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Abstract

This paper develops a generalization of the Markov-Switching model with evolving regime-
specific means and stochastic volatility proposed Eo and Kim (2016). The model allows
for R regimes, B breaks, and time-varying transition probabilities, where the latter are
modeled as a multinomial logistic function. We apply our flexible methodology to model
the Brazilian GDP growth, which features very complicated dynamics over the last four
decades. Our results point to the presence of 3 regimes, at least one break in the long-
run trend, and substantial time-variation in the volatility process. Moreover, the selected
model features time-varying probability driven by domestic (real interest rate and real ex-
change rate) and international (commodity prices and global uncertainty) factors. Finally,
the results indicate a significant reduction in the Brazilian long-run growth trend.
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1 Introduction

From a macroeconomic perspective, the history of the Brazilian economy during the last
four decades could be divided into two sub-periods, according to Ayres et al. (2021): the first,
from 1981 to 1994, featuring slow growth, hyperinflation, and high debt, and the second,
from 1995 to 2016, with moderate growth, relatively low inflation, and low debt. Extending
their analysis to the present day, it seems plausible to include yet another sub-period, from
2016 to the present, featuring low growth, moderate inflation, and relatively high debt.

These three different sub-periods reflect the fact that, from 1980 to the present day,
the Brazilian economy has undergone remarkable changes and experienced many events
that might have affected its long-run growth trend. During 1981-94, six major unsuccess-
ful stabilization plans were implemented until the introduction of the successful stabiliza-
tion program, the Real Plan in 1994. Thus, such a sub-period is marked by frequent policy
swings that, as shown by Aguiar and Gopinath (2007), may affect the economy’s produc-
tivity, ultimately leading to sudden changes in the growth trend path. Moreover, most of
these stabilization plans featured price freezing policies combined with fiscal debts and
loose monetary policies (see, e.g., Ayres et al., 2021), which may be seen as “bad policies”
in the spirit of Calvo (2005). Furthermore, the period is also characterized by external debt
renegotiation events (1984, 1985, and 1993) and a default episode in 1982.

The sub-period from 1995 to 2016 is marked by a variety of institutional reforms, such
as a series of bank sector reforms between 1995 and 1996,1 the introduction of inflation
targeting in 1999, the introduction of The Fiscal Responsibility Law in 2000, and, more re-
cently, a ceiling for government spending, introduced as a fiscal rule in 2016. Again, some
of such reforms could, in principle, affect the economy’s productivity.

Finally, the last four decades in Brazil are a period also characterized by several episodes
of political tensions, including a re-democratization process in 1985 and two events of pres-
idential impeachments, in 1993 and 2016.

Given this background about the recent Brazilian economic history, it is not surpris-
ing that the Brazilian GDP presents a somewhat erratic behavior from 1980 to the present
day. Figure 1 shows the level and the log-difference of the index of quarterly GDP of the
Brazilian economy from 1980Q1 to 2019Q4. Clearly, the trend associated with the level of
the GDP presents significant shifts, both up and down, through time. At the same time,
the growth rate of GDP, captured by the log-difference of the GDP, suggests different pat-
terns of GDP volatility over time but also a substantial time-varying behavior in the aver-
age growth rate. Another important aspect of the Brazilian business cycles emerges from

1Three programs were the Incentive Program for Restructuring and Strengthening of the Financial Sys-
tem (PROER), in 1995, the Incentive Program for the Reduction of the State Public Sector in Banking Activity
(PROES), and the Credit Guarantee Fund (FGC), in 1996.
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a visual inspection of the GDP growth: the duration of the cycles seems to feature a time-
varying pattern. This last observation suggests that booms and busts in Brazil are not alike.
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Figure 1: Brazilian GDP: level (red line) and growth rate (yellow line).

This paper aims to model the Brazilian business cycles from 1980Q1 to 2019Q4, tak-
ing into account the complicated behavior of Brazil’s growth. To do so, we first developed
a generalization of the Markov-Switching model with evolving regime-specific means and
stochastic volatility proposed Eo and Kim (2016). Our model, referred to as Markov-Switchi-
ng Model with Evolving Regime-Specific Parameters (MS-ERSP), allows for 1 < R < ∞
regimes, 0 ≤ B < ∞ breaks in the long-run growth trend, and time-varying proba-
bilities in the spirit of Filardo and Gordon (1998). Eo and Kim (2016) proposed a model
in which the properties of booms and busts may vary over time. Our model can have an
arbitrary number of intermediary regimes, both of them with their own properties over
time. Moreover, time-varying probabilities, modeled as a multinomial logistic function as
in Kaufmann (2015), allow the transition between regimes to vary through time and to de-
pend on selected factors, e.g., domestic and international conditions. Thus, the way that
the economy goes from a peak to a trough, for example, can have a time-varying pattern.
A final important feature is that the model decomposes the GDP growth rate into an unob-
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served smooth, long-run trend and the unobserved regime-dependent mean growth rates,
so we can analyze the economy’s long-run growth rate evolution.

Our results suggest that the Brazilian business cycles are better characterized by 3
regimes: recession, fast recovery, and boom. Moreover, we find substantial variation in the
time-varying volatility process, with an initial increase in volatility until 1990Q1, followed
by a consistent reduction until 2019Q4. Furthermore, the Brazilian economy seems to fea-
ture one break in its long-run growth trend. The average quarterly growth rate reduced
from 0.5% during the first half of the 1980s to about 0.22% nowadays. Such a result is con-
sistent with the notion that the Brazilian economy has been experiencing a reduction in its
average productivity over the last five decades.

Our paper is related to the literature on modeling business cycles through Markov-
Switching models as in Hamilton (1989), Albert and Chib (1993), Filardo and Gordon (1998),
Kaufmann (2015), and Eo and Kim (2016). It is also related to the literature modeling busi-
ness cycles in emerging markets, as in Phillips and Shi (2021). Finally, it is related to the
literature on dating the Brazilian business cycles, as Céspedes et al. (2006).

The paper is organized as follows: Section 2 discusses the chronologies of the Brazil-
ian economy. Section 3 presents our flexible model. Section 4 presents the priors and pos-
teriors distributions and the Bayesian algorithms used to estimate the posteriors distri-
butions. Section 5 discusses parsimonious models for the Brazilian economy. Section 6
presents the results, and Section 6 concludes.

