary, the MC studies highlight the good
performance of our proposal. WLadaENet presents a good performance in terms of vari-
able selection when the model is sparse and in terms of forecasting even when the model
is not sparse and nonlinearities are included. Furthermore, in our empirical analysis of the
USA inflation forecasting, WLadaENet performs well, been only slightly behind L,Boost.

Besides this introduction, the paper comprises 3 more sessions. Section [2| describes
all the forecasting machine learning methods implemented in this work, including our
novel WLadaENet proposal. In Section 3] all the Monte Carlo (MC) simulations as well as
empirical analysis are performed. Section 4] brings the concluding remarks.

2. Machine Learning Methods
2.1. Traditional Shrinkage Methods

Considering the linear time series model
Veeh = Bo +B1Xey + oo + ByXeg + U, t=1,..,T, (D)
where the forecast of y,,;, denoted as y,,, is given by

Dren = Bo +Brxiy + oo + Byxegy t=1,..,T. )



This section presents a class of methods that shrink the regression coefficients by imposing
a penalty on their size, i.e, the coeflicients in 1| are obtained by solving the following
problem:

T-h q 2
B(A) = argmin Z[yﬁh_ﬁO_Zﬁjxt,j) +pBr By Vs 3)
BoBy |21 j=1

RSS (Bo.-By)

where ﬁ(/l) = (,30, ﬁl(/l), ey [3’,](/1)), p(-) is a penalty function and A is a vector of tuning
parameters. In Table || we summarize some very traditional shrinkage methods along with
their specific penalty functions.

Table 1: Penalty functions (3; are obtained in a previous first stage)

Method Penalty: p(Bi, ..., B, 1)

Ridge A B;

LASSO AZ5, 18]l

ENet Ap 33, Bl + (1 =p) T, 5]
adaLASSO AX, BB

adaENet Alp 39, BB + (1 = p) 29, B7]

WLadaLASSO 159, (Bile™") 715/
WLadaENet  A[p 24 (1Bsle™)"IBj + (1 - p) £°_, B2]

2.2. Weighted Lag Adaptive Elastic Net (WLadaENet)

We propose a method that we call Weighted Lag Adaptive Elastic Net (WLadaENet),
a combination between adaENet and WLadalLASSO, where the idea is similar to the adap-
tive Elastic Net, but penalizing further the coefficients of higher-lagged covariates in a time
series context. The penalization of WLadaENet is given by

q q
p() = ﬂ{pzd)ﬁlbjl +( —p)Zbﬁ} : @)

=1 =1
Here, the estimator is obtained as the solution of the following minimization problem:

q q
pYWVEadaENet — g min {RSS(bO, by + 4 [p Z wilbjl + (1 = p) Z b?}} s &)
=1

bo,....bq j=1



where w; = [(I/?jl) e“”f]#, if either OLS or Ridge are employed in the first stage. In
turn, if LASSO or ENet are employed, then &} = [(Iﬁjl + T‘l)e“”f]_T. Similarly to

WLadaLASSO, 7 > 0, @ > 0, /; represents the lag order and ﬁj, j=1,...,q, are the
coeflicient estimates of the first stage.

2.3. Ensemble Methods

Accordmg to Hastie et al. (2009)), ensemble learning consists in constructlng a predic-
tion method £, by combining the strengths of simple base estimators fhb, such that the
prediction rule is given by

B
Pron = Fux) = )" Afun(x), (©6)

b=1

where A, can be seen as a learning rate or a weight.

2.3.1. Complete Subset Regression (CSR)

Subset selection methods retain only a subset of the covariates, eliminating the others
from the model. Usually, least squares regression is employed to estimate the coefficients
of the retained covariates. [Elliott et al. (2013)) introduce the Complete Subset Regression
which, for a given set of potential covariates, combines forecasts from all possible linear
regressions with a fixed number of covariates. For a set of K covariates, or predictor
candidates, there are n; ¢ = K!/[(K — k)!k!] combinations of k < K variables. Elliott et al.
(2015) consider large-dimensional sets of potential predictors where CSR is unfeasible
and indicate a pre-testing procedure as a possible solution.

Consider the linear model y,,, = y'z, + 6w, + u,y, ,t =1,...,T, where z, is a Px1
vector of predictors which are always included in the forecast equation, and w; is a Kx1
vector of potential predictors. We follow |Garcia et al. (2017) and [Medeiros et al. (2019)
and use a pre-testing procedure where for each variable in w, we fit a linear regression of
vi+n by OLS and use the absolute values of the t-statistic to select the K < K most relevant

variables. The CSR forecast is given by
B
Sren = B! Z Byx = |B" ( ﬂZ}] X, (7
b=1 b=1

| ——
(ﬁCSR)T

M=

where B = nz = K!/[(K — k)!k!], x, = (zi,w;) and B, = 31,60, b = 1,..., B.



2.3.2. Component-Wise L, Boosting (L,Boost)

Boosting is a procedure that combines the outputs of many base or weak learners
iteratively in order to achieve high accuracy (Biihlmann and Yu, [2003};|Hastie et al., 2009).
According to Friedman (2002]) gradient boosting constructs additive regression models by
sequentially fitting a simple parameterized function (base learner) to current “pseudo”-
residuals by least-squares at each iteration, where the “pseudo” residuals are the gradient
of the loss functional being minimized, with respect to the model values at each training
data point, evaluated at the current step. The boosting technology builds an ensemble
model by conducting a regularized and supervised search in a high-dimensional space of
weak learners (Hastie et al., [2009).

Bithlmann and Yu| (2003) present a computationally simple variant of boosting algo-
rithms, L,Boost, which is constructed from a functional gradient descent algorithm em-
ploying the L,-loss function. For L,Boost method the loss function is given by L(y,, F(x) =
[yen — F(x,)]?/2 such that the gradient of L(.) is i+, = yun—F(x,), t=1,..,T—h. Based
on Biihlmann and Yu| (2003), and Bai and Ng| (2009) the Componentwise L,Boost algo-
rithm sequentially fits g simple linear models until a stopping rule is reached. The L,Boost
forecast is given by

)A’t+h = ﬁO +,81,B*xt,1 + ... +,8q,B*xt,q- (8)

In order to avoid overfit Bithlmann (2006) proposes a stopping rule using the corrected
AIC., criterion. For time series, |Bai and Ng (2009) use the BIC as a stopping rule.

