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imal number of bidders. Due to the nonregularities in the econometric model, we adopt

a Bayesian procedure. We find that the procedure performs relatively well in a certain

region of the support of the participation probabilities. As expected, its performance

improves with the sample size.

Keywords: first-price auctions, unobserved competition, nonregular models, discon-

tinuity, Bayesian estimation.

JEL Codes: C13, C57, D44.

∗PhD student at QMUL. Email: d.lopesribeiro@qmul.ac.uk
†Email: e.guerre@qmul.ac.uk



1 Introduction

Auctions have long been used as a mechanism to sell and exchange objects1. These goods

range from art & antiques objects, commodities to bonds. Governments worldwide also

usually perform auctions to sell public properties to private individuals and organisations

(Krishna, 2009). They play an important role on the allocation of public resources. For

instance, a large share of government contracts are allocated through procurement auctions,

being it from highway constructions to purchase of hospital equipment, to mention a few.

Since the seminal papers of Vickrey (1961) and Harsanyi (1968), much effort have been

directed to further understand the properties of auction as allocation mechanism as Myerson

(1981), Riley and Samuelson (1981), and Milgrom and Weber (1982) in early stages of the

literature2. In particular, first-price auctions, which will be the focus of this paper, has

received a lot of attention with respect to the establishment and characterisation of its

equilibrium as in Riley and Samuelson (1981) under symmetric Independent Private Value

(IPV, hereafter) paradigm; Lebrun (1999) for the asymmetric IPV case with an arbitrary

number of bidders and single reserve price for all bidders; Maskin and Riley (2000) with the

affiliated value paradigm without reserve prices; and Athey (2001) that shows existence of

equilibrium in a more general framework3. Furthermore, Lebrun (1999), Bajari (2001), and

Lebrun (2006) tackle the issue of uniqueness.

Despite of the rapid expansion of the theoretical literature and its solid background, in

the early stages the empirical analysis of auctions did not seem to evolve at the same speed,

even in face of the ample availability of data. As argued in Perrigne and Vuong (1999), much

of it could be credited to the complex form of equilibrium strategies derived from complicated

differential equations that are highly nonlinear with respect to the parameters of interest.

1It became widely spread with the advent of the internet and the rise of online auctions in the late 90s,
see Lucking-Reiley (2000) and Bajari and Hortaçsu (2004).

2See Milgrom (1989) and Klemperer (1999) for an early development of the auction literature as well as
Krishna (2009) for a summary of the main types of auctions and its basic properties.

3Shen et al. (2019) studies the characterisation of Bayesian Nash Equilibrium (BNE) with discrete value
distribution.
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The upsurge of the structural approach aimed to recover auctions’ primitives from observed

data enabling the analyst to provide rich policy insights4. With that in mind, Paarsch

(1992) aimed to develop a maximum likelihood based method (MLE) to estimate the model.

However, the author faced numerical issues given the complex structure of the equilibrium

strategies. Much of the approaches developed thereafter made use of direct procedures,

i.e., by assuming a certain specification for the valuation distribution and computing the

BNE as Donald and Paarsch (1993); Donald and Paarsch (1996); and Laffont, Ossard and

Vuong (1995) which propose a simulated nonlinear least square procedure that avoids the

computation of the equilibrium strategy.

To overcome these issues, Guerre, Perrigne and Vuong (2000) show that for the symmetric

IPV case the valuation distribution can be nonparametrically identified by the observed bids

and number of bidders. In addition, they propose a two-step nonparametric procedure to

estimate the valuation distribution from observed bids5. Nevertheless, note that all the

aforementioned approaches require to observe all bids and the effective number of bidders,

which may not always be feasible as Slattery (2020) that observes only winning bids in its

analyse on subsidy competition for firms in the U.S. between state and local government,

adopting an auction framework.

The degree of competition is a key feature in empirical analyse of auctions since it signif-

icantly impacts the estimation of the structural parameters. As argued in Guerre and Luo

(2022), whether it is the presence of collusion placing phantom bids or inexperienced bidders,

the difference between number of actual buyers and observed ones is an important issue to

be considered since participation is by itself an object of major interest. Some attempts to

detect collusion in auction models can be found in the literature, see Bajari and Summers

(2002) and references therein. Schurter (2020) develops a nonparametric approach to detect

the presence of collusion in first-price auctions and estimate its effect on the seller’s expected

4Until late 1980s, the empirical literature was constrained to analyse the implications of the game theo-
retical model using experimental or field data as explained by Perrigne and Vuong (1999).

5Gimenes and Guerre (2022) propose a quantile regression (QR) framework for estimation and inference
of the private value QR from the bid QR.
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revenue. Even so, its approach is not immune to the curse of dimensionality.

It is important pointing out that the problem of unobserved competition is not new.

Early papers in the literature have, even if in different degrees, considered this matter.

Laffont, Ossard and Vuong (1995) consider the actual number of bidders, constant across

auctions, as an additional parameter to be estimated. Paarsch (1997) for the case of English

auctions, where the degree of competition is treated as a nuisance parameter to be eliminated

afterwards in the estimation step. An, Hu and Shum (2010) study the identification of first-

price auctions when the degree of competition is unknown by the analyst due to the presence

of binding reserve price rule. The observed number of bidders is used as a proxy for the degree

of competition along with an instrument that could be defined as a discretised second bid.

