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Multivariate Risk Analyzes in
Cryptocurrency Market: An Optimal
Transport Theory Approach
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Abstract This study investigates the cryptocurrency market using novel multivariate
risk measures based on optimal transport theory to estimate Vectors-at-Risk and Conditional-
Vectors-at-Risk (Expected Shortfall). We compare the results obtained from this method
with those from commonly used univariate methods for estimating Value-at-Risk and
Conditional Value-at-Risk (Expected Shortfall), considering factors such as magnitude,
computational time, and backtesting results. Our findings reveal that while the estimates
derived from this novel approach entail significantly higher computational costs, they
incorporate the correlation structure of risks among assets and and are more conserva-
tive than the usual tail risk estimation methods.
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1. Introduction

Cryptocurrencies have received greater attention from investors, regula-
tors, and policymakers in recent times, with market capitalization reaching
USD 2.23 trillion on 2022/01/05 (Akhtaruzzaman et al., 2022). There are sev-
eral reasons for this growth. Firstly, the utilization of decentralized blockchain
networks eliminates the necessity for intermediaries such as banks or financial
institutions. Additionally, cryptocurrency markets operate around the clock,
enabling accessibility to anyone with an internet connection. Furthermore,
cryptocurrencies present diversification opportunities for investors seeking to
hedge against traditional financial assets such as stocks and bonds. Moreover,
the increase in regulatory clarity and institutional adoption has bestowed le-
gitimacy upon the cryptocurrency market.

Cryptocurrency markets are also known for their high volatility, which
can lead to abrupt price fluctuations (Chaim and Laurini, 2018). This volatil-
ity, combined with media hype and speculation, fosters an environment con-
ducive to trading activities, attracting traders in pursuit of short-term gains.
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Nonetheless, the risk tied to cryptocurrencies is heightened by their excep-
tionally volatile characteristics. In particular, within the framework of a cryp-
tocurrency portfolio, gauging joint risk becomes indispensable (Borri, 2019).

Bercu et al. (2023) argues that univariate measures of risk fail to capture
the correlation structure between components of a random vector. Therefore,
a multivariate measure becomes necessary. Bercu et al. (2023) emphasizes
that vector-valued risk measures are robust candidates for capturing all infor-
mation on the tails of the distribution, including direction and spread. Both
Galichon (2017) and Bercu et al. (2023) draw attention to several studies
that aim to provide generalizations for the multivariate case (Cai et al., 2022;
Cousin and Di Bernardino, 2014, 2013; Heffernan and Tawn, 2004; Prékopa,
2012; Torres et al., 2015).

However, as highlighted by Bercu et al. (2023), none of these measures
delve into the properties of optimal transport theory, particularly the charac-
teristics of Monge-Kantorovich quantiles. These quantiles do not necessitate
any assumptions regarding the distribution’s tail or statistical model. This gap
exists due to the adaptability of Monge-Kantorovich quantiles in adjusting
the distribution’s shape.

Tail risk measures are typically characterized in terms of the extreme
quantiles of the distribution. However, the main limitation of these concepts
is due to the fact that they are hard to be extended when d ⩾ 2, in other words,
in the multivariate case. Hallin et al. (2021) point that the empirical versions
(empirical quantiles and ranks) of multivariate distributions are fundamental
in statistical inference, and any multivariate extension that does not enjoy, in
dimension d ⩾ 2, the properties that dimension d = 1 offers, is not a desirable
statistical extension.

As discussed by Del Barrio et al. (2019), this issue is longstanding, and
numerous studies have attempted to define multivariate versions of distribu-
tion and quantile functions using classical rank- and quantile-based inference
techniques. Some studies investigate the concept of data depth, as seen in
works such as Liu (1990), Oja (1983), and Zuo (2003). A geometric approach
is analyzed in Chaudhuri (1996), Hallin et al. (2010), and Koltchinskii (1997).
Nevertheless, these new definitions do not offer the useful properties of uni-
variate ranks and univariate quantiles. One problem, emphasized by Ghosal
and Sen (2022), is that these notions can lead to values outside the support of
the distribution.

However, Ghosal and Sen (2022) point out that the optimal transport the-
ory can extend the univariate properties of quantiles and ranks to the multi-
variate case. The main objective of optimal transport theory/Monge´s prob-
lem is to find a mensurable transport map T ≡ Tµ;ν : S → Y that solves
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a constrained minimization problem. Based on the theory of optimal trans-
port, the concepts of center-out multivariate ranks and signs were introduced
in Hallin et al. (2021). Hallin et al. (2023) argues that center-out ranks and
signs have, when the dimension is d > 1, the same properties as traditional
univariate ranks, case where d = 1 and, moreover, are distribution-free.

Bosc and Galichon (2014) describe a generalized methodology of extreme
multivariate dependence between two random sets which is based on the ex-
tremality of the cross-covariance matrix. This measure has applications in risk
management, and Bosc and Galichon (2014) also build a stress-test based on
this measure. Ekeland et al. (2012) proposes a multivariate extension of the
notion of comonotonicity involving simultaneous optimal rearrangements be-
tween two vectors of risk. Extending these ideas to the cases of vector-valued
Y , with values in Rd , Carlier et al. (2016) propose a conditional vector quan-
tile function and also a vector quantile regression, which embeds the classical
Monge-Kantorovich optimal transportation problem at its core as a special
case.