2 Brazilian business cycles: previous chronologies

In 2004 the Business Cycle Dating Committee (CODACE) was created by Fundação Getulio
Vargas (FGV) to establish reference chronologies for Brazilian business cycles from 1980 on-
ward. The approach of such a committee is like the one from NBER. Thus, the chronology is
established by alternating dates of peaks and troughs in the level of economic activity. The
recession is the phase marked by the decline in economic activity disseminated among dif-
ferent economic sectors. The expansions are given by the phase between trough and peak
in the cycles. Table 1 presents the quarterly and monthly chronologies of the business cycle
from the last release from CODACE. As can be seen, CODACE has identified ten recessions,
but the end of the last one has not yet been defined. Despite that, recessions would be fre-
quent in the Brazilian economy, and their duration would be considerably heterogeneous.

From 1980Q1 to 2019Q4, Figure 2 presents the recession periods from CODACE and
either the log of GDP or the GDP growth rate.2 The visual inspection confirms that reces-
sions are frequent with heterogeneous duration. Furthermore, the GDP growth rate does

2Data is taken from IBGE and Ipeada and is seasonally adjusted.
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Period Duration Period Duration
(quarters) (quarters)

1981Q1 - 1983Q1 9 2001Q2 - 2001Q4 3
1987Q3 - 1988Q4 6 2003Q1 - 2003Q2 2
1989Q3 - 1992Q1 11 2008Q4 - 2009Q1 2
1995Q2 - 1995Q3 2 2014Q2 - 2016Q4 11
1998Q1 - 1999Q1 5

Table 1: CODACE chronology for Brazilian recessions

not seem to be constant across the recessions, as suggested by the time-varying, episode-
specific mean growth. Such time-varying means also suggest a decline in the unconditional
average growth rate of the economy.

Figure 2: Brazilian Business Cycles under CODACE recession chronology
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The 1980s were marked by GDP stagnation and acceleration of inflation. Not by chance,
this decade became known as ’The Lost Decade’. According to CODACE, there were three
recessions in such decade. Two of them were very long, and the last one extended into the
early 1990s when president Collor put forward the failed heterodox stabilization plans Col-
lor I (1990) and Collor II (1991). Previously, other heterodox plans took place, but no one
reached success, such as Cruzado (1986) and Bresser (1987). A common feature of these
heterodox plans was the price freezing; however, at a certain degree, Collor I went further
by freezing a fraction of the savings accounts. This strategy caused large GDP instability.

The Real Plan was implemented in 1994, and it can be considered a turning point in
the Brazilian economy, once it was the first stabilization package that really managed to
bring down inflation in the country. However, one of the elements of this plan was the
adoption of an appreciated fixed exchange rate, which culminated in serious consequences
to the trade balance account, the level of international reserves, and the unemployment
rates. Furthermore, in the 1990s, the Brazilian economy was hit by the contagion effect of
emerging countries that went through serious crises. It is worth mentioning the Mexican
(Tequila) Crisis of 1994, the Asian financial crisis of 1997, and the Russian financial crisis
of 1998. The internal problems and the international crises forced the country to adopt
a flexible exchange rate in January 1999, after a substantial loss of international reserves.
According to CODACE, Brazil went through two recessions in this decade, one shortly af-
ter the implementation of the Real Plan and the occurrence of the Mexican crisis (1995Q2 -
1995Q3), another after the Asian crisis and during the Russian crisis (1998Q1 - 1999Q1).

After the abandonment of the fixed exchange rate regime, the Brazilian Central Bank
adopted the inflation target system by mid-1999 to anchor the inflation expectations. Since
then, to keep inflation under control, the central bank has resorted to high interest rates,
which has impacted both the economic performance and the government debt. Neverthe-
less, the beginning of the 2000s was marked by external and internal problems. In 2000
the dot-com bubble came to an ending. In 2001, Brazil went through an energy crisis as a
consequence of both the demand for electricity grew faster than the supply and there was a
long period of drought that severely reduced the levels of water reservoirs. The government
implemented a rationing scheme to reduce national electricity consumption to avoid black-
outs. Indeed, according to the CODACE chronology, Brazil went through a recession during
the year 2001. The subsequent recession in the first half of 2003 coincides with the begin-
ning of President Lula’s first term. In fact, his election in the previous year was marked by
great apprehension, evidenced by the devaluation of the Brazilian currency against the US
dollar. Finally, the last recession of the decade, according to CODACE, occurred in the pe-
riod 2008Q4-2009Q1, being clearly related to the international financial crisis 2007–2008
that began years earlier with cheap credit and lax lending standards that fueled a housing
bubble.

In the 2010s, there would have been only one recession, however, an extremely long
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one, from the second quarter of 2014 to the fourth quarter of 2016. After the re-election of
President Dilma Roussef in 2014, monitored prices increased substantially in 2015, putting
pressure on costs for the entire economy.3 Furthermore, the budget operations carried out
by the National Treasury to mask the Brazilian government’s terrible fiscal situation be-
came public. After all, president Dilma Roussef was impeached in mid-2016. Finally, as
mentioned, CODACE has identified the beginning of the recession due to the covid-19 pan-
demic but has not yet commented on its end.

The previous analyses suggest that a flexible model may be necessary to describe
Brazilian GDP growth and to date its recessions. The heterogeneity in the duration of the
recession suggests that assuming constant transition probabilities over time would not
be appropriate. Inasmuch as the recessions came from internal and external factors, the
(time-varying) transition probabilities should depend on these factors. Indeed, the visual
inspection of Figure 2 also suggests that the recessions’ intensity and volatility are hetero-
geneous. A heteroscedastic model with more than two regimes may be needed to accom-
modate these features.

To accommodate all these possibilities, Section 3 put forward a flexible Markov- Switch-
ing model that generalizes the two-regimes Markov-Switching model with evolving regime-
specific means and stochastic volatility proposed by Eo and Kim (2016). In order to model
the Brazilian business cycles, our model allows 0 < R < ∞ regimes and adds sudden
changes in the long-run growth rate (0 ≤ B <∞) and time-varying transitions probabil-
ities.

Céspedes et al. (2006) applied Markov switching models to quarterly Brazilian GDP
growth rate from 1975Q1 to 2003Q4, allowing for breaks at the Collor Plans. The authors
argued that the MS-AR(2) specification, with such breaks, presents the best fit of the data.
This model leads to recession periods similar to those from CODACE, but it does not iden-
tify a crisis in the period 1998-1999. However, given the similarity of the recession chronolo-
gies from Céspedes et al. (2006) and CODACE, from now on, we use the latter as a reference
to compare with our results.