Shneyerov and Wong (2011) study the identification of first-price and Dutch auctions when

the set of active bidders is not observed due to the presence of reserve price. Their result

relies on the fact that all submitted bids are observable.

In a different note, Guerre and Luo (2022) develop a density discontinuity approach to

deal with unobserved competition, including both collusion and uninformed bidders. Their

framework allow the degree of competition to vary across auctions and requires only the

winning bid to be observed, which is likely to offer better econometric properties. How-

ever, they restrain their analysis to the identification of the participation and private value

distribution, so estimation and inference procedures remain to be developed.

The contribution of this paper is twofold. First, we propose a reasonably simple estima-

tion procedure to first-price auctions using minimal information, following the framework of

Guerre and Luo (2022). By focusing on the location-scale family, we estimate the participa-

tion distribution and the private values distribution. Second, we contribute to the literature

that concerns to the empirical analysis of finite mixture via Bayesian methods. In particular,

when it presents nonregularities in the form of discontinuities in the mixture density as well

as when the support of each mixture component depends on the parameter of interest. We

find that the procedure performs better in a certain region of the support of the participation
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probabilities. Nonetheless its performance improves with the sample size, as expected.

This paper is organised as following. In section 2 we present the auction model. In

section 3 we describe the implications of the economic theory to the econometric model,

concluding with the identification of the participation distribution and the private values

distribution. In section 4 we discuss the Bayesian estimation procedure. In section 5 we

present simulations to assess the behavior of the proposed estimator. Finally, we conclude

with section 6.

2 The symmetric and independent private values frame-

work

This section starts by describing the first-price auction model under the symmetric and

independent private values (IPV, hereon) paradigm. Next, we derive the two quantile equi-

librium mappings that will be used in the identification exercise. Assume that there are

N ∈ N symmetric risk neutral buyers in which N is observed by all buyers and N is the

set of active buyers. There is a single object for sale and no reserve price, where each

bidder i values the object by an amount Vi that comes from a distribution F indepen-

dent of the level of competition N . Notice that in this set up each buyer places a sealed

bid and the buyer with the highest bid wins the auction. She then pays a price equal to

her bid and enjoys Vi. Also, assume that for each i and N = n, the bidding strategy Bi

is formed by a mapping si(Vi | n). Therefore, the expected utility of i will be given by

(Vi − si(Vi | n))P(si(Vi | n) ≥ sj(Vj | n) | Vi) with j ̸= i and i, j = 1, ..., n. Below we state

the set of additional assumptions on the private value distribution and briefily discuss its

implications.
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Assumption IPV: Private values Vi are iid copies from a common knowledge distribution

F , known by bidder i but not by the competitors. Moreover, F has compact support on

[v, v] and its density function f is continuous and strictly positive over [v, v].

Maskin and Riley (1984) prove that under Assumption IPV, the mapping si(Vi | N) is

strictly increasing and continuously differentiable with symmetric strategies, i.e, si(Vi | N) =

s(Vi | N) = sN(Vi) for all i
6. In particular, Maskin and Riley (2003) show that the compact

support of F with positive density over the whole support, including the boundaries, rule

out the existence of multiple equilibria.

2.1 Quantile equilibrium mappings

Following Liu and Luo (2017); Gimenes and Guerre (2022); Guerre and Luo (2022), we can

write the buyers problem using a quantile framework. Let V (α) = F−1(α) represent the

private value quantile function with quantile level α ∈ [0, 1]. Let Bn(α) be the bid quantile

function for a given auction with n bidders. The bidder i private value rank Ai = F (Vi)

follows a uniform distribution on [0, 1]. Denote Gn and gn, respectively, as the winning bid

cumulative distribution and density function given an auction with N = n buyers. Let the

conditional bid lower and upper bound be defined as bn ≡ Bn(0) and bn ≡ Bn(1), then

the support of the conditional bid distribution will then be given by
[
bn, bn

]
. Remember

that Bi = sn(Vi) for all i and number of buyers n, where sn(·) is strictly increasing and

continuously differentiable. As a result of that, since Bn(Ai) = sn(V (Ai)), the best-response

strategy is the bid quantile function Bn(α) = sn(α) for all α ∈ [0, 1].

Assume that only bidder i with rank Ai = α places a suboptimal bid Bn(a) with

a ̸= α meanwhile the competitors bid optimally. Notice then, that the probablity of

winning the auction with n bidders is given by P(max
j ̸=i

Bn(Aj) ≤ Bn(a)) = P(max
j ̸=i

Aj ≤

a) = an−1. The expected payoff can be written as (V (α) − Bn(a))a
n−1 in which α =

6The change of notation from s(Vi | N) to sN (Vi) is purely for the sake of convenience. The strategy
mapping sN (·) will depend on the level of competition N , but not on the individual buyer i beyond her
private value Vi.
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argmax {(V (α)−Bn(a))a
n−1}. Since the best-response strategy is the bid quantile func-

tion, it follows that Bn(.) is differentiable and therefore, the first order condition (FOC) of

the expected payoff optimization gives

∂(V (α)−Bn(a))a
n−1

∂a
|a=α= (n− 1)αn−2

[
V (α)−Bn(α)−

αB
(1)
n (α)

n− 1

]
= 0,

which in its turn, gives the private quantile function as

V (α) = Bn(α) + α
B

(1)
n (α)

n− 1
. (1)