Bercu et al. (2023) explore the probability tails related to high values of
each component, which is located in the center-outward quantiles and su-
perquantiles. Once we have the center-outward contours, Bercu et al. (2023)
shows that the Vector-at-Risk and Conditional-Vector-at-Risk (as know as Ex-
pected Shortfall, Superquantile or even Expected Tail Loss) of order α , which
can be define as, respectively, the most extreme risk and the average risk be-
yond this most extreme risk, can be calculated. In this way, Bercu et al. (2023)
calculates multivariate probability tails using superquantiles to complement
the information obtained with quantiles. Rockafellar and Royset, 2013) point
out that superquantiles, unlike conventional quantiles, have properties of co-
herence and regularity, which makes the superquantile an adequate scalar rep-
resentation of a random variable in a risk market.

As pointed out by de Valk and Segers (2018b), the study of tail regions
of probability distributions has important applications in financial markets.
In this vein, we implement the methodology proposed by Bercu et al. (2023)
in the cryptocurrency market, to analyze the multivariate tail risk among the
larger cryptocurrencies in terms of market capitalization (data from coinma
rketcap.com): BTC, ETH, BNB, XRP.

This study has two main motivations. The first one is about the potential
applications of optimal transport methods in financial markets, mainly in risk
management measures, as indicated by Hallin et al. (2021). The second one,
more specifically, is to analyze how this method performs in a market that has
really extreme risks and returns, the cryptocurrency markets.

Tail risk modeling in cryptocurrencies is made difficult by the specific
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characteristics of this market. Volatility is much higher than in traditional
markets such as stocks, which can be explained by the presence of discontin-
uous price variations, linked to occurrences of jumps in the mean and variance
(Chaim and Laurini, 2019a,b). This market is also characterized by the pres-
ence of dependency structures in skewness and kurtosis, which makes it quite
difficult to choose an appropriate distribution for parametric modeling of tail
risk, as discussed in Vieira and Laurini (2023). Also, there is evidence of
non-linear patterns of dependence on tail events in the cryptocurrency market
(Naeem et al., 2020; Jlassi et al., 2023; Mensi et al., 2023).

Therefore, our approach to calculating risk measures derived from the Op-
timal Transport theory analyzes whether the more robust and adaptable nature
of this method is capable of representing these stylized facts of the cryptocur-
rency market. The use of measures such as Vectors-at-Risk and Conditional
Vectors-at-Risk built using tail event representations derived from Optimal
Transport theory can be a relevant addition to risk estimation and manage-
ment tools in this market.

We also compare the results obtained by Optimal Coupling model with
other methods used in the estimation of static tail risk measures, such as
Monte Carlo simulation, Historical Simulation and Variance-Covariance method,
which are the most used methods after the 2009 financial crisis as pointed by
Shayya et al. (2023). We compare these methods in sample and by means of
backtesting procedures.

This paper is structured as follows. Section 2 presents the methodology to
be estimated, Section 3 describes the data set, Section 4 presents and discusses
our main results. Section 5 concludes.

2. Methodology

As risk measures derived from optimal transport theory are not yet in
common use in risk management, we review in this section the fundamental
concepts of this methodology. Denote X as an integrable absolutely contin-
uous random variable with cumulative distribution function F . The quantile
function (e.g., Koenker, 2005) is

Q(α) = F−1 = inf{x : F(x)⩾ α}, (1)

where α is the quantile for 0 < α < 1. Note that the best-known risk measure,
Value-at-Risk, is the quantile of the distribution.As pointed out by Rockafel-
lar et al. (2014), the conventional quantile is a problematic risk measure in a
coherence sense and also does not have the sub-additive property (Embrechts,
2000). In other words, it is possible for a quantile of the sum of two random
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variables to exceed the sum of the quantiles of each individual random vari-
able at the same probability level. This observation, as noted by Rockafellar
et al. (2014), challenges the conventional understanding of risk, which gener-
ally emphasizes diversification in portfolio management.

Acerbi and Tasche (2002) point out that the Expected Shortfall and Su-
perquantiles complement the information obtained with conventional quan-
tiles. The Superquantile S(α) and Expected Shortfall E(α) functions are de-
fined by Bercu et al. (2023) in the following manner

S(α) = E[X |X ⩾ Q(α)] =
E[X1X⩾Q(α)]

P(X ⩾ Q(α))
=

1
1−α

E[X1X⩾Q(α)], (2)

E(α) = E[X |X ⩽ Q(α)] =
E[X1X⩽Q(α)]

P(X ⩽ Q(α))
=

1
α
E[X1X⩽Q(α)]. (3)

Bercu et al. (2023) point for the fact that S(α) and E(α) focus, respec-
tively, on the upper tail and the lower tail of the distribution of X . It is impor-
tant to note that superquantile can be seen as an alternative for Conditional
Value-at-Risk or even the Expected Shortfall (Rockafellar and Royset, 2018;
Acerbi and Tasche, 2002; Rockafellar and Royset, 2013; Bercu et al., 2023;
Rockafellar et al., 2014).

Another point about superquantiles is that they can be easily implemented
in stochastic optimization models and, under parametric perturbations, the
superquantile of a random variable is more stable than its respective quan-
tile (Rockafellar and Royset, 2013; Rockafellar et al., 2014). This occurs due
the fact that superquantiles of a random variable X are define as the integral
of the corresponding quantiles with respect to the probability level, i.e., the
averages of the quantile measures. Furthermore, as highlighted by Rockafel-
lar and Royset (2013), superquantiles have two properties that conventional
quantiles do not offer: coherency and regularity. With these two properties,
superquantiles can be seen as a suitable scalar representation of a random
variable in a risk market.