3 A Flexible Markov-Switching Model with Evolving Re-
gime-Specific Parameters

Let yt be the GDP growth rate and consider the following parametrization:

yt = δt + x′tβs,t + et, (1)

3In Brazil, the term monitored (or regulated) prices refers to prices that are established by contract or set
by a public entity, being less sensitive to supply and demand conditions.
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in which term βs,t captures the possibility that the coefficients associated with covariates
xt can vary either between states s, s ∈ {1, · · · , R}, and across time, for t = 1, · · · , T ,
and where et ∼ N(0, σ2

e,t) is allowed to feature time-varying volatility. In this case, σ2
e,t is

governed by the following stochastic process:

ln(σ2
e,t) = ln(σ2

e,t−1) + ζt (2)

ζt ∼ N(0, σ2
ζ ).

Similar to Albert and Chib (1993) and Eo and Kim (2016), we abstract from the au-
toregressive terms, as the model with no such parameters seems to fit the data well, so we
only consider deviations of yt from its mean.4 Therefore, we substitute the term x′tβs,t in
equation (1) by the following expression:

yt = δt + S0,tµ̄0,τ0 + · · ·+ SR−1,tµ̄R−1,τi + et (3)

= δt +
R−1∑
i=0

Si,tµ̄i,t + et (4)

in which τi = 1, · · · , Ti, for Ti < T , possibly having τj 6= τi,∀j, i ∈ {0, · · · , R − 1},
with j 6= i, and where

∑R−1
i=0 Ti = T . Thus, µ̄i,τi is the mean growth rate of the GDP

during regime i at time t, where state i have Ti random realizations. The latent variables
Si,t, i ∈ {0, · · · , R−1}, equal 1 if the state in place at t is i, and 0 otherwise. At this point,
it may be useful to use such latent variables to construct the following auxiliary variable:

St =

{
i, if Si,t = 1
0 otherwise. ,

so that we can let πi = Pr[St = i], i = 0, 1, ...R− 1, be the unconditional probability of
regime i.

The model in (4) is a more general version of the two-regimes, Markov-Switching
Model with Evolving Regime-Specific Parameters (MS-ERSP) proposed by Eo and Kim (2016).
In the present paper, the model can have 1 < R < ∞ regimes. Moreover, we allow the
long-run (stochastic) trend, δt, to have an arbitrarily large number of structural breaks B,
0 ≤ B <∞, and we refer to such general model as MS-ERSP(R,B).

We also allow the dependence of the mean growth rates across regimes by assum-
ing hierarchical priors in the spirit of Eo and Kim (2016); Koop and Potter (2007), with the

4However, it would be straightforward to introduce an autoregressive structure into our model.

7



following law of motion:

µ̄i,τi = µ̄i,τi−1 + ωi,τi , ωi,τi ∼ i.i.d. N(0, σ2
ωi,τi

) (5)

where τi = 1, · · · , Ti, with ωi,τi ⊥ ωi,τj for i 6= j andE(eτiωi,τi) = 0,∀i. As discussed by
Eo and Kim (2016) in a two-regimes context, if σ2

ωi,τi
= 0,∀i, the model collapses to that

of Hamilton (1989) without autoregressive terms as in Albert and Chib (1993).

However, as shown by Eo and Kim (2016), the long-run trend in the model in terms
of mean growth rates as in (4) may not exists. Thus, following the authors, for the model
to have a well-defined long-run (stochastic) trend, we redefine the model as

yt = δt +
R−1∑
i=0

Si,tµi,t + et, (6)

in which µi,t denotes the deviations from the mean growth rates during regime i from the
long-run mean growth rate δt.

By isolating the summation in (6) and applying the unconditional expectation on
both sides of the resulting equation, we can get:

E[yt − δt] = E

[
R−1∑
i=0

Si,tµi,t

]
= 0,

which, by the law of iterated expectations and the independence of St from µi,τi ,∀i, t, τ ,
results in the following long-run restriction that has to be satisfied:

E

[
R−1∑
i=0

πiµi,τi

]
= 0, (7)

where πi = Pr(St+1 = i) is the unconditional probability of regime i.

Given such a restriction, combined the random walk assumption forµi, analogous to
Eo and Kim (2016) there is a cointegrating vector, [π0 · · · πR−1]′, connecting [µ0,τ · · ·µR−1,τ ]
so that changes in µi,τ have no long-run effects on yt. This set of restrictions can be sum-
marized by the following system of equations:
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µ0,τ = µ0,τ−1 + θ0

(
R−1∑
i=0

πiµi,τ−1

)
+ ω0,τ

... =
...

µR−1,τ = µR−1,τ−1 + θR−1

(
R−1∑
i=0

πiµi,τ−1

)
+ ωR−1,τ

(8)

where ωi,τ ∼ N(0, σ2
ωi

),∀i ∈ {0, · · · , R− 1}

Note that the above system has an error-correction term given byθi
(∑R−1

i=0 πiµi,τ−1

)
, i =

0, · · · , R− 1, which, in order to have stability, must satisfy the following condition:

− 1 < 1 +
R−1∑
i=0

πiθi < 1 (9)

Thus, we can cast the model into the state-space representation:

µ∗0,t = µ∗0,t−1 + θ0dt

(
R−1∑
i=0

πiµ
∗
i,t−1

)
+ ω0,t (10)

... =
... (11)

µ∗R−1,t = µ∗R−1,t−1 + θR−1dt

(
R−1∑
i=0

πiµ
∗
i,t−1

)
+ ωR−1,t (12)

where dt =
∑R−1

j=0

∑R−1
i=0 dij,t, with

dij,t =

{
1, if St−1 = i, i 6= j

0, otherwise

Aguiar and Gopinath (2007) shows that a typical emerging economy subject to fre-
quent policy regime switches may experience substantial variation in its long-run trend.
Thus, we consider two alternatives to model the long-run trend to account for potential
time-varying volatility in the Brazilian growth trend. First, suppose the long-run growth
trend grows steadily, changing smoothly over time. In this case, we assume that δt evolves
as a random walk with time-varying volatility given by:

