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Abstract

In a labor market characterized by directed search, unemployed workers

search for jobs that are flexible with respect to how much effort they require.

Assuming separable preferences, we characterize the optimal unemployment

contract for both the case in which savings are observed and, if preferences

are of the CARA-GHH type, for the case in which they are hidden. It is

always optimal for the government to distort downwards effort through posi-

tive marginal tax rates on labor earnings. In the case with hidden savings, we

show that optimal contracts take a very simple form, thus showing that Shimer

and Werning’s (2007) findings for a McCall search model have a counterpart

in a directed search environment with intensive margin adjustments. Key-

words:Unemployment Insurance; Directed Search; Intensive Margin; Hidden

Savings. JEL Codes: H21; J64.

1 Introduction

Unemployment insurance programs must strike a balance between insurance pro-

vision and disincentives for work. An important literature has been developed to

address its optimal design – Hopenhayn and Nicolini (1997); Shimer and Werning

(2007, 2008). By focusing on the extensive margin of labor supply, this line of work
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has emphasized how insurance reduces the incentives for searching for and/or ac-

cepting job offers.

In this paper, we study the problem of a government that offers optimal unem-

ployment insurance financed with income taxes in a dynamic environment of directed

search. We depart from most of the literature by taking into account the intensive

margin of labor supply. The main consequence of allowing for intensive margin ad-

justments is that firms may expand the supply of vacancies by requiring agents to

increase their output conditional on lending a job. Or, taking it from the workers’

perspective, they can reduce the expected unemployment spell if they are willing to

look for jobs that will require more effort for the same earnings.

While framed as increased effort, our model may also be interpreted as capturing

the notion of equalizing differences. The many different non-pecuniary dimensions

by which one job may be different from another, have been recently shown to be

quantitatively relevant for unemployment insurance analysis — Hall and Mueller

(2018); Luo and Mongey (2019). What makes them important for our analysis is

that these are adjustments in work conditions that are neither observed nor controlled

by the planner.1

We fully characterize the optimum for general separable preferences when that

the planner controls agents’ savings. We prove that, at the optimum, there is a

positive wedge at the intensive margin of effort. This is somewhat surprising since

the planner can use non-distortionary (with respect to the effort margin) instruments,

and we assume no distributive motive. The logic is as follows. The planner observes

earnings but not effort or the non-wage characteristics of a job. Hence, if an agent

decides to deviate by becoming more selective, which we prove to be the relevant

deviation, he will do so by choosing a job that requires less effort but which she has

a lower probability of getting. Then, conditional on landing the job, she will have

a higher marginal willingness to work than someone who abides by the rules and

follows the strategy prescribed by the planner. Slightly distorting downwards effort

1In the real world, a worker may adjust his search not only by becoming more selective with
regards to his wages but also with respect to the amount of effort he will have to make in case
he lands the job and the quality of his prospective work environment, neither of which is within
the reach of policy. These equalizing differences surveyed by Rosen (1987) have been shown to be
quantitatively in recent work by Mas and Pallais (2017); Sorkin (2018); Hall and Mueller (2018).
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has second order utility costs for equilibrium choices but first order costs for one who

deviates, as a deviator enjoys more leisure thus attributing a lower marginal value

to it. This relaxes incentive constrains and lowers the cost of providing insurance.

Unemployment benefits and net earnings decline with the length of the unemploy-

ment spell. The repeated moral hazard nature of the problem implies that, at the

optimum, the stochastic process governing consumption satisfies the inverse Euler

Equation. In the long run, unemployment benefits converge to zero.

To implement the optimal allocation described above, the planner must control

agents’ savings which need not be possible in practice. We take the possibility of

hidden savings and borrowing in perfect capital markets into account. For this case,

we restrict our analysis to preferences of the Greenwood et al. (1988) type specialized

to the case of Constant Absolute Risk Aversion, henceforth CARA-GHH preferences.

We show that the optimal allocation can be implemented by a very simple stationary

contract: an upfront unemployment installment, a0, constant gross earnings, ye, and

taxes, T , for the case in which the agent is able to land a job. The pattern of declining

consumption in both the employment and unemployment state is achieved by the

worker’s (dis)savings along the unemployment spell. We also prove an immiseration

result for this hidden savings environment.

Importantly, in this case too, a positive wedge on the intensive margin charac-

terizes the optimum.

The rest of the paper is organized as follows. After a brief literature review, in

Section 2, we describe the environment and offer a one period account of the forces

explaining our findings. We derive the properties of an optimal system under the

assumption that the planner controls agents’ savings in Section 3 and use Section 4

to do the same for the case of hidden savings. In Section 5 we assess the quantitative

relevance of our theoretical results and offer a conclusion in Section 6.

Literature Review

The modern treatment of unemployment insurance program design has its roots in

Shavel and Weiss (1979), and found its first canonical treatment in Hopenhayn and

Nicolini (1997). We add to this classic paper by focusing on directed search and by
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introducing the possibility of selecting jobs according to how hard one has to work

conditional on being employed.