2.3.3. Random Forest (RF)

Breiman| (2001) proposes the Random Forest to improve on the variance reduction ca-
pability of bagging predictors (Breiman, [1996) by reducing the correlation between the
trees. Regression trees partition the space of predictors into disjoint regions {R;}f_ . Ac-
cording to Hastie et al. (2009) a regression tree with K regions (terminal nodes or leaves)
can be formally defined by the equation

K
T(x:60) = ) By, (x), ©)
k=1

with parameters 60 = {Ry, ,Bk},f:] and where I, (.) is a product of indicator functions such

that I, (x,) indicates whether x; € Ry.
Minimizing the sum of squares, 5 is given by the average of those y,., in region R;

D Yisth PR € A\
k — — .
Z;T=1h Lék (x1)

(10)



The RF prediction is an ensemble of trees predictions, resulting in

B

Kb
Pron =Py =B [Z Bk,bﬂ,@k,h(x»] : (11)
k=1

b=1 L k=

Tp(x..0p)

2.3.4. Boosting Trees (B.Trees)
For boosting regression trees, Friedman (2001) considers the case where each base
learner is a K-terminal node regression tree. So the update at each iteration has the form

K
Fyx) = Fya () + 4 )" Bisly,, (%), (12)
k=1

where {I?k,b},’le are the regions defined by the terminal nodes of the tree at the b, iteration.
The trees are constructed to predict the pseudo-responses {ﬁHh,b}lT:‘lh by least squares. The
{Bry}k, are the corresponding least squares coefficients

. popins L, (X
b = T (13)
Zz:l I[fzkvb(xt)
The forecast of y,,, is given by
B [ K
Bron = FRT ) = Bo+ 1) [Z BT, (x»}, (14)
b=1 Lk=1

Tp(x0.0p)

where, forall b, K, = K =d+1and 1 € (0,1].

2.4. Factor Methods

The following methods avoid high-dimensional problems by using the common fac-
tors. We consider the following model:

wy =G+ e, (15)

where G, is the vector of common factors, 4; is a vector of loadings associated with G,
and ¢, ; is the idiosyncratic component of w, j, ¢t =1,...,T —hand j =1, ..., q.



2.4.1. Factors
Here, the h-period-ahead forecast, using data for = 1,...,T — h, is given by

Yi+h = YTZt + 5Té~’t + U (16)

where z, is a vector of predetermined variables, g, includes lags of g;, g, C G,, and G, are
the principal components estimates of the vector G, in the factor model. The key task in
factors based methods is the correct specification of the number of factors. In this work
we follow Medeiros et al.[(2019). The forecast can be written as

Veen = BlTalcxt ) (17)

where x, = (z;, 3,), z: includes lags of y,, g, include lags of 2, and B¢ = P rics 3§,C)T is
selected using the BIC from a coefficients set {8°X5(I): [ = 1,.., L} estimated by OLS for
each lag.

2.4.2. Boosting Factors

To select predictors from a large set of candidates, where they have no natural ordering,
Bai and Ng (2009) propose the use of boosting in factor-augmented autoregressions. The
boosting algorithm employed is the same presented earlier for the L,Boost method, where
the BIC value is used as a stopping rule to prevent overfliting. The forecast is given by

571+h — (ﬁLzBoast)Txt , (18)

where x, = (z,, 8,), z, includes lags of y;, g, include lags of g, and 352 is estimated
through L,Boost method.

3. Numerical Implementations

In order to evaluate the forecasting performance of the statistical methods presented
earlier, we carry out several numerical exercises, including Monte Carlo simulations and
an empirical data analysis. All implementations are performed using software R. For all
shrinkage methods we used the package glmnet. The RF method is implemented using
the package randomForestSRC and B.Trees using the package gbm. For the shrinkage
methods the parameters A and a € {0,0.5, 1, ..., 10}, whereas the order of WL methods are
selected according to the BIC. The parameter p of ENet and its adaptive versions is set to
1/2 (1/3 in glmnet function). For the adaptive methods we employ Ridge Regression in
the first stage to compute the weights w;. For the CSR method we fix K = 20 and k = 4,
following Medeiros et al. (2019) and using the first four lags of y, as fixed controls. The
method L,Boost employs the minimum BIC as the stopping rule, where we use 4 = 0.2
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and the maximum number of iterations B = 10g. For RF and B.Trees we use the number
of trees B = 500 and the minimum number of observations by leaf n,,;, = 15. The number
of splits of B.Trees is fixed at d = 2, while for the RF this parameter is not fixed. RF is
implemented employing non-overlapping blocks bootstrap where the block size is 4. In
the factor methods we use the first four Principal Components.

The parameters of the AR model are estimated by Ordinary Least Squares (OLS) and
the order p is determined by BIC. A set of AR models {AR(p) : p € {1,...,L} C N} is
estimated and the selected model is the one which has minimum BIC. For the empirical
applications the number of lags used is L = 4.

3.1. Metrics of Prediction Performance

Following (Garcia et al.| (2017) and Medeiros et al.[| (2019) in this work we employ a
direct forecast approach such that the / periods ahead response variable, y,,, is modeled as
a function of a set of predictors measured at up to time ¢, considering the following general
model:

Veen = Fp(x) +upyp, h=1,...,H, t=1,...,T, (19)

where y,,; is the dependent variable in period # + h and x, = (x4, ..., x,’q)T e XCRYisa
set of covariates which contains only variables observed and available at time ¢. F(.) is the
mapping between covariates and y,,;, and u,,; is the forecasting error. There is a different
mapping Fj,(.) for each forecasting horizon 4 and for each method. We use a fixed length
rolling-window scheme for all methods. Adopting a notation similar to Medeiros et al.
(2019)), the direct forecast equation is given by

Veeny = Fh,t—T,;”'H:t(xt), (20)

where F hi=T)+ 1t is the estimated target function based on data from time r—T," + 1 up to ¢
and 7}’ is the window size. The window size varies depending on the forecasting horizon
h and the number of lagged variables used in the method.