Equation (1) provides the equilibrium mapping from the bid quantile function to the

private value quantile function. The inverse equilibrium mapping from the private value

quantile function to the bid quantile function is also attainable. From the FOC, we have

that ∂[Bn(α)αn−1]
∂α

= (n− 1)V (α)αn−2 which yields

Bn(α) =
n− 1

αn−1

α∫
0

tn−2V (t)dt = V (α)−
∫ α

0

tn−2V (1)(t)dt (2)

with V (1)(·) > 0. Equation (2) provides an equilibrium mapping from the private value

quantile function to the bid quantile function. Also, note that from (2) we get that the

quantile equilibrium bid is increasing with respect to n, meaning that buyers place bid more

aggressively when facing higher competition, therefore increasing sellers expected revenue

as noted by Bulow and Klemperer (1996). See example 2.1 for the illustration of the main

concepts using a uniform model for the private values. The uniform model is a powerful tool

since it is simple enough to be analytically treated and still exhibit the main challenges as

the location-scale model, which is the focus of this paper.

Example 2.1 (Uniform model) Assume that there can be Nl bidders in each auction

l = 1, ..., L. Let Vil ∼ U [0, θ] for some parameter θ ∈ Θ. Then, the equilibrium strategy will

be Bil =
Nl−1
Nl

Vil, implying that Bil | Nl = n ∼ U [0, n−1
n
θ].
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3 The econometric model

In this section, we present the restrictions that the model imposes on the winning bid struc-

ture. Since the primitives of the model are the distribution of the number of bidders PN

and the private values distribution F , we describe the discontinuity approach that enable

the nonparametric identification of these quantities, making use of the quantile equilibrium

mappings, following the arguments of Guerre and Luo (2022). As we explain later, these

discontinuities in the winning bid distribution are caused by a positive bid density at the

largest bid. Indeed, as the largest bid is smaller than the largest private value, many bidders

would be able to bid at this level, resulting in a positive density yielding a positive profit.

Finally, the fact that bids increase with competition will also play an essential role in this

identification argument.

3.1 Winning bid distribution

Now, assume that N is not observed by the econometrician and only the winning bid defined

by W = maxi∈N Bi is available. As it turns out, the analyst will then observes draws from

the unconditional winning bid distribution given by

G(b) =
∞∑
n=2

P(N = n)× P(max
1≤i≤n

Bi ≤ b) =
∞∑
n=2

Gn
n(b)× P(N = n) (3)

where Gn(·) stands for winning bid cumulative distribution function conditional to the num-

ber of bidders equal to n. The RHS of equation (3) holds due to the fact that participation is

considered exogenous, which is reflected by the assumption of the private values distribution

F being independent of the level of competition N . The exogenous participation feature is

part of Guerre and Luo (2022)’s benchmark model to illustrate the identification procedure

without further complications. Nonetheless, the authors relax this assumption and show

that the primitives of the model are still identified. In this paper we will focus on the esti-

mation of their benchmark model with exogenous participation. Lets focus on the structure
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of the winning bid distribution. For that, assume that N is a discrete random variable with

distribution PN as per assumption N below.

Assumption N: The number of active buyers N is a discrete random variable with support

{n, n+ 1, ..., n} in which 2 ≤ n ≤ n <∞, with πn = P (N = n) > 0 and
∑n

n=n πn = 1.

Following Guerre and Luo (2022)7, the authors show that when assumptions IPV and

N hold, it follows that a c.d.f G(·) is rationalised by a first-price auction if and only if two

conditions are met. The first condition is that G(·) has a finite mixture structure as below

G(·) =
n∑

n=n

Gn
n(·)× πn (4)

where Gn(·)’s are c.d.f’s defined on the support
[
bn, bn

]
and 2 ≤ n ≤ n < ∞, with πn > 0

and
∑n

n=n πn = 1. The second condition is that the bid quantile function Bn(·) = G−1
n (·)

is continuously differentiable and the equilibrium mapping defined by (1), V (α) = Bn(α) +

αB
(1)
n (α)
n−1

, is invariante in the level of competition N = n for any fixed α ∈ [0, 1], along with

the fact that it is continuously differentiable over [0, 1] with V (1)(·) > 0.

Besides that, given that the components of the mixture defined by (4) are generated by

the same private value distribution provided that assumptions IPV and N hold, it imposes

some constraints on the extremities of the conditional winning bid density gn(·). These

constraints are expressed as

gn(v) =
n

n− 1
f(v), (5)

gn(bn) =
1

(n− 1)(v − bn)
(6)

where v = bn = V (0) and v = V (1) with v > bn for all n in the support of the number of

buyers. It turns out that under assumptions IPV and N, the upper bound of the support

7Proposition 2.1 in Guerre and Luo (2022).
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of the conditional bid distribution, bn, increases with the level of competition n = n, · · · , n

as can be seen by (2)8. Furthermore, Guerre and Luo (2022) show that (6) implies that the

unconditional winning bid density function g(.) will be discontinuous at each bn with jumps

of size

△n =
nπn

(n− 1)(v − bn)
. (7)

Given that g(.) will be discontinuous at each bn, it follows that bn is identified for each

n from the location of each jump. As a result, the jump size △n is as well identified up to a

constant v.