δt = δt−1 + εt (13)

in which εt ∼ N(0, σ2
ε).
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Now suppose that, after some structural reforms or a sequence of permanent shocks
to the economy’s productivity, the long-run growth suddenly changes. Given its smooth
hallmark, specification in (13) may not capture well such sudden jumps. Thus, similar to
Eo and Kim (2016), we assume that δt may be decomposed by the following:

δt = δbt

in which

δbt =



δ1 if 1 ≤ t ≤ τδ1
δ2 if τδ1 < t ≤ τδ2
...
δB if τδB−1

< t ≤ τδQ
δB+1 if τδB < t ≤ T

We model breaks following the change-point strategy proposed by Chib (1998), in
which the breaks are interpreted as a regime-switching process associated with a latent
regime variable, Sbt . Such a variable is governed by a first-order Markov process with the
following transition probabilities:

Pr[Sbt = i, Sbt−1 = i] = pbi,i and Pr[Sbt = i+ 1, Sbt−1 = i] = 1− pbi,i (14)

for i = 1, · · · , B, and

Pr[Sbt = B + 1, Sbt−1 = B + 1] = 1 (15)

withB + 1 being an absorbing state. Such restrictions imply the following transition ma-
trix:

P b =


pb1,1 pb1,2 0 · · · · · · 0
0 pb2,2 pb2,3 0 · · · 0
...

...
...

... pbB,B pbB,B+1

0 · · · · · · · · · 0 1


3.1 Modeling state transition

Fixed Transition Probabilities (FTP) Following the typical parameterization for the
time-invariant switching case (Albert and Chib, 1993; Eo and Kim, 2016; Hamilton, 1989),
we assume that the probabilities are given by:

pij,t = pij = Pr[St = i|St−1 = j], ∀t (16)
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where it is ensured that 0 < pij < 1 so that there will be no absorbing state. Thus, pij
depends only on St−1 and St.

Time-Varying Transition Probabilities (TVTP) For models with TVTP in the sense of
Filardo and Gordon (1998), we follow Kaufmann (2015) by assuming a (multinomial) logis-
tic functional form given by:

pij,t =
exp
(
Z̃tγji

)
∑R−1

j=0 exp
(
Z̃tγji

) (17)

where the transition distribution is assumed to depend on a set of predetermined variables
Zt, including a constant term, past realizations of Si,t –potentially as interactive terms
–, and some dependent variables that may affect the probability of a regime change. As
in Kaufmann (2015), such variables are expressed in deviations from their means. More-
over, for identification purposes, we impose a set of restrictions. First, we assume that
µ0,τ < µ1,τ < · · · < µR−1,τ , where µ0,τ < 0 and µR−1,τ > 0, which is an identifi-
cation requirement of the Kaufmann (2015)’s procedure, but which is consistent with our
modeling strategy. Moreover, if a model is assumed to haveG > 2 regimes, we impose that
allG regimes have to be a minimum number of observations. Eventually, to better identify
the states, we may also impose that some observations in the sample belong to a particular
state in the assumed state space. In contrast, the rest of the observations are left to be la-
beled by the Bayesian algorithm. Finally, we normalize regime 0 to be the reference regime,
which is a requirement for identification from Kaufmann’s procedure. Such normalization
implies the following transition probability:

P (St = 0|St−1 = j, Zt) =
1

1 +
∑

l∈K−0
exp(Ztγjl)

4 Priors and Posterior Simulation

Before eliciting the priors, it is useful to express the model in a more convenient way. Let
δt be the (time-varying) long-run growth trend. Similar to Koop and Potter (2007) and Eo
and Kim (2016), we can rewrite the model into the following state-space form:

yt = δt +
[
S0,t · · · SR−1,t

]  µ∗0,t
...

µ∗R−1,t

+ et (18)
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with the associated transition equation given by:
µ∗0,t
µ∗1,t

...
µ∗R−1,t

 =


1 + θ0π0dt θ0π1dt · · · θ0πR−1dt
θ1π0dt 1 + θ1π1dt · · · θ0πR−1dt

... · · · . . . ...
θR−1π0dt θR−1π1dt · · · 1 + θR−1πR−1dt



+


µ∗0,t−1
µ∗1,t−1

...
µ∗R−1,t−1

+


ω∗0,t
ω∗1,t

...
ω∗R−1,t

 (19)

along with the error-correction mechanism restriction implicit in condition (9).

Equivalently, we can represent equations (18) and (19) by the following compact form:

yt − δt = ȳt = Htµ
∗
t + et (20)

µ∗t = Ftµ
∗
t−1 + ω∗t (21)

where ω∗t ∼ N(0,Ωt), with

Ωt = diag
(
σω,0

∑
j∈K−0

dj0,t, σω,1
∑
j∈K−1

dj1,t, · · · , σω,R−1
∑

j∈K−(R−1)

d(R−1)0,t

)
,

where
∑

j∈K−i

denotes summation over all regimes but i.

4.1 Prior Scheme

Given (20), (21), S̃T = [S1 S2 · · · ST ]′, and the assumed form of error term et, the
model is conditionally linear and may feature heteroscedasticity. Defining further ỹT =
[y1 · · · yT ]′, δ̃T = [δ1 · · · δT ]′, µ̃∗T = [µ∗1 · · · µ∗T ]′, and σ̃T = [σ1 · · · σT ]′, where
µ̃∗t = [µ∗0,t · · ·µ∗R−1,t]′, the likelihood function associated with the model is given by

L(ỹT |δ̃T , µ̃∗T , S̃T , σ̃T ) =
T∏
t=1

f(yt|δt, µ∗t , St, σt) (22)

where

f(yt|δ, µ∗t , St, σt) =
1√

2πσt
exp
(
− 1

2σt
(yt − δt − µ∗t )2

)
(23)
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In the Bayesian paradigm, we assume that the mean deviations and the unobserved
counterfactual means are normally distributed around hierarchical priors given by5:

π(µ̃t) =
R−1∏
i=0

µ̃i,t =
R−1∏
i=0

N(µ̃i,t−1, B0) (24)

We assume normal priors for the error-correction terms,

π(θ) =
R−1∏
i=0

θi =
R−1∏
i=0

N(θ0,i,Θ0,i) (25)

The parameters associated with the long-run trend are also normal, given by:

π(δ) =
B+1∏
l=1

δl =
B+1∏
l=1

N(δ0,l,∆0,l) (26)

For models with FTP, a Dirichlet conjugate prior is assumed for the transition proba-
bilities, represented by (p0,j, · · · , pR−1,j) ∼ D(κ0,j, · · · , κR−1,j), which has the following
state-invariant prior:

π(P ) =
R−1∏
i

D(κ0,i, · · · , κR−1,i) (27)

In the models with TVTP, we follow Kaufmann (2015) by assuming the following prior
scheme:

π(γ) =
∏

k∈K−k0

π(γj) =
∏

k∈K−k0

N(γ0,k,Γ0,k), (28)

for some k ∈ K but those in the reference state, k0, since they are normalized to zero for
identification purposes (Kaufmann, 2015).