All methods are evaluated based on a fixed number Tpr = T — T of point forecasts.
For each forecast horizon 4 = 1, ..., H the methods are compared according the root mean
square error (RMSE) and the mean absolute error (MAE), which are defined as follows:

T T
RMSE = \|Tph > (@) and MAE =T Y i, 1)
t=To+1 t=To+1

where i = Yirn = Yrsn-
Besides, Superior Predictive Ability (Hansen, 2005 |Quaedvlieg, |2019) and Model
Confidence Set (Hansen et al.,|2011) are performed to choose the best methods.
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3.2. Monte Carlo Simulation

In this section we analyze and compare the performance of almost all the methods
presented before through a Monte Carlo simulation study. As our simulated data does not
have a factor structure we do not report results for factors methods in this section. We
perform Monte Carlo simulations with 1000 replications, simulating n = 10 independent
time series with an AR(1) structure:

X,,j = ¢.xt,j + 6[,j7 (22)

where ¢ =0.5and g ; ~ NITTD(0,1), j=1,...,n.
We consider three different data-generating processes (DGP).

DGPI: sparse model.

Vi = 0.8)1,_1 + 0.6Xt_1’1 + O.3Xt_2’1 - 0.5)6,_1’2 — 0.2)6,_2,2

23
+ 0.4)(,_1,3 + 0.3)@_2’3 + 0.4)61_1,4 - O.3xt_1,5 + 0.2)61_],6 +u, t=1,..T, 23)
where u; ~ N(0, 1) and all u, are mutually independent.
DGP2: dense linear model.
L L n
DGP2:y, = > arGi)+ ). > bej(xej)+w, t=1,..T, (24)
=1 =1 j=1

where a; = 0.8(=0.5)"", by; = (0.5 (=)', u, ~ N(0,1) and all u, are mutually
independent. In this case, for each value of L, we generate and analyse the simulated data
employing all lagged variables from 1 to L, thus all coefficients are nonzero.

DGP3: dense nonlinear model.

L n

L
DGP3: y, = > ar[g Ginaplh+ > > {buj|g (xiorjsby)|} + w1 =1,...T, 25)

=1 =1 j=1

where g(z;¢) = z/(1 + |c|z?). In terms of Taylor’s expansion g(z;c) = z — |c|® + |c|*2® —
lc]?z” + |c[*Z°..., such that the DGP3 is similar to the DGP2 plus a nonlinear part.

10



3.2.1. Variable and Model Selection
Restricted to linear models, for the first two DGP specifications we additionally report
in Table [2 some statistics related to model/variable selection.

Table 2: Simulation results: Descriptive statistics of models selection for DGP 1 and DGP 2

DGP 1: Sparse model DGP 2: Dense model
4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags

T 150 500 1000 150 500 1000 150 500 1000 150 500 1000

FVCI FVCI FVCI FVCI
Ridge 02273 02273 0.2273 0.0758 0.0758 0.0758 1.0000  1.0000  1.0000 1.0000 1.0000 1.0000
LASSO 0.8928 09342  0.9472 0.9490 0.9744 0.9790 04114 04625 0.8274 0.1643 0.1300 0.1323
ENet 0.7389  0.7740  0.7749 0.8746 0.9142 0.9176 0.4873  0.5516  0.9073 0.1932 0.1546 0.1535
adaLLASSO 0.9339 09771  0.9850 0.9575 0.9906 0.9946 03316 0.3567  0.5960 0.1392 0.1013 0.1131
adaENet 0.9225 09727  0.9825 0.9459 0.9887 0.9935 0.3469  0.3669  0.6058 0.1518 0.1044 0.1135
WLadaLASSO 09562  0.9900  0.9943 0.9680 0.9967 0.9981 0.2941  0.3874  0.5320 0.0851 0.1310 0.1674
‘WLadaENet 0.9566  0.9906  0.9952 0.9668 0.9968 0.9984 0.2904 0.3874  0.5334 0.0847 0.1317 0.1674
CSR 0.6230  0.6667  0.6763 0.8415 0.8563 0.8588 0.4545  0.4545  0.4545 0.1515 0.1515 0.1515
L,Boost 0.8329  0.8771  0.8867 0.8202 0.9015 0.9153 0.4938  0.5328  0.6928 0.3612 0.2578 0.2793

TMI TMI TMI TMI
Ridge 1.0000  1.0000  1.0000 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000 1.0000 1.0000 1.0000
LASSO 05922 0.9947  1.0000 0.2995 0.9757 1.0000 0.0000 0.0013  0.0714 0.0000 0.0000 0.0000
ENet 0.7800  0.9990  1.0000 0.4745 0.9907 1.0000 0.0000  0.0037  0.1518 0.0000 0.0000 0.0000
adaLLASSO 0.4075 09529  0.9990 0.0565 0.9153 0.9987 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000
adaENet 0.4397 09543  0.9990 0.0643 0.9278 0.9990 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000
WLadaLASSO  0.4243 09735  1.0000 0.0637 0.9717 1.0000 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000
WLadaENet 0.4563 09793  1.0000 0.0829 0.9786 1.0000 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000
CSR 0.0001  0.0012  0.0000 0.0000 0.0000 0.0000 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000
L,Boost 0.7574  0.9998  1.0000 0.6485 0.9988 1.0000 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000

FRVI FRVI FRVI FRVI
Ridge 1.0000  1.0000  1.0000 1.0000 1.0000 1.0000 1.0000  1.0000  1.0000 1.0000 1.0000 1.0000
LASSO 0.9451  0.9995  1.0000 0.8756 0.9975 1.0000 04114 04625 0.8274 0.1643 0.1300 0.1323
ENet 0.9766  0.9999  1.0000 0.9300 0.9991 1.0000 04873  0.5516  0.9073 0.1932 0.1546 0.1535
adaLASSO 09145 09952  0.9999 0.7698 0.9913 0.9999 03316 0.3567  0.5960 0.1392 0.1013 0.1131
adaENet 09246 0.9953  0.9999 0.7924 0.9927 0.9999 0.3469  0.3669  0.6058 0.1518 0.1044 0.1135

WLadaLASSO  0.9009  0.9973  1.0000 0.7007 0.9971 1.0000 0.2941  0.3874  0.5320 0.0851 0.1310 0.1674
WLadaENet 0.9070  0.9979  1.0000 0.7050 0.9978 1.0000 0.2904  0.3874  0.5334 0.0847 0.1317 0.1674