Acemoglu and Shimer (1999) consider a general equilibrium model of directed

search with risk aversion. The static version of our model generalizes theirs by

considering the possibility of adjusting the effort requirements of different jobs. Our

is, however, a component planner’s program whilst their focus is on the general

equilibrium aspects of unemployment insurance.

Shimer and Werning (2007, 2008) evaluate the consequences of allowing agents to

borrow and save in perfect capital markets using McCall’s (1970) model of sequen-

tial job search. Under CARA preferences, they prove that a policy comprised of a

constant benefit during unemployment, a constant tax during employment and free

access to a riskless asset is optimal. We consider a directed search environment with

the possibility of intensive margin adjustments in effort. We also find that simple

stationary policies are optimal under CARA, thus extending their findings to this

alternative environment. We add to the prescription, the optimality of distorting

downwards effort.

A burgeoning literature – Golosov et al. (2013); Kroft et al. (2020); da Costa et al.

(2022) – investigates redistributive policy in the presence of labor market frictions.

Golosov et al. (2013) consider the redistribution of residual income, i.e., the share

of agents incomes which cannot be explained by fundamentals but are rather the

consequences of randomness in the search process. Assuming directed search they

prove that the optimal redistribution of residual income can be attained with positive

unemployment benefits and an increasing and regressive income tax schedule. As in

our case, a positive wedge obtains despite worker’s homogeneity, albeit for a different

reason.

Kroft et al. (2020) focus on finding sufficient statistics for the optimal combination

of income taxes and unemployment benefits using perturbation methods. They do

not consider intensive margin adjustments.

da Costa et al. (2022) study optimal distributive policies in the presence of la-

bor market frictions. While they focus on intensive margin choices, their model is

static and focused on the interaction between distributive motives and unemploy-

ment insurance design. They offer an approach to quantify the gains from using
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information on a worker’s output whenever labor contracts are observable. Here, we

abstract from redistribution and focus on the dynamics of insurance when contracts

are not observed and there is scope for adjustments in the intensive margin. The

results herein shed light of their findings regarding the consequences of not having

full information on contracts.

2 Environment

Time runs for t = 0, 1, ..., and is discounted by β ∈ (0, 1). We assume that preferences

are separable, across time, states and between consumption, c, and effort, n. The flow

utility generated by (c, n) is given by U(c, n) = ϕ(c) − η(n), for ϕ′,−ϕ′′, η′, η′′ > 0,

satisfying the Inada conditions limc↓0 ϕ
′ (c) =∞ and limn↓0 η

′ (n) = 0.

One unit of effort, n, produces one unit of the consumption good, c, which price

is normalized to one.

The economy starts with the worker in an unemployment state. A job offer is a

contract specifying how much effort, n, the worker must make if he is hire and the

earnings, y, to which he is entitled if he supplies the specified amount, n. A labor

contract, i.e., a pair, (n, y), defines a (sub)market. The probability, p, of receiving a

job offer in any market depends on the market tightness, with the implied relationship

captured by the function, % : [0, 1] → [0,∞). This function associates to every

employment probability, p, the vacancy-to-workers ratio that generates it. That is,

with some abuse in notation, let p(λ) denote the probability that an agent gets an

offer when the workers-to-vacancy ratio is λ. If λ : [0, 1] → [0,∞) is its inverse,

then, for all p, we define the % function by %(p) := 1/λ(p). We follow usual directed

search specifications and assume that % is strictly increasing, twice differentiable and

strictly convex, satisfies %(0) = 0, limp↑1%(p) =∞. We remark that this implies that

%(p)/p is strictly increasing and assume that2 limp↓0%(p)/p > 0.

To model a firm’s hiring decision, we normalize the cost of posting a vacancy

to κ/(1 − β). We assume that an unemployed worker who applies for a job at

time t receives the answer at the beginning of the same period, before taking the

2One example is λ(p) = p−1 − 1.
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unemployment insurance.

We study the cost minimization of a government that must guarantee a life-

time utility, W0, to the worker. In its attempt to offer insurance for the agent, the

planner faces the following informational restrictions. First, the planner does not

know whether the agent received a job offer and rejected it or whether he did not.

Second, conditional on the worker landing a job, the planner does not know the

type of contract that the agent was offered. More precisely, the planner observes

earnings, y, but not n. Whereas the first source of informational asymmetry has

been extensively studied, the second one is novel. To highlight its role we start by

presenting a one period version of our economy in which the heuristics for our main

findings are simpler to convey.

2.1 A one-period economy

Consider a simplified version of our model in which an agent lives a single period

split in two sub-periods. In the first sub-period the agent decides where to search,

i.e., chooses p. If he lends a job, he earns ye in exchange for producing κ%(p)/p. If

not, he is entitled to an unemployment benefit cu.

Two things about our description of a worker’s problem are worth highlighting.

First, we assume that contracts are not observable. What this means in our setting

is that the planner observes how much an employed worker is paid, ye, but it cannot

monitor how much effort, ne, a job demands. Second, from the zero profit condition,

we have p[ne − ye] = κ%(p), a condition that must hold for any contract on and off

the equilibrium path.