Example 3.1 (Uniform model continuation.) The uniform model introduced in the

example 2.1 has unconditional winning bid c.d.f and density denoted by G(b | θ) and g(b | θ),

which depends on a certain parameter θ. As a matter of fact, the support of each component

as well depends on θ and it is given by [0, n−1
n
θ].

G(b | θ) =
n∑

n=n

πn

(
b

n−1
n
θ

)n

I{b ≤ n− 1

n
θ} (8)

and

g(b | θ) =
n∑

n=n

πn

(
b

n−1
n
θ

)n−1
n2

(n− 1)θ
I{b ≤ n− 1

n
θ}. (9)

Notice that by equation 9 it is clear that the location of the discontinuities depend upon θ,

namely bn(θ) =
n−1
n
θ. This feature characterises nonregularities in the econometric model if θ

is of main interest. Figure 1b illustrates the unconditional density g(· | θ) for (n, n) = (2, 3),

θ = 2, and for values of π2 = 0.1 and π2 = 0.9. In this case, b2(2) = 1 and b3(2) = 4
3

regardless of π2.

8Lemma 2.1-(i) in Guerre and Luo (2022).
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b

g(b | θ)

v b2(θ) b3(θ)

g(b
−
2 (θ))

g(b
+

2 (θ))

g(b
−
3 (θ))

(a) π2 = 0.1.

b

g(b | θ)

v b2(θ) b3(θ)

g(b
−
2 (θ))

g(b
+

2 (θ))

g(b
−
3 (θ))

(b) π2 = 0.9.

Figure 1: Unconditional winning bid density function - Uniform model.

As per figure 1, the size of the jumps can be expressed as △2 = g(b
−
2 (θ))− g(b

+

2 (θ)) and

△3 = g(b
−
3 (θ)) − 0. The value of π2 does not affect the location of the discontinuity, but

rather the size of the jumps.

3.2 Participation and the private values distribution

In this section we describe the identification of the main quantities of interest, i.e, the

participation distribution and the private values distribution.

The lower bound of the support of the participation distribution is identified from the

lower tail of the winning bid distribution as in Hill and Shneyerov (2013) where n = limt→0+ =

logG(v+t)
log t

. Also, it is important to point out that assumption IPV ensures the existence of

discontinuities in the unconditional winning bid distribution and given that bn < v, it places a

positive mass of gn(.) at bn. Consequently, the upper bound n will also be identified through n

and the number of discontinuity points of g(·), i.e, n = n+#{b; g(·) is discontinuous at b}−1.

In conclusion, due to the fact that each n generates a discontinuity in the unconditional

winning bid density g(·), the entire support of the number of buyers is identified. The jump

size defined in (7) play a key role to identify the participation probabilities. First, notice

that from (7) we have that πn = n−1
n
(v− bn)△n. In addition to that, the fact that Σn

nπn = 1
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yields

v̄ =
1 +

∑n̄
n=n

n−1
n
∆nb̄n∑n̄

n
n−1
n
∆n

(10)

and by replacing (10) into the expression of πn found above gives

πn =
n−1
n
∆n∑n̄

k=n
k−1
k
∆k

+
n− 1

n
∆n

(∑n̄
k=n

k−1
k
∆kb̄k∑n̄

k=n
k−1
k
∆k

− b̄n

)
(11)

with n = n, ..., n. Hence, since bn and ∆n are identified for each n, we conclude that πn

is also identified for each n. In summary, PN and its support are identified.

With respect to the private values distribution, the identification of F relies upon the

fact that the support of gn(·) monotonically increases with respect to n and the iterative

relation between the two equilibrium mappings described above. The upper bound of Bn(α)

can be written, using (12), as bn = Bn(1) = (n− 1)
∫ 1

0
tn−2V (t)dt which gives

Bn(α) =
n− 1

αn−1

 bn
n− 1

−
1∫

α

tn−2V (t)dt

 . (12)

Also, remember that equation (1) is given by V (α) = Bn(α)+α
B

(1)
n (α)
n−1

. As stated in Gimenes

and Guerre (2022), expression (1) is a quantile version of the corresponding mapping in

Guerre et al. (2000) and, similarly, is the key ingredient to indetify V (.) with knowledge of

Bn(·)9. Above we explained that the competition distribution in (4) is identified along with

its support. Additionally, the fact that the conditional winning bid distribution has support

[v, bn] for each n, we have that Gn−1(·) = 1 on [b̄n−1, b̄n] and from (4) we get that

G(b) =
(
1− πn + πnG

n
n(b)

)
.

Therefore, on [b̄n−1, b̄n]

9Equation 3 in Guerre et al. (2000).
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Gn(b) =

(
G(b)

πn
+
πn − 1

πn

) 1
n

.

It follows then that Bn(.) = G−1
n (·) is identified on [α1, 1] with α1 = Gn(bn−1) using the

top portion of the winning bid distribution as noted by Guerre and Luo (2022). From (1)

we find that V (.) is also identified on [α1, 1]. The mapping (12) gives

Bn−1(·) = (n− 2)

 bn−1

n− 2
−

1∫
α1

tn−3V (t)dt


which results in the identification of Bn−1(·) on [α1, 1]. Hence, Bn−1(·), Bn(·), and V (·) are

identified on [α1, 1]. Let bn−1 < β1 = Bn−1(α1) < bn−1 where Gn−1(b) is identified for b > β1.