2.1 Value-at-Risk

Given a confidence level α and a specified time horizon the Value at Risk
of an investment portfolio is the loss that the portfolio is expected to incur
over that time horizon with a probability equal to or less than the chosen
confidence level. This measure can be computed as the α-quantile of its return
distribution in period t
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Pr(ri
t ⩽VaRi

α,t) = α, (4)

where ri
t denotes the returns of asset i at period t.

2.2 Optimal coupling

Let X and Y be, respectively, two closed subsets of Rd and Rd′ . Con-
sider two probability distributions P and Q with support in X and Y , re-
spectively. Galichon (2017) defines the coupling between P and Q as a joint
probability distribution π on X ×Y with marginal distributions P and Q.
This means that if (X ,Y ) is a random vector with probability distribution π ,
then its projections X and Y on X and Y should be random vectors with
respective probability distributions P and Q. We denote the set of couplings
as

M (P,Q) = {π : (X ,Y )∼ π implies X ∼ P and Y ∼ Q}.

In the case of X =Y = [0,1] and P=Q=U ([0,1]), M (P,Q) coincides
with the set of copulas. Hence, optimal coupling method can be seen as a geral
case of copulas which is beyond the univariate case. More details on optimal
coupling methods can be found in Galichon (2018).

2.3 Monge-Kantorovich quantiles

As the definition of superquantile and expected shortfall depends on quan-
tile Q(α), Bercu et al. (2023) point out that the Monge-Kantorovich quantile
function has properties that can help define associated superquantile and ex-
pected shortfall functions.

Bercu et al. (2023) shows that the probability measure ν ∈ P(Rd) is the
push-forward of µ ∈ P(Rd) by T : Rd → Rd , denoted by T#µ = ν , where
P(Rd) is the set of all integrable probability measures on Rd , and ν is the
target distribution and, as outlined by Ghosal and Sen (2022), can be seen as
the population distribution of our observed data.

Hallin et al. (2021) describe that the Monge-Kantorovich quantile func-
tion of a multivariate distribution ν , with respect to a reference distribution
µ , is a push-forward map Q#µ = ν and, also, there is a convex potential
ψ : Rd → R that satisfies ▽ψ = Q µ-almost everywhere.

According to the McCann (1995) theorem, if µ is absolutely continuous,
then a map Q exists and is unique. Also, if µ and ν have finite moments of
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order two, by the Brenier (1991) theorem, Q is the solution of the Monge
optimal transport problem as follows

Q = arg min
T :T#µ=ν

∫
X

||u−T (u)||2dµ(u), (5)

where u ∈ B(0,1)\{0}. Following Bercu et al. (2023), the uniform spherical
distribution is chosen for µ , denoted by µ =Ud . This distribution is given by
the product RΦ between two independent random variables R and Φ, which
is drawn, respectively, from a uniform distribution on [0,1] and on the unit
sphere, in a way that samples from Ud are distributed from the origin to the
outward within the unit ball. The balls of radius α ∈ [0,1] have probability α

while being nested, as α grows.
Ghosal and Sen (2022) point out that the choice of a spherically symmet-

ric distribution results in quantile maps that are equivariant under orthogonal
transformations. Therefore, we have that the hyperspheres of radius α are the
relevant quantile contours with respect to µ . The quantile map, Q, transports
in an adequately way this center-outward ordering towards the distribution
ν , since that Q is a gradient of a convex function. Q will be refered as the
center-outward quantile function of ν , when µ =Ud .

As pointed by Beirlant et al. (2020), the center-outward distributions and
quantile functions cover the lack of left-to-right ordering in cases when d > 1.
The center-outward ordering, as highlighted by Bercu et al. (2023), captures
the support of the ν distribution and, using the function for push-forward
maps, returns the quantile contours, which are indexed by a probability level
α ∈ [0,1].

An important point to be noted is about deepness in the spherical uniform
distribution. Bercu et al. (2023) affirm that y is deeper than x, defining as
x ⩾R y, if the following sentence is true

∥Q−1(x)∥⩾ ∥Q−1(y)∥, (6)

where x,y ∈ X and X ⊂ C. In this way, we find that the deeper a point is in
X , the less extreme it is with respect to ν . Furthermore, if we set u∈B(0,1)\
{0}, x ⩾R Q(u) can be rewritten, allowing us to consider observations that are
more extreme than those in Q(u).

Suppose ν ∈P(Rd) be an integrable probability distribution with center-
outward quantile function Q. Bercu et al. (2023) define center-outward su-
perquantile and center-outward expected shortfall functions of ν as, respec-
tively,
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S(u) =
1

1−∥u∥

∫ 1

∥u∥
Q
(

t
u
∥u∥

)
dt (7)

and

E(u) =
1

∥u∥

∫ ∥u∥

0
Q
(

t
u

∥u∥

)
dt, (8)

where t ∈ [0,1]. We have that the regions and contours of such functions are,
according to Bercu et al. (2023), defined as follows

• The superquantile (expected shortfall) region Cs
α (Ce

α ) of order α ∈
[0,1] is the image by S (E) of the ball B(0,α).

• The superquantile (expected shortfall) contour C s
α (C e

α ) of order α ∈
[0,1] is the boundary of Cs

α (Ce
α ).