CSR 0.6705  0.7667  0.7878 0.4542 0.5516 0.5678 0.4545 04545 04545 0.1515 0.1515 0.1515
L,Boost 0.9728  1.0000  1.0000 0.9586 0.9999 1.0000 0.4938 0.5328  0.6928 0.3612 0.2578 0.2793
FIVE FIVE FIVE FIVE
Ridge 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 - - - - - -
LASSO 0.8775 09150 0.9317 0.9550 0.9725 0.9773 - - - - - -
ENet 0.6690  0.7075  0.7087 0.8700 0.9072 0.9108 - - - - - -
adalLASSO 09396 0.9717  0.9806 0.9728 0.9905 0.9942 - - - - - -
adaENet 0.9219 0.9661 0.9773 0.9585 0.9884 0.9930 - - - - - -

WLadaLASSO 09725 09878  0.9926 0.9899 0.9966 0.9979 - - - - - -
WLadaENet 09712 0.9884  0.9938 0.9883 0.9968 0.9982 - - - - - -

CSR 0.6090 0.6372  0.6435 0.8733 0.8813 0.8826 - - - - - -
L,Boost 0.7917  0.8410  0.8534 0.8089 0.8934 0.9084 - - - - - -
NIV NIV NIV NIV

Ridge 44.0000 44.0000 44.0000 132.0000 132.0000 132.0000 44.0000 44.0000 44.0000 132.0000 132.0000 132.0000
LASSO 13.6171 12.8855 12.3235 142468  13.3297 12.770 18.101  20.3482  36.4060 21.6831 17.162 17.4666
ENet 21.0193  19.944 19.9051 25.1581  21.3117  20.8805 21.4407 24.2682 39.9232 254983 20.4126  20.259
adaLASSO 11.1996 109134 10.6582 11.0108 11.0684  10.7089 14.5902 15.6959 26.2219 18.3707  13.3685  14.9258
adaENet 11.9012 11.1070 10.7692 12.9883  11.3414  10.8542 15.2643 16.1446 26.6532 20.0439  13.7855 14.985

WLadaLASSO  9.9441  10.3865 10.2527 8.2447 10.3812  10.2553 12,9418 17.0468 23.4098 11.2356 172919 22.1009
WLadaENet 10.0491 10.3726 10.212 84804  10.3736  10.2171 12.778  17.0455 23.4694 11.1768  17.3846  22.0988
CSR 20.0000 20.0000 20.0000 20.0000  20.0000  20.0000 20.0000 20.0000 20.0000 20.0000  20.0000  20.0000
L,Boost 16.8083 154067 14.9853 32,9025 23.0002  21.1782 21.728 23.4424 30.4811 47.6759  34.0347  36.8712

Note: statistics related to model/variable selection, where FVCI is the average fraction of variables correctly identified; TMI is the fraction of replications where the true model is
included; FRVI is the average fraction of relevant variables included; FIVE is the fraction of irrelevant variables excluded and NIV is the number of included variables. For each
specification, the value of statistic for the best performing method is highlighted in bold. Ridge Regression always select all variables and does not exclude any, while CSR always
selects K = 20 variables and excludes the remaining ones.
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Although the Ridge Regression is not a variable selection method, we included its
statistics as a reference (when all variables are selected) to compare to the performances
of other methods. For each method, sample size and lag order, we report: (1) the average
fraction of variables correctly identified (FVCI); (2) the fraction of replications where
the true model is included (TMI); (3) the average fraction of relevant variables included
(FRVI); (4) the average fraction of irrelevant variables excluded (FIVE) and (5) the average
number of included variables (NIV). While Ridge Regression, by construction, always
select all variables and does not exclude any, the CSR always selects K = 20 variables
and excludes the remaining ones. For each specification, the value of the best performing
method is highlighted in bold.

Considering DGP1, the adaptive methods, especially WLadaENet, have the best per-
formances for the statistics FVCI, FIVE and NIV. When we consider the statistics TMI and
FRYV, the methods ENet and L,Boost perform better than the other methods, while CSR
rarely includes the true model (TMI near or equal to zero). For DGP2, as all coefficients
are different from zero, the statistic FIVE is zero for all methods and for each specification.
For the TMI statistic (besides Ridge) only LASSO and ENet present values different from
zero but very small, only for L = 4 and 7 > 500. ENet, L,Boost (for 7 = 150 and 500)
and LASSO (for T = 1000) present the best performance in terms of the FVCI, FRVI and
NIV statistics when L = 4. For L = 12, L,Boost has the best performance (excluding
Ridge) for FVCI, FRVI and NIV.

3.2.2. Forecasting

In terms of forecasting, we consider the three DGP specifications. We remove the last
10 observations of each simulated time series data end employ the methods to perform
the one-step-ahead out-of-sample forecast for these observations using a rolling-window
scheme, where the window has size T — 10. We analyze situations where L € {4, 12} and
T € {150,500, 1000}.

Table |3| shows the results for the one-step-ahead forecasts. We report the mean values
of RMSE and MAE across replications, and indicate in bold the method with the lowest
forecasting error for each specification. The cells in gray/blue indicate that the method
is included in the 50% Model Confidence Set (MCS) using the squared/absolute error
as loss function. For DGP1 and DGP2 the methods with best performance in terms of
errors are WLadalLASSO and WLadaENet, except for DGP2 when L = 4 and T = 1000,
where ENet has the lowest errors and is the only method included in the MCS. As we
use all point forecasts of all replications and, consequently, this data is very informative,
we have at most three methods included in the MCS and one or two methods in most
cases. For DGP3, which is nonlinear, when we have four lags the methods RF, B.Trees
and L,Boost have the best performance for the smallest simulated sample, and are the
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only methods included in the MCS. For the moderate and the largest sample sizes, Ridge
has the lowest errors and is the only method in the MCS. Finally, for 12 lags, the model
becomes approximately sparse, then WLadalLASSO and WLadaENet present the lowest
errors, being the best performing methods.