Note that (4) then becomes

G(b) =
(
1− πn−1 − πn + πn−1G

n−1
n−1(b) + πnG

n
n(b)

)
and

Gn(b) =

(
πn−1G

n−1
n−1(b)

πn
+
πn−1 + πn − 1

πn

) 1
n

which results in Gn(b) being identified on b > β1. Consequently, Bn(.) will then be identified

on α ≥ α2 = Gn(β1). Similarly as before, Bn−1(·) and V (·) will also be identified on α ≥ α2

using the mappings (1) and (12). Considering that Bn(·) is monotonically increasing with

n, the remaining part of the identification exercise constitutes of applying this iterative

procedure so that V (·) is identified on its whole support.

4 The estimation strategy

As seen from the uniform example, the private value and participation parameters affect

the support, the discontinuity location and jumps of the winning bid distribution. It is
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the signature of irregular econometric models, characterised in particular by a discontinuous

likelihood function. Consequently, standard frequentist methods might not be the most

appropriated to estimate the parameters of interest. Some papers in the literature have

contributed to the understanding of nonregularities as Ibragimov and Has’minskii (1981)

and Ghosal and Samanta (1997) that study the single parameter density with jumps; Ghosal

and Samanta (1995) extends the result of Ibragimov and Has’minskii (1981) for the mixed

case of nonregular and regular parameters; Hirano and Porter (2003) study models with

parameter-dependent support; and Chernozhukov and Hong (2004) for when the location

of the discontinuity depends on the parameter of interest through a regression curve. In a

different type of nonregularity, Bochkina and Green (2014) study the asymptotic behaviour

when the posterior distribution concentrates at the boundary of the support.

The common conclusion of the studies mentioned above is that Bayesian methods outper-

form gold standard frequentist methods as MLE, both in terms of efficiency as in what con-

cerns the computational cost involved. With that in mind, we opt to implement a Bayesian

approach. In this section we describe the Bayesian estimation procedure of the components

parameters along with the components weights of the finite mixture derived from the model

with unobserved competition presented in section 3.1. We focus on the scale-location model

for the private values. In this paper, we make use of an importance sampling algorithm to

estimate the location, scale, and the competition distribution.

As per the uniform model example and the density function in (9), it is evident that

different pairs
(
N,N

)
yield different density functions, either by exhibiting different number

of components or by displaying different components itself. We illustrate it using the uniform

model as below.

Example 4.1 (Uniform model continuation.) Lets consider the following candidate pairs:

(2, 3), (3, 4), and (2, 4). The equivalent of equation (9) for each pair is, respectively,

g(b | θ) = π2

(
b
θ
2

)
4

θ
I{b ≤ θ

2
}+ (1− π2)

(
b
2
3
θ

)2
9

2θ
I{b ≤ 2

3
θ}, (13)
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g(b | θ) = π3

(
b
2
3
θ

)2
9

2θ
I{b ≤ 2

3
θ}+ (1− π3)

(
b
3
4
θ

)3
16

3θ
I{b ≤ 3

4
θ}, (14)

and

g(b | θ) = π2

(
b
θ
2

)
4

θ
I{b ≤ θ

2
}+ π3

(
b
2
3
θ

)2
9

2θ
I{b ≤ 2

3
θ}+ π4

(
b
3
4
θ

)3
16

3θ
I{b ≤ 3

4
θ} (15)

with π4 = 1− π2 − π3. Notice that each of the candidate pair defines a different model.

So the fact that
(
N,N

)
is unknown and the estimator of θ will depend on the pair, leads

to the necessity of estimating
(
N,N

)
or, equivalently, to the choice of the most appropriate

model. Take, for instance, the density function (13) and assume that π2 = 1 so that the

correct model has only one component. Nonetheless, assume that we are trying to estimate

the model considering the pair (2, 3), using (13). In this example, the posterior distribution

of theta, say Pθ, will have a support [
3
2
maxwl,∞), where it should be given by [2maxwl,∞).

In the case of a Pareto prior, for instance, the distribution will concentrate around its lower

bound. Therefore, the Bayesian estimator of θ will converge to 3
4
θ, thus inconsistent. This

is mostly due to the choice of continuous prior for π2. In conclusion, taking into account

the correct pair is of utmost importance to estimate θ and π. We aim to tackle this issue

by considering N as parameter to be estimated using the Bayesian approach that will be

presented later on.

Finally, we derived the priors from a GMM estimator developed in a first step. In

section 4.1 we describe the preliminary GMM estimation procedure and the derivation of its

asymptotic distribution; and in section 4.2 we present in details the derivation of the priors

and the Bayesian estimation using an importance sampling approach.
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4.1 GMM preliminary estimation

Define
(
N,N

)
as the candidate pair of minimum and maximum number of bidders. This

step concerns to the computation of the GMM estimator of θ = (µ, σ, π′)′ conditional to the

pair (N,N). First, lets focus on to describe the set of moments that do identify θ and the

iterative procedure to compute the estimates. Then, we derive the asymptotic distribution

of the GMM estimator and explain how it can be used to calibrate the priors to perform the

Bayesian estimation of section 4.2.