2.4 Vectors-at-Risk

According to Bercu et al. (2023), vectors-valued risk measures are strong
candidates for multivariate risk measures, since this measures include all
the information about the tails of the distribution, both in terms of spread
and direction. Consider a vector of dependent losses X ∈ Rd

+, where each
component is a positive measure, whose unit may be different. Bercu et al.
(2023) propose as measures for vector-valued risk the Vectors-at-Risk and
Conditional-Vectors-at-Risk, which aim to sum up the main information con-
tained in the center-outward quantiles and superquantiles.

For Bercu et al. (2023), since the center-outward quantile contour of order
α contains the most outward points with ν-probability α , the Vector-at-Risk
of order α must belong to this contour and, also, with the assumption that
each component is positive, we have that the worst vectors of losses are the
furthest from the origin of the joint distribution, as well as the multivariate
tails. Therefore, a maximal norm is used to select points from the center-
outward quantile contour of order α .

Both measures, Vector-at-Risk and Conditional-Vectors-at-Risk at level
α ∈]0,1[, are defined below

VaRα(X) ∈ argsup{∥X∥1;X ∈ Cα}, (9)

CVaRα(X) ∈ argsup{∥X∥1;X ∈ C s
α}, (10)

where ∥x∥1 =∑
d
i=1 xi on Rd

+ and, Cα is the quantile contour of order α ∈ [0,1].
Bercu et al. (2023) point out that the choice of ∥·∥1 in the definition depends
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on the method of comparison of the different risks. For example, without
added information, we may be induced to believe that two observations of
same 1-norm have the same importance.

An interesting point is that the interpretation of Vectors-at-Risk and Conditional-
Vectors-at-Risk in dimension d > 1, i.e., multivariate case, is the same when
d = 1, i.e., univariate case. In other words, when d = 1, the VaR at level α

is quantile α , while the CVaR is the superquantile of order α . In a multivari-
ate framework (d > 1), Vectors-at-Risk and Conditional-Vectors-at-Risk can
be understood as, respectively, the worst risk encountered with ν-probability
α , and as the averaged risk beyond this quantile. The observation shall be
vector-valued in our framework.

2.5 Estimation in practice

Following Bercu et al. (2023), Monge-Kantorovich quantiles are esti-
mated using a entropic map as a regularized empirical map.

Denote C (X) as the space of continuous functions from X to R. Let us
define ε > 0 as the regularization parameter, which, for a better approxima-
tion with the true optimal transport, must be low. Bercu et al. (2023) argues
that, for µ,ν ∈ P2(Rd) with finite second-order moments and with respec-
tive supports U , X and, also, for a given x0 ∈X , the semi-dual problem has
solution, which is unique and can be describe as follows

max
v∈C (X ):v(x0)=0

∫
U

vc,ε(u)dµ(u)+
∫

X
v(x)dν(x)− ε, (11)

vc,ε(u) =−εlog

(∫
X

exp

(
v(x)− 1

2∥u− x∥2

ε

)
dν(x)

)
. (12)

We have that vc,ε ∈ C (U ), which is described by Equation (12), is a
smooth c-transform of v for all u ∈ U . Bercu et al. (2023) shows that the
optimal Kantorovich potential v can be obtained using stochastic algorithms
that solve Equation (11). The entropic map can be deduced as a partial ap-
proximation of the Monge map, which is legitimated by an entropic analog
of Brenier (1991)´s theorem as follows

Qε(u) = ∇

(
1
2
∥u∥2 − vc,ε(u)

)
. (13)

Substituting Equation (12), the analytic form is given by

Qε(u) =
∫

X
xgε(u,x)dν(x), (14)
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where gε(u,x) is denoted as

gε(u,x) = exp

(
vc,ε

ε (u)+ vε(x)− 1
2∥u− x∥2

ε

)
. (15)

Bercu et al. (2023) argues that Equation (15) can be interpreted as the
expected value of ν given the transport plan dπε(u,x) = gε(u,x)dν(x)dµ(u),
which appears to be the solution of the Kantorovich regularized problem.
With the substitution of Qε into Equations (7) and (8), the following entropic
analogs are obtained.

S(u) =
1

1−∥u∥

∫ 1

∥u∥
Qε

(
t

u
∥u∥

)
dt (16)

and

E(u) =
1
∥u∥

∫ ∥u∥

0
Qε

(
t

u
∥u∥

)
dt. (17)

3. Data description

This section describes the database, which is composed of daily data
on asset returns starting on 2021-07-02 and ending on 2022-09-13, for the
following cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), Ripple (XRP),
and Binance Coin (BNB)1. Figure 1 shows the evolution of the returns of the
chosen cryptocurrencies. In this figure we can observe the stylized facts of
the cryptocurrency market, such as the large variation in returns, the presence
of extreme values and the occurrence of common tail events between these
assets. Table 1 summarizes the descriptive statistics for the chosen assets.

Figure 2 shows our 4-dimensional dataset, with pair scatterplots located
below the diagonal and Pearson’s correlation values above, while the diago-
nal displays the empirical density functions of each variable. It is evident that
BTC and ETH, the two largest cryptocurrencies in terms of market capitaliza-
tion, have a higher correlation value (0.869) compared to other combinations
among the cryptocurrencies.

4. Empirical Results and Discussion

In this section, we discuss the results regarding the optimal coupling
method and consider the differences between univariate and multivariate mea-
sures. Subsequently, we compare the most commonly used models for esti-
mating univariate risk and Optimal Transport approach.