The constant proportion of the standard deviations associated with the GDP growth
is assumed to have an inverse gamma distribution,

π(σ2
e) = IG(s0,e, s1,e), (29)

as well as for σ2
ω :

5Details are presented in Appendix A
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π(σ2
ω) =

R−1∏
i=0

π(σ2
ω,i) =

R−1∏
i=0

IG(s0,ωi , s1,ωi), (30)

Moreover, in models with constant transition probability, we assume that

π(S̃T ) =
T∏
t=1

π(St|St−1, P ), (31)

while in the case of TVTP, in which the transition depends on variables Zt, the assumed
distribution is summarized by

π(S̃T |ZT , γ) =
T∏
t=1

π(St|St−1, Zt, γ), (32)

Finally, for the transition matrix associated with breaks, we follow Chib (1998) by
assuming a beta distribution, such that

pbl,h ∼ Beta(b0, b1) (33)

Thus, given initial conditions gathered by the vector Φ0 = [µ∗0 S0 δ0 σ0]
′, the full

posterior of the model is given by

p(Θ1|Φ0) = L(ỹT |δ̃T , µ̃∗T , S̃T , σ̃T )π(µ̃T )π(θ)π(δ)π(σ2
e)π(σ2

ω)π(S̃T )π(P ) (34)

where Θ1 = [δ̃T , µ̃
∗
T , S̃T , σ̃T , µ̃T , θ, δ, σ

2
e , σ

2
ω, S̃T , P ] . In the case of TVTP, the posterior of

the model is given by

p(Θ2|Φ0) = L(ỹT |δ̃T , µ̃∗T , S̃T , σ̃T )π(µ̃T )π(θ)π(δ)

π(σ2
e)π(σ2

ω)π(S̃T )π(P )π(P b)π(γ) (35)

where Θ2 = [δ̃T , µ̃
∗
T , S̃T , σ̃T , µ̃T , θ, δ, σ

2
e , σ

2
ω, S̃T , P, P

b, γ].

4.2 Posterior Estimation

Given the posterior distributions (34) and (35), we describe two Bayesian algorithms to
estimate the parameters of the models.
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4.2.1 Bayesian algorithm under constant transition probability

The algorithms to sample from the posterior probabilities for models with FTP or TVTP ope
through equations (18) and (19) in both cases. For the FTP model, the posterior probability
is given by (34) whereas, in the case of the TVTP model, the posterior probability is given
by (35).

Algorithm 1

1. Draw µ∗t using the modified Carter and Kohn (1994)’s algorithm as used by Eo and
Kim (2016). The posterior distribution is normal, centered around a hierarchical mean,
and is presented in Appendix A.

2. Draw ST using a multi-move strategy similar to Carter and Kohn (1994) combined
with the Hamilton (1989)’s filter, in a way similar to that followed by Kim and Nelson
(1998).

3. Draw θi, σω,i, i = 0, · · · , R − 1, given the normal priors for θi and inverse gamma
priors for σω,i presented in the previous section. This step is more challenging in the
context of R>2 regimes because it involves counterfactual means. Departing from
Eo and Kim (2016), we use a Random Walk Metropolis step in which we evaluate a
likelihood function derived from the Kalman filter. Thus, we treat the counterfactual
means as unobservables. In this step, also presented in Appendix A, we apply the
adaptive scheme proposed by Atchadé and Rosenthal (2005) to automatically tune
the Metropolis-Hastings scale parameters. Note that the draws for θi must satisfy
condition (9).

4. Draw σe,t using the stochastic volatility algorithm proposed by Kim et al. (1998).

5. Draw the fixed proportion of the volatility process. The posterior is inverted gamma,
given by: σ2

e ∼ IG
(
s0,e+T

2
,
s1,e+

∑T
t=1(yt−δt−µ∗t )2

2

)
6. Draw δt:

• ForB = 0: Define y∗t = yt −
∑R−1

i=0 Si,tµi,t and write the model:

y∗t = δt + et

where δt is given by (13) and the volatility process is given by (2). We recast the
model for y∗t in state-space representation and draw δt using the Kalman fil-
ter within the Carter and Kohn (1994) algorithm for time-varying parameters,
taking as given the entire path of the stochastic volatility process.

• For B > 0: Draw δl, ∀l ∈ {1, · · · , B + 1}, taking into account potential
breaks in the long-run growth trend. The posterior is normal, given by: δl ∼
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N(δ̄l, Σ̄δl), where δ̄l = Σ̄δl

(
∆−10,l δ0,l + 1

σ2
e

∑τδl
τδl−1

(yt −
∑R−1

i=0 Si,tµi,t)
)

, with

Σ̄δl =
(

∆−10,l δ0,l + T ∗

σ2
e

)
, and where T ∗ < T is the number of observations in

which δl is in place.

ForB = 0, the algorithm ends here. Otherwise,

7. Drawpij . The posterior distribution is a Dirichlet distribution with hyper-parameters
κ0,j + n0,j, · · · , κR−1,j + nR−1,j , wherenij refers to the total number of transitions
from state i to j.

8. Draw pbl,h. The posterior distribution is given by pbl,h ∝ Beta(b0 + nl,h, b1 + nl,h).

4.2.2 Bayesian algorithm under time-varying probability

Algorithm 2

1. Follow steps 1 to 6 of Algorithm 1, where steps 1 to 3 have to be modified to account
for the TVTP.

2. Draw γ. To do so, we follow the strategy developed by Kaufmann (2015) by introduc-
ing latent state-specific random utilities for all but the reference state 0.

zujt = Z ′tγj + ηjt,∀j ∈ K−0,

where ηjt is i.i.d., Type I extremes value.

The procedure is based on a partial representation of the model, in which the latent
utilities are expressed in difference from the maximum utility of the other states:

z?jt := zujt − zu−jt = c+ Z ′tγj + ζjt,∀j ∈ K−0,

where ζjt is i.i.d. Logistic, and where zu−jt = maxl∈K−0z
u
lt.