Let W = (W1, · · · ,WL) be the vector with size L of winning bids in which Wl are iid

copies from g(w | θ), where

g(w | θ) =
N∑

n=N

πnnG
n−1
n

(
w − µ

σ

)
gn
(
w−µ
σ

)
σ

. (16)

As explained in the previous section, gn(·) is define on the support [b, bn] with gn(bn) > 0.

Assume N < N . Moreover, define Inµ, σ) ≡ E
[
I
(
bn−1 ≤ Wl−µ

σ
≤ bn

)]
with n in {N +

1, · · · , N}. Therefore, from (19) we can write this set of N −N moments as

In(µ, σ) =
N̄∑

k=n

πk
[
Gk

k

(
b̄n
)
−Gk

k

(
b̄n−1

)]
. (17)

In addition to that, there are two more moments derived from the maximum winning bid

and the expected winning bid as described below.

G−1(1 | θ) = µ+ σb̄N̄ , (18)

E[W | θ] = µ+ σ

N̄∑
n=N

πnmn (19)

with mn =
∫
b · nGn−1

n (b) · gn(b)db. Altogether, (17)-(19) and the fact that π′1 = 1, with

1′ = (1, · · · , 1), enable us to just identify θ. Let I(µ, σ) ≡ (IN+1(µ, σ), · · · , IN(µ, σ))′ and T

an upper triangular matrix, so that the sample analogue of (17)-(19) can be written as

15



Î(µ̂, σ̂)− T


π̂N+1

...

π̂N

 = 0, (20)

π̂N −

1−
N∑

n=N+1

π̂n

 = 0, (21)

W − µ̂− σ̂

N̄∑
n=N

π̂nmn = 0, (22)

max
1≤l≤L

Wl − µ̂− σ̂bN = 0 (23)

where W is the sample average of W and În(µ̂, σ̂) =
∑L

l=1 I
(
b̄n−1 ≤ Wl−µ̂

σ̂
≤ b̄n

)
. To imple-

ment the iterative procedure we make use of (20)-(23). Let 1̃(N−N+1) be the first column of

an identity matrix of order (N −N +1) and J(N−N+1)×(N−N) be an upper triangular matrix

as below

J =

−11×(N−N)

I(N−N)

 (24)

with a row vector 11×(N−N) = (1, · · · , 1)′ and I(N−N) being an identity matrix of order

(N −N). From (20) and (21) we can write the competition probabilities as

π̂ = 1̃(N−N+1) + J × T−1 × Î(µ̂, σ̂). (25)

Moreover, the equations (22) and (23) yield

σ̂ =
maxlWl −W

bN −
∑N̄

n=N π̂nmn

, (26)
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µ̂ = max
l
Wl − σ̂bN . (27)

The iterative procedure implied by (25), (26), and (27) is described below.

Algorithm 1 GMM iterative procedure

1. Initialize with

σ̂0 =
maxlWl −W

bN −
∑N̄

n=N π̂0mn

,

µ̂0 = max
l
Wl − σ̂0bN .

2. Given (µ̂k−1, σ̂k−1), compute

π̂k = 1̃(N−N+1) + J × T−1 × Î(µ̂k, σ̂k).

3. Given π̂k, compute

σ̂k =
maxlWl −W

bN −
∑N̄

n=N π̂kmn

,

µ̂k = max
l
Wl − σ̂kbN .

4. Iterate until converges.

4.1.1 Asymptotic distribution of the GMM estimator

Notice that in equation (23) we use max1≤l≤LWl as an analogue for G−1(1 | θ). As it turns

out, it does not affect the asymptotic distribution of the estimator of θ. We start with fol-

lowing result.

17



Proposition 1 Let bN(θ) = µ+ σbN and W = maxi∈N Bi. Under assumptions N and IPV,

we have that

L(max
1≤l≤L

Wl − µ− σbN)
d−→ σ

NπNgN(bN)
E (28)

with AsVar(maxlWl) =
1
L2

(
σ

NπNgN (bN )

)
.

Proof.

P
[
L(max

1≤l≤L
Wl − bN(θ)) ≤ −t | θ

]
= P

[
max
1≤l≤L

Wl ≤ bN(θ)−
t

L
| θ
]

= PL

(
W ≤ bN(θ)−

t

L
| θ
)

= exp

{
L log

[
1− P

(
bN(θ)−

t

L
≤ W ≤ bN(θ)

)]}
= exp

{
L log

[
1− t

L
g
(
bN(θ) | θ

)
+ o(1)

]}
→ exp

[
−tNπNgN(bN)

σ

]

As a result, maxlWl = µ+ σbN +OP
(
1
L

)
, which in its turn along with the fact that the

estimator of θ converges at rate
√
L, guarantees that maxlWl can be replaced by µ + σbN

without any effect on the asymptotic distribution. Let M̂(θ̂) = 0 be the set of equations

defined by (20)-(23). Thus, under consistency of θ̂ we get that

√
L(θ̂ − θ) = (M̂ (1)(θ) + oP(1))

−1
√
LM̂(θ)

d−→ (M (1)(θ))−1 ×N
(
0, lim

L→∞
Var(

√
LM̂(θ))

)
.