1Data on cryptocurrency returns was sourced from coinmarketcap.com
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Figure 1
Evolution of returns of the analyzed cryptocurrencies.

Table 1
Descriptive Statistics for cryptocurrencies (2021-07-02 to 2022-09-13)

BTC ETH XRP BNB
Mean (%) -0.115 -0.066 -0.156 -0.009
Std (%) 3.524 4.506 4.551 4.036
Skew -0.353 -0.232 -0.145 -0.561
Kurt 5.386 4.437 6.280 5.131
Min. -17.405 -18.213 -21.714 -17.212
Quantile 5% -5.908 -7.368 -7.666 -6.274
Median -0.044 0.031 -0.050 0.099
Quantile 95% 5.232 7.035 7.235 6.466
Max. 13.576 16.496 19.135 10.725

Note: This table reports mean, standard deviation, skewness, kurtosis, minimum, quantile of
5%, median, quantile of 95% and maximum for the log daily returns on Bitcoin, Ethereum,
Ripple and Binance Coin during the period of 2021-07-02 to 2022-09-13.

4.1 Results of Optimal Coupling

Tables 2 and 3 show the results for the Vectors-at-Risk and Conditional
Vectors-at-Risk for the 1% and 5% quantiles for the sample analyzed. To
show the problem of underestimating the risk present in the univariate mea-
sures, Table 4 summarizes the results of the univariate quantiles for the same
levels indicated previously. We can observe that the results of the Vectors-in-
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Figure 2
Correlations among the 4-dimensional dataset

Note: This figure shows our 4-dimensional dataset, with pair scatterplots located below the
diagonal and Pearson’s correlation values above. The diagonal displays the empirical density
functions of each variable. The p-values are represented for ∗∗∗p < 0.01 ∗∗p < 0.05 and
∗p < 0.10.

Risk and Conditional Vectors-at-Risk estimates estimate more extreme values
than the usual estimation based on the empirical quantiles of the distribution,
and in this aspect, they represent a more conservative approach and adapted
to the extreme values observed in this market.

The Optimal Coupling approach stands out for its ability to encapsu-
late the multivariate joint probability inherent in the analyzed assets, espe-
cially when considering a scenario where we’re dealing with four dimensions
(d = 4), such as BTC, ETH, XRP, and BNB. In contrast, the univariate quan-
tile method hinges solely on the empirical distribution of a single asset. No-
tably, research by Bercu et al. (2023) points out that univariate risk measures
overlook the interplay between assets’ correlations, underscoring the neces-
sity for multivariate risk analysis.

To analyze these results as inputs for risk analysis, in the next section
we compare these values to those obtained by traditional Value-At-Risk and
Conditional Value-At-Risk calculation methods.
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Table 2
Vectors-at-Risk calculated with Optimal Coupling method

0.05 0.01
BTC -9.285 -11.201
ETH -12.973 -13.522
XRP -21.414 -21.168
BNB -16.997 -17.166

Note: This table reports the estimated Vectors-at-Risk for BTC, ETH, XRP and BNB calculated
on the 5% and 1% quantiles.

Table 3
Conditional Vectors-at-Risk calculated with Optimal Coupling method

0.05 0.01
BTC -9.825 -11.245
ETH -13.128 -13.535
XRP -21.345 -21.162
BNB -17.045 -17.170

Note: This table reports the estimated Conditional Vectors-at-Risk for BTC, ETH, XRP and
BNB calculated on the 5% and 1% quantiles.

Table 4
Univariate quantiles of our variables

0.05 0.01
BTC -5.908 -10.454
ETH -7.368 -13.077
XRP -7.666 -11.740
BNB -6.274 -13.184

Note: This table reports the estimated univariate quantiles for BTC, ETH, XRP and BNB
calculated on the 5% and 1% quantiles.

4.2 A Comparison with the Most Widely Used Methods for Measuring
Risk

Shayya et al. (2023) review the models that have been applied to estimate
the Value-at-Risk (VaR) in recent years, with the aim of finding the most
used models after the 2009 financial crisis. In the class of static VaR estima-
tion, the principal methods are Monte Carlo simulation, Historical Simulation
and Variance-Covariance method. Let us quickly review the techniques men-
tioned by Shayya et al. (2023).

As described by Danielsson (2011), the Historical Simulation approach
assumes that the distribution of the returns in is time invariant, and so we
can use empirical quantiles of past data as estimators to calculate the Value
At Risk and the Conditional Value At Risk for future values of the return
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distribution. The Monte Carlo approach is based on generating a large number
of future scenarios by means of random sampling. The procedure carried out
in the article is to draw 1000 samples with replacement of the original data
sample, and for each sample calculate the VaR and Expected Shortfall. The
reported measurement is the average of these measurements across the 1000
replications performed. Note that we are in fact using the Bootstrap principle
using the empirical distribution to sample from the distribution of returns.

The Variance-Covariance method (Jorion, 1996) for the Value-at-Risk es-
timation is made in two steps. In the first one is calculated the mean and
standard deviation of the returns. The second step is to multiply the standard
deviation by the desired confidence level, α(c), to obtain the Value-at-Risk
subtracting this value of the estimated mean. This method is equivalent to
assuming that the data follows a univariate Gaussian distribution (Gaussian
VaR).