3. ComputePt given St and γ.

5 Parsimonious models for the Brazilian economy

Until now, we have discussed very general models, including models with no empirical
appeal. Let us now focus on modeling the Brazilian economy. To do so, we consider a vari-
ety of flexible models, considering MS-ERSP(R,B) and MS-ERSP-TVTP(R,B) models with R
∈ {2, 3} and B ∈ {0, 1, 2}. We begin by using an MS-ERSP-TVTP(3,1) model to illustrate
the procedures. In this case, the system of equations governing the state-dependent means
is given by:
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µ∗0,t = µ∗0,t−0 + θ0dt(π0,tµ
∗
0,t−1 + π1,tµ

∗
1,t−1 + π2,tµ

∗
2,t−1) + ω0,t (36)

µ∗1,t = µ∗1,t−0 + θ1dt(π0,tµ
∗
0,t−1 + π1,tµ

∗
1,t−1 + π2,tµ

∗
2,t−1) + ω1,t (37)

µ∗2,t = µ∗2,t−0 + θ2dt(π0,tµ
∗
0,t−1 + π1,tµ

∗
1,t−1 + π2,tµ

∗
2,t−1) + ω2,t (38)

dt =
∑2

j=0

∑2
i=0 dij,t,

dij,t =

{
1, if St−1 = i, i 6= j

0, otherwise

Thus, we can cast the model into the following state-space form:

yt = δt +
[
S0,t S1,t S2,t

] µ∗0,tµ∗1,t
µ∗2,t

+ et (39)

µ∗0,tµ∗1,t
µ∗2,t

 =

1 + θ0π0,tdt θ0π1,tdt θ0π2,tdt
θ1π0,tdt 1 + θ1π1,tdt θ1π2,tdt
θ2π0,tdt θ2π1,tdt 1 + θ2π2,tdt

+

µ∗0,t−1µ∗1,t−1
µ∗2,t−1

+

ω∗0,tω∗1,t
ω∗2,t

 (40)

or

yt − δt = Htµ
∗
t + et (41)

µ∗t = Ftµ
∗
t−1 + ω∗t (42)

where ω∗t ∼ N(0,Ωt), with Ωt = diag((d10,t + d20,t)σω,0, (d01,t + d21,t)σω,1, (d02,t +
d12,t)σω,1).

Therefore, the above system has a time-varying error-correction term given by

θi(π0,tµ0,τ−1 + π1,tµ1,τ−1 + π2,tµ2,τ−1), i = 0, 1, 2

and it must satisfy the following restriction in every point in time:

−1 < 1 + π0,tθ0 + π1,tθ1 + π2,tθ2 < 1
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The associated time-varying probability matrix is represented by:

Pt =

p11(Zt) p12(Zt) p13(Zt)
p21(Zt) p22(Zt) p23(Zt)
p31(Zt) p32(Zt) p33(Zt)


whereZt is a set of predetermined variables that potentially affect the probability of regime-
switching. Indeed, the evolution of the state variable St is assumed to be governed by a
multinomial logit (Kaufmann, 2015) given by (17), with regime 0, the “recession” regime,
expressing the reference regime.6 In all applications with TVTP, Zt has the following vari-
ables, expressed in t− 1:

1. Quarterly growth rate of the Brazilian government debt;

2. Standardized changes in reserves;

3. Standardized changes in the real exchange rate;

4. Standardized changes in real interest rate (annualized overnight rate minus CPI in-
flation);

5. G7 quarterly growth rate;

6. A measure of exportable commodity prices, proxied by the standardized World Bank
Commodity Price Index (energy + non-energy) divided by the US consumer price
index.

Variable 1 captures the fiscal instance of the Brazilian economy; variables 2 to 4 aim
to capture pressures in the exchange market in the sense of Eichengreen et al. (1996); and,
finally, variables 5 to 7 capture the global conditions that may affect an emerging economy.

In our empirical application, Z̃t is defined as follows:

Z̃t =
(
Ẑt � S0,t, · · · , Ẑt � SR−1,t, S0,t, · · · , SR−1,t

)
with Ẑt = Zt−Z̄t, where Z̄t is the mean ofZt, and in which� is the element-wise product.

In the TVTP, we use algorithm 2 to draw the parameters. However, in the FTP case,
the transition matrix is given by:

P =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 ,

6The same restriction is applied in the TVTP model with two regimes.
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and we apply algorithm 1 to draw the parameters of the model.

Recall that, for identification purposes, one has to impose a series of restrictions on
the models, especially in models with time-varying probabilities. Thus, in models with 2
regimes, we simple requireµ∗0,t < 0 andµ∗1,t > 0. In case of models with R = 3, we impose
that µ∗0,t < 0, µ∗1,t > 0, and µ∗2,t > 1.5% > µ∗1,t. In our empirical applications, regime
three can be interpreted as a regime of relatively fast recovery. As suggested by Figure 2, a
typical feature in the Brazilian business is that crises are followed by fast but short recovery
periods. Thus, we expect that regime 3 features a relatively high mean but with a very low
persistence profile. The only exception would be the period just after the global financial
crisis of 2007-2008 when the Brazilian economy experienced a slightly more persistent re-
covery period. For these reasons, we impose that such a period should be labeled regime
3.

Note that our regime labeling scheme for the three-states models differs from that
followed by Boldin (1996), which assumes a restricted matrix of transition probabilities so
that the economy evolves from a mature expansion to recession and then to post-recession
expansion. Previous experiments suggested that such a restriction scheme seems inconsis-
tent with the Brazilian data.

Models are evaluated through the Deviance information criterion (DIC) (Spiegelhal-
ter et al., 2002), which is the standard choice for models featuring stochastic volatility. The
DIC criterion, which can be viewed as a generalization of the Akaike information criterion
(AIC), penalizes model complexity while rewarding the model’s fit to the data. The pre-
ferred model is the one with the smaller DIC.

6 Results

We use data from 1980Q1 to 2019Q4, which is the same period covered by CODACE. Infer-
ence is based on 300.000 simulations after discarding 50.000 draws as burn-in. Consider-
ingR ∈ {2, 3},B ∈ {0, 1, 2}, and constant and time-varying transition probabilities, we
estimated 12 specifications. Table 2 presents the DIC for each model, suggesting that the
preferred model is MS-ERSP-TVTP(3,1). Thus, the selected model requires three regimes,
one break in the long-run growth, and TVTP transition probabilities to describe the Brazil-
ian data well.