Notice that Î(µ, σ) is discontinuous and not differentiable, meaning that one should

pay close attention to it when deriving the asymptotic distribution of θ̂. Nonetheless, the

expansion of M̂(θ̂) can be obtained through the partial derivatives of the mapping (µ, σ) →

I(µ, σ) as shown by Chen et al. (2003). Denote Iµ(µ, σ) ≡ ∂I(µ,σ)
∂µ

and Iσ(µ, σ) ≡ ∂I(µ,σ)
∂σ

, then

Î(µ̂, σ̂) = Î(µ, σ) + (Iµ(µ, σ) + oP(1))(µ̂− µ) + (Iσ(µ, σ) + oP(1)(σ̂ − σ).
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Therefore, the M (1)(θ) matrix and the asymptotic variance limL→∞ Var(
√
LM̂(θ)) can

be expressed, respectively, as

M (1)(θ) =



Iµ(µ, σ) Iσ(µ, σ) 0(N−N)×1 −T

0 0 1 1(N−N)×1

−1 −
∑N̄

n=N πnmn −σ[mN ] σ[mN+1 · · ·mN ]

−1 bN 0 0(N−N)×1


and

AsVar(
√
LM̂(θ)) = lim

L→∞



LVar(Î(µ, σ)) 0(N−N)×1 LCov(W, Î(µ, σ)) 0(N−N)×1

01×(N−N) 0 0 0

LCov(W, Î(µ, σ))′ 0 Var(W ) 0

01×(N−N) 0 0 0


where

LVar(Î(µ, σ)) = Diag(I(µ, σ))− I(µ, σ)I(µ, σ)′

and

LCov(W, Î(µ, σ)) = E
[
I
(
b̄N ≤ Wl − µ

σ
≤ b̄N+1

)]
− E[Wl]I(µ, σ).

4.2 Bayesian estimation via importance sampling

In this section, we describe the Bayesian estimation method using an importance sampling

algorithm with focus on the scale-location model for the private values. Similarly as before,

let (N,N) be the pair of possible minimum and maximum number of bidders and W =

(W1, · · · ,WL)
′ an iid sample of winning bids defined by Wl = max(B1l, · · · , BNll) where

Bil | Nl
iid∼ 1

σ
gNl

(
b− µ

σ

)
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with support of gn(·) being [v, bn]. Having that in mind, we get that the winning bid, Wl,

conditional to a particular level of competition, Nl = n, follows the distribution h(w | θ, n)

with θ = (µ, σ, π′)′ where

h(w | θ, n) = nGn−1
n

(
w − u

σ

)
1

σ
gn

(
w − u

σ

)
.

Moreover, we have that

P(Nl = n | π,N,N) = πn > 0

with n = N, · · · , N so that
∑N

n=N πn = 1. Therefore, the unconditional winning bid distri-

bution is given by

h(w | θ, n, n) =
n∑

n=n

πnh(w | θ, n). (29)

4.2.1 The choice of Priors

Before introducing the sampling algorithm, it is important to describe how we use the pre-

liminary GMM estimator and its asymptotic variance for the choice of priors. Remember

that each of the the pairs of candidates for minimum and maximum number of active buyers

(N,N) define a model. We set a flat prior on the set of candidate pairs. The GMM esti-

mation then is used to calibrate the hyper-parameters of the prior of θ conditional to each

pair. Therefore, the priors are written conditional to the data W . Moreover, conditional to

the pair (N,N), (µ, σ) are independent of π, so the prior can be written as

p(θ | W,N,N) = p(µ | W,N,N)p(σ | W,N,N)p(π | W,N,N).

We choose the prior of π, conditional to (N,N), to be a Dirichlet distribution with

parameters ê(N,N) = γ × 11×(N−N+1), γ > 0 as
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π | N,N ∼ D(ê(N,N)). (30)

Furthermore, we set

µ+ σbN | N,N ∼ Pareto

(
max
1≤l≤L

Wl, ŝN

)
. (31)

We calibrate ŝN to match the estimate of the variance in (28) up to a multiplicative

constant ρ as

ρ2 ˆAsvar

(
max
1≤l≤L

Wl

)
=
ρ2

L2

(
σ̂

Nπ̂NgN(bN)

)2

=

(
max
1≤l≤L

Wl

)2
ŝN

(ŝN − 1)2(ŝN − 2)

so that, for each N ,

ŝN =
( ρ
L

)−1
(

σ̂

Nπ̂NgN(bN)

)−1

(1 + o(1)).

Thus, we have that

σ | µ+ σbN ∼ IG (a, b) (32)

and µ = µ+ σbN − σbN . The mean and variance in (32) are given, respectively, by b
a−1

and(
b

a−1

)2 1
a−2

where the latter is calibrated to match the variance of the GMM estimator.

4.2.2 Posterior distributions and the Bayesian estimation algorithm

The marginal posterior distribution of the pair (N,N) given by

P((N,N) = (n, n) | W = w) =
P((N,N) = (n, n),W = w)

h(w)

=
h(w | (N,N) = (n, n))p(n, n)∑
k,k h(w | (N,N) = (k, k))p(k, k)

(33)
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with

h(w | n, n) = E[h(w | θ,N,N) | N = n,N = n]

=

∫
h(w | θ, n, n)p(θ | n, n)dθ

(34)

is a key ingredient to estimate the pair (N,N) (i.e. to select the model defined by the

pair (N,N)) as we explain later. To estimate (33) we first need to estimate the marginal

likelihood (34) for each candidate pair (n, n). To do so, note that (34) is an expectation with

respect to the prior of θ conditional to the pair (n, n), then it can be estimated using

ĥS(W | n, n) = 1

S

S∑
s=1

h(W | θs, n, n) (35)

with θs as iid copies from the prior p(θ | W,n, n).