Tables 5 and 6 describe the Vectors-at-Risk calculated by the Optimal
Coupling approach and the Value-at-Risk measured by other methods for,
respectively, the 5% and 1% quantiles while Tables 7 and 8 describe the Ex-
pected Shortfall (CVaR) for the same quantiles.

Note that the Optimal Coupling and Historical Simulation approach has,
respectively, in general, the highest VaR and ES (CVaR) measures, in absolute
terms, among the methods analyzed with the 5% quantile. However, in the
1% quantile, the VaR and ES (CVaR) results using the Historical Simulation
approach present, in absolute terms, the highest values for the measures.

As we are analyzing these results using the full sample of data, the histor-
ical method is the comparison benchmark for VaR and ES, as they are based
on empirical measurements of quantiles and the average of values exceeding
VaR. In this aspect, it is important to note that the Monte Carlo and Variance-
Covariance methods underestimate risk measures, which can be explained by
the difficulty of these methods in adequately capturing the tail risk of cryp-
tocurrencies, which is mainly generated by very extreme values.

The Monte Carlo method is not able to adequately reproduce the proba-
bility of occurrence of these rare events, as can be seen in the discussion on
the use of bootstrap methods for extreme events in Lahiri (2003). It is also ev-
ident that the Gaussian approximation is also not capable of reproducing the
high tail risk that exists in cryptocurrency series. In this aspect, the Vectors-
at-Risk and Conditional Vectors-at-Risk measures are capable of capturing
the tail risk levels observed in the analyzed cryptocurrencies.

Therefore, these results reinforce the notion point by Bercu et al. (2023)
that the optimal transport approach captures the multivariate joint probability
of the extreme events, differently the univariate methods which depend on the

14 Brazilian Review of Finance (Online)

http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index


Man
usc

rip
t

empirical distribution of each single asset.

Table 5
Comparing the results of Value-at-risk measure among methods for the 5%

quantile
BTC ETH XRP BNB

Optimal Coupling -9.285 -12.973 -21.414 -16.997
Historical Simulation -10.603 -13.548 -12.366 -13.856
Monte Carlo -5.966 -7.401 -7.726 -6.329
Variance Covariance -5.796 -7.411 -7.486 -6.639

Note: This table reports the results of Vectors/Value-at-Risk for the methods of Optimal
Coupling, Historical Simulation, Monte Carlo and Variance Covariance for the following
cryptocurrencies: BTC, ETH, XRP and BNB. The results are estimated using the 5% quantile.

Table 6
Comparing the results of Value-at-risk measure among methods for the 1%

quantile
BTC ETH XRP BNB

Optimal Coupling -11.201 -13.522 -21.168 -17.166
Historical Simulation -17.405 -18.213 -21.714 -17.212
Monte Carlo -10.619 -13.417 -12.348 -13.697
Variance Covariance -8.198 -10.482 -10.587 -9.390

Note: This table reports the results of Vectors/Value-at-Risk for the methods of Optimal
Coupling, Historical Simulation, Monte Carlo and Variance Covariance for the following
cryptocurrencies: BTC, ETH, XRP and BNB. The results are estimated using the 1% quantile.

Table 7
Comparing the results of Expected shortfall (CVaR) measure among methods

for the 5% quantile
BTC ETH XRP BNB

Optimal Coupling -9.825 -13.128 -21.345 -17.045
Historical Simulation -12.479 -15.164 -16.494 -15.805
Monte Carlo -8.755 -10.602 -10.815 -9.699
Variance Covariance - - - -

Note: This table reports the results of Expected shortfall (CVaR) for the methods of Optimal
Coupling, Historical Simulation, Monte Carlo and Variance Covariance for the following
cryptocurrencies: BTC, ETH, XRP and BNB. The results are estimated using the 5% quantile.

4.2.1 Computational Cost

Estimation time is one of the most important aspects to consider when
estimating risk measures. The computational cost for each method is summa-
rized in Table 9. Note that the optimal coupling approach takes approximately
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Table 8
Comparing the results of Expected shortfall (CVaR) measure among methods

for the 1% quantile
BTC ETH XRP BNB

Optimal Coupling -11.245 -13.535 -21.162 -17.170
Historical Simulation -17.405 -18.213 -21.714 -17.212
Monte Carlo -13.006 -15.626 -17.589 -16.353
Variance Covariance - - - -

Note: This table reports the results of Expected shortfall (CVaR) for the methods of Optimal
Coupling, Historical Simulation, Monte Carlo and Variance Covariance for the following
cryptocurrencies: BTC, ETH, XRP and BNB. The results are estimated using the 1% quantile.

10502.6 times longer than the Monte Carlo simulation, which is the slowest
of the univariate methods.

The estimated cost involved in the Optimal Coupling method does not
depend on the dimension of the data (d). An important point highlighted by
Bercu et al. (2023) is that the estimates of Monge’s maps can suffer from
the curse of dimensionality. However, when the entropic map is the objective
function, the convergence rates are independent of d for any ε > 0.

Table 9
Computational Cost

Time in seconds
Optimal Coupling 84489.054
Historical Simulation 0.002
Monte Carlo 8.045
Variance Covariance 0.001

4.2.2 Backtesting

The previous section’s results were derived from a sample spanning from
July 2, 2021, to September 13, 2022. We will now proceed to examine the
comparative efficacy of risk calculation methods, comparing Optimal Trans-
port measures and the traditional approaches, through a backtesting proce-
dure. This analysis will utilize data from September 14, 2022, to December
31, 2022, to evaluate the performance of these risk measures.