Table 3 presents the prior and posterior moments for the MS-ERSP-TVTP(3,1) model.
The posterior mean for speed of adjustment coefficients, θi, i = 0, 1, 2, associated with the
error-correction term suggests that the mean growth rates of regimes 0 and 2 converge to
its long-run equilibrium at a very similar speed, whereas the convergence to regime 1 seems
relatively faster.

Note that the upper bound for 90% error band for θ0 is higher than that for θ2. This re-
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Table 2: Results

Regimes (R) Breaks (B) DIC

MS-ERSP

2
0 494.232
1 488.004
2 532.175

3
0 546.207
1 517.043
2 544.445

MS-ERSP-TVTP

2
0 480.886
1 478.136
2 492.014

3
0 482.093
1 473.753
2 495.628

sult suggests that, on average, the economy may go faster from a bad regime to a better one
than the converse, which is the opposite of the so-called bounce-back effect documented
by the literature as a salient feature of the US business cycles (see, for example, Kim et al.,
2005).

Table 3: Prior and Posterior Moments

Prior Posterior

Mean SD Mean SD 90% Error Band

θ0 -0.2500 0.5000 -0.5406 0.4790 [-1.343, 0.2605]
θ1 -0.5000 0.5000 -0.6481 0.3715 [-1.3161, -0.0985]
θ2 -0.2500 0.5000 -0.5604 0.4589 [-1.3516, 0.1384]
σω,0 0.3000 0.1500 0.5439 0.5340 [0.1626, 1.4217]
σω,1 0.3000 0.1500 0.4347 0.3262 [0.1532, 0.9952]
σω,2 0.3000 0.1500 0.6633 0.6159 [0.1767, 1.7671]
σe 0.0100 0.2000 0.0144 0.0088 [0.0059, 0.0302]
σζ 1.0000 10.000 1.2541 0.4723 [0.6635, 2.1504]

The posterior probabilities from the MS-ERSP-TVTP(3,1) model are displayed in Fig-
ure 3. In general, the posterior probabilities of recessions is higher in the recessions dated
by CODACE. However, such probabilities are not larger than 0.5 in two of them, 2001Q1-
2001Q4 and 2003Q1-2003Q2. Furthermore, our selected model identifies a novel recession
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in the period 2012. Regarding the expansionary regimes, the posterior probabilities suggest
that the second regime is more frequent than the third one, which has a more significant
growth rate. Given the complicated path of the Brazilian business cycles, we see these re-
sults suggesting that the model does a reasonable job in replicating the CODACE recession
dating.

Figure 3: Posterior Probabilities for the MS-ERSP-TVTP(3,1) model

Figure 4 displays the real GDP growth and its posterior mean, given byδt+
∑2

i=0 πiµi,t.
The visual inspection suggests that the overall model fit is good, indeed. In particular, the
significant changes in the GDP growth seem to be well captured by the MS-ERSP-TVTP(3,1)
model. Note that the pattern of Brazilian growth has changed over time. First, there is a
clear reduction in the volatility of the posterior mean from 1999 onwards, with a substan-
tial reduction in the incidence of periods of fast recovery. However, crises seem to become
much more persistent in recent years than in the 1980s. Given the three regimes indicated
by the MS-ERSP-TVTP(3,1) model, we can summarize the results from Figure 4 as follows:
(i) the Brazilian business cycles are asymmetrical, in the sense that recessions and booms
do not occur with similar probabilities nor with equivalent properties; (ii) the duration of
the regimes seem to be changing over time, with recession becoming more persistent and
not followed by a fast recovery regime; (iii) given that the selected model features TVTP,
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Figure 4: Posterior Mean for the MS-ERSP-TVTP(3,1) model

the state of the economy seems to depend on a series of factors. In particular, the MS-ERSP-
TVTP(3,1) features time-varying probability driven by domestic and international factors,
captured by the real interest rate, real exchange rate, commodity prices, and global uncer-
tainty.

Figure 5 presents the posterior probability of a break associated with the MS-ERSP-
TVTP(3,1) model. Such probability increases over time, reaching 50% by 1995Q1 and a uni-
tary value by 2015Q2. Given this estimation, we can plot a time-varying long-run growth
rate given by the following:

δ̃T = [πb1,1δ1 + (1− πb1,1)δ2, · · · , πb1,T δ1 + (1− πb1,T )δ2]
′ (43)

where πbj,t = 1− Pr(Sbt+1 = j). This is represented in Figure 6, which shows that the long-
run growth rate of the Brazilian economy has decreased systematically over time. While the
average long-run growth rate was about 0.5% between 1980Q1 to 1984Q4, it has slowed
down to about 0.22% in recent years. This result is consistent with the findings that the
Brazilian economy has experienced decreasing productivity during the last four decades.

Finally, Figure 6 presents the posterior distribution of the stochastic volatility for the
MS-ERSP-TVTP(3,1) model. It peaked around 1989 and, since then, has decreased. There-
fore, it seems that the Brazilian economy has stabilized around a lower growth trend.
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Figure 5: Posterior Probability Of a Break in the MS-ERSP-TVTP(3,1) model

Figure 6: Estimated Long-run trend for the MS-ERSP-TVTP(3,1) model
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Figure 7: Stochastic Volatility for the MS-ERSP-TVTP(3,1) model

7 Conclusion

This paper generalizes the Markov-Switching model with evolving regime-specific means
and stochastic volatility by Eo and Kim (2016) to allow forR regimes,B breaks, and time-
varying transition probabilities. We applied our flexible methodology to model the Brazil-
ian business cycles, a large emerging economy that has experienced many events during
the last four decades that may have permanently affected its long-run growth trend.