Finally, we can estimate moments of the posterior distribution of θ, namely E[ψ(θ) |

W,N,N ], using importance sampling 10. For the case of the posterior mean (i.e., ψ(θ) = θ)

we have

E[θ | W,N,N ] =

∫
θdPθ

=

∫
θ
h(W | θ,N,N)

h(W | N,N)
p(θ | N,N)dθ

(36)

where Pθ denotes the posterior distribution of θ conditional to the pair (N,N) and p(θ |

N,N) is the prior distribution of θ for a given pair (N,N). Define θ̂N,N = E[θ | W,N,N ],

which can be estimated as

1

SĥS(W | n, n)

S∑
s=1

θsh(W | θs, n, n) (37)

with θs being iid copies from the prior distribution p(· | W,n, n). The estimation algorithm

is described in details below.

10An importance sampling algorithm is a Monte Carlo method that enable the analyst to compute expec-
tations of a target distribution using a given alternative distribution, as explain Robert and Casella (2005,
Chapter 3).
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Algorithm 2 Estimation of θ and (N,N).

1. Conditional to each pair (N,N), compute the GMM estimator of θ = (µ, σ, π) and of

its corresponding asymptotic variance according to 4.1.

2. Set the priors as (30), (31), and (32) so that their parameters match the GMM esti-

mation performed in the previous step.

3. For a given possible pair (N,N) = (n, n), draw S iid copies from the priors and

approximate the marginal likelihood using (35). Repeat the procedure for each possible

pair (N,N) to obtain an estimate of the marginal posterior pair using (33).

4. Estimate (N̂ , N̂) as below

(a) N̂ =

⌊∑
n,n

nP̂((n, n) | W )

⌋
, where ⌊∗⌋ stands for the integer part of ∗.

(b) N̂ =

⌊∑
n nP̂((N,n) | W )I(N = N̂)∑
n P̂((N,n) | W )I(N = N̂)

⌋
, where P̂(· | W ) denotes the estimated val-

ues of the marginal posterior probabilities of the corresponding pair; and I(·) is

the indicator function.

5. Given a pair (N̂ , N̂), estimate θ̂N,N using (37).

5 Simulation Exercise

For the simulation exercise, set Vi = µ + σvi, where (µ, σ) = (10, 1) and vi ∼ N(0, 1)

with truncated support at the 5th and 95th quantile so that assumption IPV is satisfied.

Moreover, define (N,N) = (2, 3). Therefore, the candidate pairs are (2, 2), (2, 3), and (3, 3).

In addition, we implement the simulations for values of π2 = 0, 0.1, 0.2, ..., 1. The sample

size is set to 100, 500, and 1000 auctions. The priors for (µ, σ) are set according to the

GMM procedure described in the section 4.1. For the mixture weights π, we set it to follow
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a Dirichlet distribution as in (30) with γ = 0.5. Finally, a flat prior is defined for the

candidate pairs so that each candidate has equal probability. We follow the algorithm 2.

Figure 2 shows the performance of our model selection approach, i.e, the performance of

the estimator of the pair denoted by (N̂ , N̂). We evaluate the performance by computing

the simulation distribution of the pair estimation. when π2 = 0 and small sample size the

method tends to underestimate N , selecting the wrong pair often as figure 2 illustrates. This

phenomenon diminishes as the sample size increase. A possible explanation lies on the fact

that the size of the jumps are monotonically increasing with respect to the magnitude of

π2
11. So for low values of π2 it becomes harder to detect N < N12.

Furthermore, to assess the performance of θ̂ we compute the root mean square error

(RMSE). Remember that the pair (N,N) directly impact the estimation of the component

parameters as well as the participation distribution. As shown by figure 3, for low values

of π2, the RMSE spikes as the algorithm tends to perform relatively worse regarding the

estimation of (N̂ , N̂). This highlights the importance of a reasonable estimation procedure

for (N,N) and, in particular, further investigation regarding the estimation of N .

11See equation (7).
12See figure 1.
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(c) L=1000.

Figure 2: Distribution of the choice of pairs for different values of π2.
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Figure 3: Performance based on the RMSE.

6 Conclusion

In this paper, we have developed a Bayesian approach to estimate the parameters of first-

price auctions with unobserved competition. Our model incorporates the uncertainty in the

number of bidders and leverages the non-regularity of the econometric model to provide a

more accurate estimation method.

The results of our simulations the overall performance of our estimator confirms the

effectiveness of Bayesian techniques in handling the complexities inherent in auction models

with unobserved competition. The method tends to be less accurate for some values of π,

highlighting the need for further refinement in these cases. Nonetheless, the performance

improves as the sample size increases.
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Future research could extend our framework to more complex settings, including the

addition of covariates as well as the presence of unobserved heterogeneity. Additionally,

exploring alternative prior distributions and alternative sampling procedures can be useful

to determine the estimation accuracy and could provide further insights into the flexibility

and applicability of Bayesian methods to the model in question.
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