Table 3: Simulation results: Forecasting accuracy for the DGP 1, 2 and 3

Mean of RMSEs DGP 1: Sparse model DGP 2: Dense model DGP 3: Nonlinear model
(Mean of MAEs) 4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags 4 candidate lags 12 candidate lags
T 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000 150 500 1000
RW 10000 1.0000  1.0000 10000 1.0000  1.0000 10000 1.0000  1.0000 10000 1.0000  1.0000 10000 1.0000  1.0000 10000 1.0000  1.0000
(1.0000) (1.0000) (1.0000)  (1.0000) (1.0000) (1.0000)  (1.0000) (1.0000) (1.0000)  (1.0000) (1.0000) (1.0000)  (1.0000) (1.0000) (1.0000)  (1.0000) (1.0000) (1.0000)
AR 09262 09175 09159 09260 09176  0.9159 09109 0.8983  0.8967 09172 09035 0.9027 07565 07525 0.7504 07558 07501 075
(0.9275) (0.9200) (0.9183)  (0.9282) (0.9199) (0.9183)  (0.9105) (0.8986) (0.8972)  (0.9205) (0.9074) (0.9061)  (0.7671) (0.7632) (0.7608)  (0.7695) (0.7634) (0.7636)
Ridge 07274 0.6486  0.6342 18334 07171 0.6655 06007 0523 05126 10237 05739 05338 07619 [70:6616 " 0:6479 07334 07266  0.6733
(0.7254) (0.6451) (0.6323)  (1.8488) (0.7189) (0.6652)  (0.5998) (0.5225) (0.5126)  (1.0286) (0.5722) (05337)  (0.7748)  (0.6723) (0.6588)  (0.7444) (0.7352) (0.684)
LASSO 06456 0.5912  0.5809 06990 06023  0.5855 05906 05302 0.4952 06521 05520  0.5331 07491 06887  0.6683 07494 0708 0679
(0.6443) (0.5914) (0.5809)  (0.6962) (0.6021) (0.5856)  (0.5883) (0.529) (0.4959)  (0.6513) (0.5539) (0.5339)  (0.759) (0.6984) (0.6782)  (0.7649) (0.7187) (0.6897)
ENet 06641 0.5989  0.5842 07572 06201  0.5954 05972 05282 [10:4921 06964 0.5637  0.5404 07553 06938  0.6697 07535 07193 0.6829
(0.6622) (0.5970) (0.5831)  (0.7530) (0.6182) (0.5942)  (0.5946) (0.5264) (0.4934)  (0.6947) (0.5655) (0.5413)  (0.7652) (0.7039) (0.6794)  (0.7691) (0.7313) (0.6937)
adaLASSO 06301 05836  0.5758 07115 0586 05762 05696 05229 0.5002 06342 05259 0.5159 07406 0.681  0.6626 07441 0.6866  0.6649
(0.6290) (0.5840) (0.5763)  (0.7099) (0.5869) (0.5766)  (0.5676) (0.5219) (0.5011)  (0.6328) (0.5269) (05169)  (0.7521) (0.6914) (0.6732)  (0.7592) (0.6963) (0.6753)
adaENet 06310 0.5842  0.5760 0728 05867  0.5764 05722 05235 0.5000 06482 05275 0.5167 07441 06811  0.6624 07449 0.6891  0.6664
(0.6297) (0.5844) (0.5765)  (0.7254) (0.5872) (0.5768)  (0.5699) (0.5223) (0.5006)  (0.6475) (0.5286) (05175)  (0.7552) (0.6912) (0.6726)  (0.7606) (0.6989) (0.6764)
WLadaLASSO | 0:6168 05799 05746 | | 0:6634 05805 05747 055548 055155 | 0.4966 05476 | 0.5093 [0:4905 07263 06700 06591 07241 [10:6662 " 0:6554
(0.6151) (0.5804) (0.5751)  (0.6635) (0.5806) (0.5754)  (0.5537) (0.5149) (0.4972)  (0.5469) (0.5102) (04907)  (0.7368) (0.6811) (0.6692)  (0.7366) (0.6748) (0.6654)
WLadaENet 06170 0.5804 [10:5746 0.6633 05806  0.5749 05546 05157  0.4969 05474 0.5088  0.4904 07258 0.6698  0.659 072 06663  0.6553
(0.6156) (0.5808) | (0.575) | (0.6632) (0.5806) (0.5754) | (0.5537) (0.5149) (0.4976)  (0.5469) (0.5097) (0.4906)  (0.7356) (0.6806) (0.6696)  (0.7326) (0.6749) (0.665)
CSR 13605 13028  1.2857 14464 13489  1.3245 09554 09366  0.9308 09750 09313 0.9259 07302 07233 07223 07367 07233 0.7207
(13633) (1.3082) (1.2897)  (1.4459) (1.3522) (1.3261)  (0.9583) (0.9379) (0.9323)  (0.9775) (0.9371) (0.9310)  (0.7405) (0.7331) (0.7323)  (0.7497) (0.736) (0.7332)
L,Boost 06265 05852 0.5772 06660 05909  0.5800 05762 05248 0.5057 06230 05331 05192 07202 0.6761  0.6621 07449 0.6818  0.6657
(0.6263) (0.5856) (0.5775) [(0:6658) (0.5921) (0.5805)  (0.5739) (0.5236) (0.5060)  (0.6227) (0.5342) (0.5205)  (0.7306) (0.6859) (0.6722)  (0.7558) (0.691) (0.6758)
RF 13050 10176 09151 13858 10666  0.9561 09367  0.8420  0.8008 09805 0.8739  0.8303 0719 0691 06776 07322 0706  0.6918
(1.2686) (0.9999) (0.9039)  (1.3495) (1.0495) (0.9450)  (0.9349) (0.8382) (0.7974)  (0.9823) (0.8755) (0.8315)  (0.7295) (0.7014) (0.6874)  (0.7452) (0.7179) (0.7028)
B.Trees 14524 10613 0.9660 16040 10661  0.9676 09410 0.8390  0.8177 10001 0.8353  0.8110 07194 0687 0675 07327 0.6957  0.6769

(1.4109) (1.0401) (0.9504)  (1.5656) (1.0446) (0.9518)  (0.9400) (0.8354) (0.8140)  (1.0004) (0.8357) (0.8121) | (0.7292) (0.6984) (0.685)  (0.7476) (0.7075) (0.6878)

Note: The table shows the means of root mean squared errors (RMSE) and means of mean absolute errors (MAE) in parenthesis for the forecasts across replications, relative to the
Random Walk (RW). The values in bold indicate the method with lowest values of RMSE and MAE for each horizon. Cells in gray/blue indicate that the method is included in the
50% MCS constructed based on the Ty, statistic using the squared (or absolute) errors.