Our results suggest that the Brazilian business cycles are better characterized by 3
regimes: recession, fast recovery, and boom. Moreover, we found that the regime-dependent
average growth rates vary over our sample, besides presenting heterogeneous duration.
Furthermore, we found evidence for one break in the Brazilian long-run growth trend, sug-
gesting that the average long-run growth has reduced from 0.5% at a quarterly frequency
to about 0.22%. Finally, given our finding that the stochastic volatility of the GDP growth
has substantially reduced in recent years, our results suggest that the Brazilian economy
has stabilized at a slow growth rate.
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A Appendix

This section presents details on the algorithms used in the paper. Let us first redefine the
likelihood function associated with the model. Collect all the parameters of the model
through Θ. Then, we can rewrite the likelihood function by

f(yt|Θ, St) =
R−1∏
i=0

1√
2πσt

exp
(
− 1

2σt
(yt − δt − µ∗i,t)2

)
Pr(St = i) (44)

where Pr(St = i) is the probability ofSt = i. Thus, the log-likelihood of the model is given
by

` =
T∑
t=1

lnf(yt|Θ, St) (45)

A.1 Derivation of Step 1

Let Θ−µ∗ be the set of all parameters in the model but µ∗T . As shown by Eo and Kim (2016),
conditional on S̃T the model has a linear state-space representation given by equations
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(20) and (20). In this case, we can apply the modified Carter and Kohn (1994)’s algorithm
as described in Eo and Kim (2016).

For identification purposes, we impose the restriction µ∗0,t < · · · < µ∗R−1,t, where
µ∗0,t < 0 and µ∗R−1,t > 0.

For t = T , the posterior distribution of µ∗T is normal, given by:

µ∗T |ỸT , S̃t,Θ−µ∗ ∼ N(µ̃T |T , PT |T ) (46)

where µ̃T |T andPT |T are obtained from the Kalman filter.

For t = T − 1, · · · , 1, µ∗t is drawn conditional on µ∗t+1, where

µ∗t|t,µ∗t+1
= µ∗t|t + Pt|tF

′
t+1(Ft+1Pt|tF

′
t+1 + Ωt+1)

−1(µ∗t+1Ft+1µ
∗
t|t) (47)

and
Pt|t,µ∗t+1

= µ∗t|t − Pt|tF ′t+1(Ft+1Pt|tF
′
t+1 + Ωt+1)

−1Ft+1Pt|t (48)

Finally, we draw the counterfactual means by the following procedure: if St = i and
St+1 = j, for all j 6= i, draw µj, t from

µ∗j,t,µ∗t+1
∼ N(µ∗t+1|µ∗t+1(j + 1, 1), Pt,t|µ∗t+1

(j + 1, j + 1))

Otherwise, set
µ∗j,t = µ∗t|t,µt+1

(j + 1, 1),

whereµ∗j,t+1|µ∗t+1(j + 1, 1) is the j + 1-th element ofµ∗t+1|µ∗t+1 andPt,t|µ∗t+1
(j + 1, j + 1)

is the j + 1-th element of the diagonal of the matrixPt,t|µ∗t+1
, and i, j ∈ [0, R− 1].

A.2 Derivation of Step 2

Define Θ̃T = [δ̃T µ̃
∗
T σ̃T ] and let Θt = [δt µ

∗
t σt]. Given the state-space representation of

the model, let p(S̃T |Θ̃T , ỸT ) be the joint distribution ofSt, t = 1, · · · , T . This density can
be decomposed as the following:

p(S̃T |Θ̃T , ỸT ) = p(ST |ΘT , yT )
T−1∏
t=1

p(St|St+1,Θt, Ỹt)

1. Using (44), run Hamilton (1989)’s filter to drawST . The final iteration of the Kalman
filter delivers ST .
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2. Generate St|Θ̃T , ỸT , St+1 for t = T − 1, · · · , 1 using the fact that:

p(St|Θt, yt, St+1) ∝ p(St+1|St,Θt)p(St|Ỹt,Θt),

wherep(St|Ỹt,Θt) denotes the transition probability. We can now generateSt using
the following probability:

Pr(St = i|St+1, Θ̃t, Ỹt) =
p(St+1|St = i,Θt)p(St = i|Ỹt,Θt)∑R−1
j=0 p(St+1|St = j,Θt)p(St = j|Ỹt,Θt)

A.3 Derivation of Step 3

Given the priors for θi and σω,i, i = 0, · · · , R− 1, we again use equations (20) and (20) to
evaluate the likelihood of the model using the Kalman filter, conditional on S̃T , δ̃T , σ̃T and
µ̃∗T .

The parameters in this step are drawn using a random walk Metropolis-Hasting step,
where employ the adaptive scheme proposed by Atchadé and Rosenthal (2005) to automat-
ically tune the Metropolis-Hastings scale parameters.

Draws for θi should be consistent with the restriction:

−1 < 1 +
R−1∑
i=0

πiθi < 1

B Testing the Algorithm

We perform a simple Monte Carlo experiment to evaluate the performance of the algorithm.
In doing so, we consider a model withR = 3,B = 0, CPS, and we use the following data
generating process:

ln(σ2
et) = ln(σ2

et−1
) + ζ1/2eζt (49)

eζt ∼ N(0, 1) and ζ = 0.02. and

yt = δt +
2∑
i=0

Si,tµi,t + et, (50)
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where µ0 ≈ −1.5, µ1 ≈ 0.5, and µ2 ≈ 2.0, which are simulated from the following
system:µ∗0,tµ∗1,t

µ∗2,t

 =

1 + θ0π0,tdt θ0π1,tdt θ0π2,tdt
θ1π0,tdt 1 + θ1π1,tdt θ1π2,tdt
θ2π0,tdt θ2π1,tdt 1 + θ2π2,tdt

+

µ∗0,t−1µ∗1,t−1
µ∗2,t−1

+

ω∗0,tω∗1,t
ω∗2,t

 (51)

where θ0 = −0.55, θ1 = −0.15 and θ2 = −0.35. Moreover, we assume ω∗t ∼ N(0,Ωt),
with Ωt = diag((d10,t + d20,t)σω, (d01,t + d21,t)σω, (d02,t + d12,t)σω), in which σω = 0.02.

Moreover, the process for δt is given by:

δt = δt−1 + σ
1/2
δ eδt

where eδt ∼ N(0, 1), σδ = 0.02 and the starting value is δ0 = 0.8.

Finally, we assume the following transition matrix:

P =

0.950 0.010 0.015
0.025 0.975 0.010
0.025 0.015 0.975


We first simulate a synthetic GDP growth path with 500 observations. We then esti-

mate the model using an MCMC run of 10000 iterations, with a burn-in of 5000 iterations.
Figure 8 presents the simulated series and its associated estimated posterior mean. The
visual inspection suggests that the algorithm works well.
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Figure 8: Monte Carlo Experiment: Estimation of the posterior mean (δt +
∑2

i=0 πiµi,t).
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