To assess the accuracy of the model, backtesting analysis and tests were
conducted for Value at Risk (VaR) measures. The analyzes performed include
calculating the empirical violation rate, the Kupiec test and binomial distri-
bution test.

Let us define the violations, It(α), as
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It(α) =

{
1 if xt ⩽VaRα,t
0 if xt >VaRα,t

(18)

The empirical measure of violation rate measures whether the number of
VaR violations is close to the expected value, which is defined by the VaR
size. Therefore, at a VaR of 5%, a number of violations is expected in 5% of
the sample.

The rate of violations observed in the backtesting sample is a point mea-
sure of the performance of the VaR calculation methods. A formal test to
verify whether empirical violations are compatible with the expected viola-
tion rate is the Kupiec test (Zhang and Nadarajah, 2018). The Kupiec statis-
tic, which tests whether the proportion of violations (POF) 100α̂ is equal to
100α , is given as follows.

POF = 2ln

[(
1− α̂

1−α

)n−I(α)(
α̂

α

)I(α)
]
, (19)

where α̂ = 1
n I(α) and I(α) = ∑

n
t=1 It(α), assuming a Likelihood Ratio form.

Note that if the model is well adjusted, the test statistic will be zero. However,
if the proportion of violations is different from 100α , the test statistic will
increase, indicating that the model can underestimate or overestimate the level
of risk.

The Binomial distribution test is an extension of the independence test
proposed by Christoffersen (1998). According to Zhang and Nadarajah (2018),
if violations It(α), are independently and identically distributed and also Pr[It+1(α)=
1] = α , then the total number of violations H, follows a binomial distribu-
tion B(n,α), where the mean of H, denoted as E(H), is equal to nα , and
the variance of H, denoted as Var(H), is equal to nα(1−α). As Zhang and
Nadarajah (2018) adds, when the number of observations is large enough, the
central limit theorem can approximate the binomial distribution by the normal
distribution.

Analyzing the violation rate results for the 5% and 1% estimates of VaR,
shown in Tables 10 and 11, we see that the Optimal Coupling and Histori-
cal Simulations methods have the lowest failure ratios. For VaR(5%) only the
Monte Carlo and Variance Covariance methods for the ETH series show a
violation rate close to expected for the ETH series at α = 5%. For VaR(1%),
the Optimal Coupling and Historical Simulation methods generally demon-
strate lower violation rates, with most cryptocurrencies remaining within the
expected threshold. The Monte Carlo method shows similar performance to
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Optimal Coupling for most cryptocurrencies, but slightly higher violation rate
for XRP. The Variance Covariance method exhibits higher violation rates for
some cryptocurrencies, particularly ETH and BNB.

Table 10
Violation Rate (%) for VaR at 5% quantile

BTC ETH XRP BNB
Optimal Coupling 1.835 1.835 0.000 0.917
Historical Simulation 0.917 1.835 1.835 0.917
Monte Carlo 1.835 4.587 1.835 1.835
Variance Covariance 1.835 4.587 1.835 1.835

Note: This table reports the violation rate (%) for VaR of BTC, ETH, XRP and BNB at 5%
quantile for following methods: Optimal Coupling, Historical Simulation, Monte Carlo and
Variance Covariance.

Table 11
Violation Rate (%) for VaR at 1% quantile

BTC ETH XRP BNB
Optimal Coupling 0.917 1.835 0.000 0.917
Historical Simulation 0.000 0.917 0.000 0.917
Monte Carlo 0.917 1.835 1.835 0.917
Variance Covariance 1.835 2.752 1.835 1.835

Note: This table reports the violation rate (%) for VaR of BTC, ETH, XRP and BNB at 1%
quantile for following methods: Optimal Coupling, Historical Simulation, Monte Carlo and
Variance Covariance.

The results for Optimal Coupling model in Kupiec´s test, for 5% quantile
(Table 12) are similar to the Historical Simulation method, with the clear
exception in XRP. Also, only the VaR measure for ETH computed with Monte
Carlo and Variance Covariance methods can not reject the null hypothesis,
i.e., the VaR model is adequate in these cases. For the 1% quantile (Table
13), the Optimal Coupling method have low values for ETH and XRP, and
the results for BTC and BNB are really close to zero, which means that the
model proposed by Bercu et al. (2023) is well adjusted. Also note that all the
results in Table 13 cannot rejects the null hypothesis, which suggests that for
all cryptocurrencies, the models fit the tail risk dynamics well.

We present the results of the Binomial test in Tables 14 and 15. The results
indicate that, for the 5% quantile and for all cryptocurrencies, the Monte Carlo
and Variance Covariance methods do not reject the null hypothesis that H0 :
E[It(α)] = nα . Also, the null hypotheses can not be rejected for ETH and
XRP using the Historical Simulation method and for BTC and ETH using the
Optimal Coupling method, i.e. the number of violations is consistent with the
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Figure 3
Violations of the returns (Optimal Coupling method).

Table 12
Kupiec’s Test for VaR at 5% quantile

BTC ETH XRP BNB
Optimal Coupling 3.004* 3.004* 11.182*** 5.697**
Historical Simulation 5.697** 3.004* 3.004* 5.697**
Monte Carlo 3.004* 0.04 3.004* 3.004*
Variance Covariance 3.004* 0.04 3.004* 3.004*

Note: This table reports the results of the Kupiec´s Test for VaR of BTC, ETH, XRP and BNB
at 5% quantile for following methods: Optimal Coupling, Historical Simulation, Monte Carlo
and Variance Covariance. The p-values are represented for ∗∗∗p < 0.01 ∗∗p < 0.05 and
∗p < 0.10.

expected 5% violation rate for these cryptocurrencies when VaR is measured
using these methods. For the 1% quantile, only the VaR measure for ETH
with Variance Covariance rejects the null hypothesis.