3.3. Empirical Analysis: U.S. Inflation

In this section we employ all statistical methods seen previously to forecast U.S. in-
flation. We use the variables from the FRED-MD|I| database compiled by McCracken and
Ng (2016)), performing forecasts for the Consumer Price Index (CPI) in log change. The
dataset span ranges from January 1960 to December 2018, having 708 monthly observa-
tions and 122 variables classified in 8 groups as seen in Table [4]

Our in-sample period spans from January 1960 to December 2012, leading to an in-
sample size of 636 observations, with g = 488 covariates (considering 122 variables and 4
lags for each). Therefore, we have 72 out-of-sample observations to evaluate our forecasts,
from January 2013 to December 2018 (see Table [5). Furthermore, Figure [T| presents the
time series plot of U.S. inflation, where the red interval indicates the period for which we
perform the forecasts.

'The FRED-MD is a large database containing monthly observations of macroeconomic variables, de-
signed for the analysis of big data and is updated in real-time thorough the FRED database. The FRED-MD
is available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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Table 4: Variable Groups Summary

Description Number of variables
Group 1  Output and income 16
Group 2 Labor market 31
Group 3 Housing 10
Group 4 Consumption, orders, and inventories 7
Group 5 Money and credit 13
Group 6 Interest and exchange rates 21
Group 7 Prices 20
Group 8 Stock market 4
Table 5: Empirical application summary
Variables Lags q In-sample Sample size  Out-of-Sample  Point forecasts
CPI U.S. large sample 122 4 488 Jan 1960-Dec 2012 636 Jan 2013-Dec 2018 72

In Table [6] we report the results for the inflation forecast accuracy, all relative to the
Random Walk (RW). This table shows the root mean squared error (RMSE) and the mean
absolute error (MAE) for all forecasting methods. These forecast accuracy measures are
displayed for horizons from 1 to 12 months ahead as well as for the cumulative inflation
for 3, 6 and 12 months ahead. The gray/blue cells indicate that the method is included in
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the 50% Model Confidence Set (MCS) using the squared (or absolute in brackets) error
as loss function. As it can be seen, the RW, AR and Ridge are almost never included in
the MCS. On the opposite side, L,Boost is the only method that is always in the MCS.
Our proposal, WLadaENet, comes second in that respect, only not being in the MCS for
horizon 6 under the RMSE loss.

Table 6: Forecasting Accuracy for Predicting U.S. Inflation from 2013 to 2018: RMSE, MAE and MCS

Consumer price index (U.S.) 2013-2018
Forecast horizon

RMSE/(MAE) 1 2 3 4 5 6 7 8 9 10 11 12 3m  6m I2m
RW 100 100 100 100 100 100 100 100 100 100 100 100 100 1.00 [ 1.00
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)  (1.00)
AR 087 079 081 08 08 078 072 073 075 084 087 078 090 097 143
0.92) (0.81) (0.82) (0.85) (0.89) (0.75) (0.66) (0.67) (0.72) (0.81) (0.78) [(0:68) (0.94) (0.95) (1.38)
Ridge 096 091 083 096 098 085 087 092 095 108 103 089 [085 082 12I
(1.00) (0.89) (0.84) (0.96) (1.03) (0.87) (0.83) (0.89) (0.96) (1.11) (0.98) (0.81) (0.87) (0.84) (1.28)
LASSO 078 076 075 081 079 071 065 067 069 077 073 074 079 080 1.08
(0.80) (0.76) (0.70) (0.78) (0.79) (0.67) (0.59) (0.61) (0.65) (0.71) (0.66) (0.66) (0.80) (0.75) (1.02)
ENet 079 076 076 080 083 070 065 067 070 078 075 074 081 082 1.12
(0.81) (0.77) (0.72) (0.77) (0.80) (0.66) (0.59) (0.61) (0.65) (0.73) (0.68) (0.64) (0.83) (0.77) (1.04)
adaLASSO 080 072 075 079 080 072 068 069 071 076 072 071 077 076 1.00
(0.80) | (0.73) (0.71) (0.75) (0.78) (0.68) (0.62) (0.62) (0.67) (0.73) (0.66) (0.67) (0.75) (0.69) (0.91)
adaENet 079 073 075 079 080 073 067 069 068 075 072 070 078 078 101

0.79) (0.73) (0.71) (0.75) (0.79) (0.70) (0.61) (0.62) (0.64) (0.72) (0.65) (0.66) (0.77) (0.72) (0.94)
WLadaLASSO | 0.74 074 072 078 078 072 [064° 069 068 076 071 070 076 075 096
0.73) (0.74) (0.69) (0.73) (0.76) (0.68) (0.59) (0.62) (0.64) (0.73) (0.66) (0.66) (0.75) (0.68) (0.90)
WLadaENet 074 074 075 075 079 073 064 069 067 074 071 068 078 075 096
0.74) (0.76) (0.72) (0.71) (0.76) (0.69) (0.56) (0.60) (0.63) (0.71) (0.64) (0.63) (0.78) (0.68) (0.90)

CSR 080 073 074 077 077 069 066 067 067 073 073 070 077 075 1.00
(0.84) (0.74) (0.70) (0.76) (0.78) (0.67) (0.62) (0.64) (0.64) (0.70) (0.68) (0.63) (0.78) (0.70) (0.94)
L,Boost 078 073 072 079 074 067 062 064 067 075 074 072 073 070 093
0.77) (0.72) (0.68) (0.75) (0.72) (0.64) (0.56) (0.61) (0.65) (0.73) (0.69) (0.65) (0.72) (0.64) (0.87)
RF 078 073 073 078 077 069 064 067 069 076 075 071 078 077 1.02
(0.81) (0.73) (0.69) (0.73) (0.76) (0.64) (0.56) (0.60) (0.63) (0.70) (0.68) (0.62) (0.78) (0.70) (0.91)
B.Trees 081 075 076 078 077 068 064 069 070 078 078 073 084 081 1.13
(0.86) (0.73) (0.72) (0.74) (0.76) (0.63) (0.58) (0.60) (0.61) (0.71) (0.69) (0.63) (0.85) (0.76) (1.05)
Factors 083 080 080 |08 077 073 071 070 071 076 075 073 086 090 123
(0.86) (0.81) (0.78) (0.81) (0.78) (0.70) (0.67) (0.65) (0.67)  (0.71) (0.68) (0.65) (0.87) (0.85) (1.21)
B.Factors 081 076 076 081 080 073 068 070 071 078 077 | 073 082 085 1.19
(0.85) (0.77) (0.76) (0.81) (0.82) (0.70) (0.61) (0.64) (0.67) (0.72) (0.68) (0.64) (0.83) (0.82) (1.15)
Mean 077 073 073 077 076 070 065 066 068 075 073 068 077 075 095
(0.78) (0.73) (0.70) (0.73) (0.76) (0.67) (0.59) (0.62) (0.65) (0.71) (0.67) (0.62) (0.77) (0.69) (0.87)
Median 078 073 074 078 077 070 065 067 068 075 072 070 077 076 1.00

0.79) (0.73) (0.70) (0.75) (0.77) (0.67) (0.59) (0.61) (0.64) (0.70) (0.65) (0.62) (0.77) (0.71) (0.93)

Note: The table shows the root mean squared errors (RMSE) and mean absolute errors (MAE) in parenthesis for the forecasts, relative to the Random Walk (RW). The values in
bold indicate the method with lowest values of RMSE and MAE for each horizon. Cells in gray/blue indicate that the method is included in the 50% MCS constructed based on the
Tmax statistic using the squared/absolute errors.

We also apply the Superior Predictive Analysis (SPA) tests of i) [Hansen| (2005) to
compare the forecasting methods for each forecasting horizon (plus the cumulative ones)
and 1i1) Quaedvlieg (2019)) for the Uniform and Average Multi-Horizon SPA versions.
Table [/| reports on its left-hand-side the p-values of Hansen (2005)) SPA test using each
method as benchmark for each forecasting horizon. Quaedvlieg (2019) SPA test p-values,
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for both Uniform and Average Multi-Horizon versions are reported on the right-hand-side
of this table, having only RW and AR as benchmarks. Panel (a) presents the p-values for
the test using RMSE and Panel (b) using MAE. The null hypothesis for both single and
multi-horizon is that the benchmark method is not inferior. The gray cells indicate that the
null hypothesis is rejected at the 0.05 significance level. For the single-horizon SPA test
the methods LASSO, ENet, adalLASSO, adaENet, WLadalLASSO, WLadaENet, L,Boost,
RF and B.Trees are statistically not inferior to the others for all forecasting horizons. The
multi-horizon tests show that RW is not uniformly inferior to the Ridge, while AR is also
not uniformly inferior to Ridge and Factors model and is not on average inferior to Ridge.

Table 7: Superior Predictive Ability Test (U.S. Inflation, 2013-2018)

Panel (a): Squared errors

Hansen'‘s test — Forecasting horizon Quaedvlieg's test
Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)
RW 0.012 0.017 0.008 0.059 0.062 0.005 0.003 0.003 0.001 0.013 0.004 0.004 0.046 0.020 0.723 - - 0.930 0.992
AR 0.042  0.105 0.089 0.222 0.224 0.072 0.199 0.286 0.296 [0.046 0.087 0.232 0.080 | 0.020 0.055 0.000 0.008 - -
Ridge 0.005 0.049 0.044 0.069 0.027 0.004 0.020 0.024 0.017 0.002 0.004 0.068 0.253 0.320 0.245 0.292 0.045 0.879 0.969
LASSO 0290 0414 0509 0.379 0425 0.160 0.167 0.271 0.528 0.240 0.642 0.376 0.496 0.261 0.298 0.000 0.003 0.000 0.005
ENet 0.185 0.325 0341 0429 0336 0.313 0235 0.394 0376 0.193 0311 0.373 0370 0.272 0.271 0.000 0.003 0.000 0.007
adaLASSO 0226 0971 0.466 0499 0.450 0.055 0.151 0.122 0212 0480 0.757 0.536 0.542 0.334 0.646 0.000 0.001 0.000 0.011
adaENet 0.221 0.889 0.437 0492 0433 0.043 0.163 0.138 0.837 0.640 0910 0.712 0.450 0.278 0.418 0.000 0.004 0.000 0.010
WLadaLASSO 0928 0.745 0.876 0.395 0.388 0.078 0.518 0.115 0.779 0493 0.888 0.674 0.735 0.551 0.760 0.000 0.000 0.000 0.009
‘WLadaENet 0.806 0.649 0.457 0.931 0.529 0.053 0.523 0.179 0.988 0.786 0.945 0.890 0.556 0.512 0.759 0.000 0.003 0.000 0.005
CSR 0.134 0918 0.486 0.558 0.608 0.451 0272 0474 0907 0.990 0.610 0.746 0.466 0.446 0.722 0.000 0.003 0.000 0.009
L,Boost 0341 0.861 0.844 0.328 0943 0.820 0.948 0.938 0.751 0.550 0.453 0471 0.964 0.985 0.972 0.000 0.000 0.000 0.012
RF 0322 0.801 0.756 0.503 0.511 0439 0.640 0.329 0.640 0461 0.343 0.555 0.437 0.371 0.392 0.000 0.002 0.000 0.008
B.Trees 0.143 0429 0345 0.538 0.442 0.634 0.404 0.171 0376 0.201 0.144 0456 0317 0.316 0.256 0.000 0.001 0.000 0.005
Factors 0.083 0.119 0.110 0.122 0.428 0.081 [0.045 0.081 0.187 0414 0378 0439 0.181 0.051 0.099 0.000 0.002 0.136 0.009
B.Factors 0.122 0.370 0342 0.102 0.157 [ 0.023 0.053 0.079 0.188 0.245 0.143 0420 0.184 0.100 0.153 0.000 0.002 0.000 0.004
Mean 0331 0903 0.834 0.539 0.651 0.192 0230 0414 0.882 0.820 0.595 0.999 0.582 0414 0.613 0.000 0.002 0.000 0.004
Median 0372 0.963 0.587 0.388 0.355 0.163 0299 0.268 0.828 0.721 0.872 0.831 0.491 0.308 0.442 0.000 0.004 0.000 0.005
Panel (b): Absolute errors
Hansen’s test — Forecasting horizon Quaedvlieg’s test