5. Conclusion

In this article, we analyze a new class of tail risk measures proposed by
Bercu et al. (2023), which is based on the Optimal Coupling Method, in the
analysis of the cryptocurrency market, comparing with some usual static mea-
sures of tail risk based on univariate estimation (Monte Carlo Simulation,
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Table 13
Kupiec’s Test for VaR at 1% quantile

BTC ETH XRP BNB
Optimal Coupling 0.008 0.616 2.191 0.008
Historical Simulation 2.191 0.008 2.191 0.008
Monte Carlo 0.008 0.616 0.616 0.008
Variance Covariance 0.616 2.289 0.616 0.616

Note: This table reports the results of the Kupiec´s Test for VaR of BTC, ETH, XRP and BNB
at 1% quantile for following methods: Optimal Coupling, Historical Simulation, Monte Carlo
and Variance Covariance. The p-values are represented for ∗∗∗p < 0.01 ∗∗p < 0.05 and
∗p < 0.10.

Table 14
Binomial Test for VaR at 5% quantile

BTC ETH XRP BNB
Optimal Coupling 2 2 0*** 1**
Historical Simulation 1** 2 2 1**
Monte Carlo 2 5 2 2
Variance Covariance 2 5 2 2

Note: This table reports the statistics (number of successes) of the Binomial Test for VaR of
BTC, ETH, XRP and BNB at 5% quantile for following methods: Optimal Coupling, Historical
Simulation, Monte Carlo and Variance Covariance. The hypotheses are H0 : E[It(α)] = nα vs
H1 : E[It(α)] ̸= nα . The number of trials is 109. The p-values are represented for ∗∗∗p < 0.01
∗∗p < 0.05 and ∗p < 0.10.

Table 15
Binomial Test for VaR at 1% quantile

BTC ETH XRP BNB
Optimal Coupling 1 2 0 1
Historical Simulation 0 1 0 1
Monte Carlo 1 2 2 1
Variance Covariance 2 3* 2 2

Note: This table reports the statistics (number of successes) of the Binomial Test for VaR of
BTC, ETH, XRP and BNB at 1% quantile for following methods: Optimal Coupling, Historical
Simulation, Monte Carlo and Variance Covariance. The hypotheses are H0 : E[It(α)] = nα vs
H1 : E[It(α)] ̸= nα . The number of trials is 109. The p-values are represented for ∗∗∗p < 0.01
∗∗p < 0.05 and ∗p < 0.10.
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Historical Simulation, and Variance-Covariance methods), in terms of mag-
nitude, computational time, and backtesting results.

We evaluated both the traditional univariate measures and the novel mea-
sures on the cryptocurrency market (BTC, ETH, XRP, and BNB), renowned
for its exceptionally high risks and returns compared to other investment mar-
kets. Across all quantiles analyzed, the Optimal Coupling and Historical Sim-
ulation methods consistently exhibit the highest Value at Risk (VaR) and Ex-
pected Shortfall (CVaR) measures in absolute terms.

However, similar to other univariate risk methods commonly favored by
market analysts, the Historical Simulation approach overlooks the inherent
risk correlation structure between the components of a random vector. This
neglect can lead to incomplete risk assessments, especially in complex and
interconnected markets such as cryptocurrency.

Regarding the backtesting results, it is interesting to note that the results
of the Optimal Coupling method at the 1% quantile are slightly better when
compared to the results obtained at the 5% quantile and, in some cases, the
backtesting results shows that Optimal Coupling has more precision estimates
than the univariate measures (at the 1% quantile).

The theory of optimal transportation, along with the recent work of Bercu
et al. (2023), introduces a novel multivariate approach that has seen limited
use in financial markets for calculating risk measures. According to Hallin
et al. (2021), center-outward quantile contours are robust indicators in the
multivariate context of risk management measures.

One relevant aspect of the technique proposed by Bercu et al. (2023) is
the characteristics of Monge-Kantorovich quantiles, which eliminate the need
for assumptions about the distribution’s tail or a full parametric model. This
stems from the inherent flexibility of Monge-Kantorovich quantiles to adapt
the distribution’s shape accordingly.

The primary challenge addressed in this paper, as well as in the optimal
transport literature, as noted by Carlier et al. (2016), lies in establishing a
deterministic mapping that effectively transforms one probability distribution
to another. However, the advantage of not requiring any assumptions about
the distribution’s tail comes with a trade-off: increased computational cost.
The required time, measured in seconds, exceeds that of univariate methods,
reaching up to approximately 10502.6 times longer than the Monte Carlo
simulation method, which is the slowest among univariate approaches.

Furthermore, an essential observation emphasized by both Bercu et al.
(2023) and de Valk and Segers (2018a) is that the spherical uniform Ud may
not ensure stability of the quantile map as it extends into the tail contours.
Therefore, as suggested by Bercu et al. (2023), alternative spherical reference
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measures can be employed to define the center-outward superquantiles. This
underscores the method’s limitations in certain applications and highlights
the need for refinement to accommodate turbulent scenarios and more volatile
markets.
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