Benchmark 1 2 3 4 5 6 7 8 9 10 11 12 3m 6m 12m Unif.(RW) Avg.(RW) Unif.(AR) Avg.(AR)
RW 0.002 0.007 0.002 0.011 0.024 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.024 0.004 0.534 - - 0.941 0.994
AR 0.022  0.142 [0.035 0.134 0.080 0.064 0.154 0.300 0.038 0.077 0.110 0.354 |0.025 0.013 0.045 0.000 0.005 - -
Ridge 0.006 0.060 0.029 0.013 0.004 0.006 0.006 0.024 0.004 0.002 0.002 0.040 0.161 0.119 0.112 0.395 0.037 0.848 0.966
LASSO 0.181 0434 0516 0.087 0.146 0.203 0.340 0.846 0.390 0.782 0.722 0474 0295 0.225 0.346 0.000 0.001 0.000 0.007
ENet 0.079 0493 0.449 0.262 0316 0455 0328 0.864 0316 0.590 0362 0.594 0270 0.188 0.320 0.000 0.000 0.000 0.002
adaLASSO 0.170 0.863 0.505 0.429 0.180 0.107 0.100 0.538 0.160 0.585 0.634 0.294 0.674 0.542 0.798 0.000 0.001 0.004 0.014
adaENet 0207 0.819 0.418 0442 0.132 0.065 0.135 0.671 0516 0.736 0.823 0.384 0.572 0.331 0.677 0.000 0.004 0.002 0.008
WLadaLASSO 0.920 0.742 0.712 0.781 0.452 0.150 0.249 0.522 0.496 0.586 0.679 0355 0.765 0.696 0.894 0.000 0.002 0.004 0.007
‘WLadaENet 0.700 0.540 0.328 0.945 0.406 0.146 0.718 0.846 0.655 0.849 0991 0.722 0.481 0.654 0.874 0.000 0.001 0.000 0.012
CSR 0.025 0.877 0.621 0.345 0.192 0.276 0.061 0.398 0.485 0.882 0.375 0.846 0.399 0.462 0.731 0.000 0.002 0.000 0.010
L,Boost 0.422 0918 0.893 0.531 0.982 0.692 0.744 0.687 0.351 0474 0.331 0437 0957 0.937 0811 0.000 0.002 0.008 0.018
RF 0.145 0.812 0.807 0.641 0.515 0.705 0.860 0.920 0.747 0.903 0.389 0.944 0.512 0.494 0.637 0.000 0.005 0.000 0.007
B.Trees 0.119 0.755 0349 0.529 0.500 0.819 0.497 0.833 0.927 0.705 0275 0.812 0221 0.225 0316 0.000 0.006 0.000 0.002
Factors 0.083 0.179 0.091 | 0.048 0.277 0.130 0.127 0.178 0.181 0.726 0.352 0.614 0.082 | 0.034 0.088 0.000 0.003 0.102 0.012
B.Factors 0.038 0.386 0.192 | 0.036 0.017 0.033 0.076 0.309 0.161 0.588 0.319 0.683 0.186 0.082 0.141 0.000 0.000 0.000 0.006
Mean 0.167 0962 0.674 0.851 0.522 0.298 0224 0.797 0281 0.891 0.601 0.998 0.576 0.547 0.974 0.000 0.003 0.000 0.009
Median 0.129 0944 0.653 0450 0297 0.251 0299 0.939 0521 0.996 0911 0.995 0527 0.387 0.747 0.000 0.000 0.000 0.009

Note: The table reports the p-values of[Hansen|(2005) SPA test on the left using each method as benchmark for each forecasting horizon. The p-values of the uniform and average
multi-horizon|Quaedvlieg| (2019) SPA tests are also reported (right) using RW and AR as benchmarks. Panel (a) uses RMSE whereas Panel (b) uses MAE. The null hypothesis is
that the benchmark method is not inferior. The gray cells indicate that the null hypothesis is rejected at the 0.05 significance level.

Figure 2] inspired by Medeiros et al.| (2019), shows the plots of the variables relative
importance (aggregated by variable groups) for all twelve forecasting horizons and for all
methods, except the univariate and factors based methods.

Similarly to Medeiros et al.| (2019)), for methods based on the linear model (shrinkage
methods, CSR and L,Boost) the relative importance is computed as the average coefficient
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Figure 2: Variable importance for U.S. CPI
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size. All variables are standardized as zero mean and unity variance. For RF the Out-of-
Bag (OOB) samples are used to compute the variable importance, while for B.Trees all
samples are employed. The OOB samples are the observations which are not selected in
the bootstrap sample process, for each b = 1, ..., B. The samples are passed down the by,
tree when it is grown and the accuracy is recorded, then the values for the variable j are
permuted at random, and the accuracy is computed once more. Hence, the decrease in
accuracy is averaged over all trees and is used as a measure of the importance of variable
Jj in the forest |[Hastie et al. (2009). AR terms (autorregressive, or past inflation) are very
relevant for CSR. Prices (Group 7) are, in general, quite relevant for all methods. Interest
and exchange rates (Group 6) also play an important role, especially for RF and B.Trees.

Finally, Figure [3]illustrates the forecasts for horizons 1 and 12 of the methods that had
good performances in our analysis.

4. Concluding Remarks

Our two-fold study aims i) studying a variety of machine learning methods capable
of performing time series forecasting and ii) proposing a new method, which we name
WLadaENet, tailored for time series analysis. In order to evaluate the forecasting perfor-
mances of these methods we carry out several numerical exercises, including Monte Carlo
simulations and an empirical data analysis of the U.S.inflation.

Through our Monte Carlo implementation, we simulate three different data-generating
process, trying to explore different levels of sparsity and different degrees of nonlinearities
in the model. WLadaLASSO and WLadaENet (our new proposal) have the best perfor-
mance in terms of variable selection and forecast in most cases, even when nonlinearities
are present.

For the U.S. inflation forecasts, the more modern ML methods have statistically su-
perior relative performances against the simpler RW and AR benchmarks. Overall, con-
sidering all forecast horizons L,Boost has the best performance followed closely by our
proposal, the WLadaENet.
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Figure 3: U.S. CPI time series forecasts
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