We model tax policy as follows. For an employed worker to consume ce he must

earn ye = ce + T and pay total taxes, T , to the government. Note that since the

output he produces must also cover the vacancy-related expenditures, we must have

ne > ye. So, in what follows we leave ne and T in the background and write the

planner’s program with the controls ce, cu and ye.

Since the planner observes both ce and ye, the only margin in which deviation

is possible is on the choice of p. Second, the choice of effort, ne = ye + κ%(p)/p is

made when the worker chooses the job to which apply, a seemingly relevant feature
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of actual labor markets. Since the government observes neither p nor ne, it can

only condition policy on the employment status and on ye. Note that a worker who

chooses a higher matching probability must provide higher effort for the same level

of earnings.

Noting that (ce, cu, ye) is controlled by the planner, define, for any p̂,

U (p̂, cu, ce, ye) := (1− p̂)ϕ(cu) + p̂

[
ϕ(ce)− η

(
ye + κ

%(p̂)

p̂

)]
,

and define the agent’s optimal choice of p̂ by

p ∈ arg max
p̂
U (p̂, cu, ce, ye) . (1)

Under the assumption that the solution to the agents’ problem is interior, that

is, that the worker actively searches for a job at the optimal solution, it must satisfy

the first order condition,

ϕ(ce)− ϕ(cu)− η
(
ye +

%(p)

p

)
− pη′

(
ye +

%(p)

p

)(
%(p)

p

)′
= 0, (2)

where the notation, (
ϑ(p)

p

)′
=

d

dp

(
ϑ(p)

p

)
,

is used to simplify the expressions.

The Pareto frontier can be obtained by maximizing the planner’s expected rev-

enue

− (1− p)cu + p (ye − ce) , (3)

subject to delivering utility, U∗, to the agent,

U (p, cu, ce, ye) ≥ U∗, (4)

and to respecting the incentive-compatibility constraint (1). Due to concavity of the

problem, the latter can be replaced by (2) whenever it is desirable to induce positive

search. Clearly, if it is not desirable to induce positive search, the solution displays

7



cu = ce = ϕ−1 (U∗). Let us focus on the case in which the optimal amount of search

is positive.

Let µ be the Lagrangian multiplier associated with the constraint (4) and λ, the

one associated with (2). The first-order conditions are

ϕ′(cu) =

(
µ− λ

1− p

)−1

, [cu]

ϕ′(ce) =

(
µ+

λ

p

)−1

, [ce]

η′
(
ye +

%(p)

p

)
=

1

pµ+ λ

[
p− η′′

(
ye +

%(p)

p

)(
%(p)

p

)′]
, [ye]

and

(ce − ye)− cu = −λ ∂
2

∂p2
U (p, cu, ce, ye) . [p]

Clearly, to incentivize effort, one must ensure that ce > cu, which implies λ > 0

and µ > 0. This fact coupled with the concavity of the worker’s problem with respect

to p, ∂2U (p, cu, ce, ye) /∂p2 < 0, confirm that (ce − ye)− cu > 0. Hence, the planner

raises more revenues when the worker finds employment. This is the source of moral-

hazard of our model. The worker does not internalize the insurance provided by

the government. Accordingly, the government finds higher matching probability

desirable.

Let us now investigate how this impacts the marginal rate of substitution between

consumption and leisure. From the first-order conditions with respect to ce and ye

we immediately see that

ϕ′(ce)− η′
(
ye +

%(p)

p

)
=

1

pµ+ λ
η′′
(
ye +

%(p)

p

)(
%(p)

p

)′
> 0.

At the optimal allocation, labor effort choice is distorted downward. To better un-

derstand this property, consider a putative optimal allocation in which this margin

is not distorted: ϕ′(ce) − η′ (ye + %(p)/p) = 0. A small perturbation in which con-

sumption when employed, ce, and earnings, ye, are both decreased by some small
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ε > 0 has no direct fiscal effect and only a second-order effect on the worker’s utility.

However, it changes the marginal incentive to search for a job. The convexity of

the cost of labor and the fact that workers who intend to find a job with higher

probability must provide higher effort once employed imply that this perturbation

makes relatively more attractive searching for a job. The relaxes the moral-hazard

constraint and allows the planner to improve policy.

3 Optimal Unemployment Insurance

The one-period version of our model was useful to highlight the extra margin for

deviation when not all aspects of jobs can be controlled by the planner. Yet it

precludes an important dimension of real world unemployment insurance: the time

dimension of optimal policy. We start our investigation of optimal unemployment

insurance policy by describing what would be possible if contract offers were observed.

That is, we characterize the benchmark case in which a firm’s posted contract is

observable, but one cannot observe whether the worker received or not an offer.

3.1 Observable Contracts

Assume that the planner observes all the details of contracts that are offered. We

can think of a job contract as a pair, (ce, ne), where ce denotes the consumption to

which an employed person is entitled, and ne the level of effort which is required

from him.

Clearly, one cannot force the agent to find a job such that

u > ϕ(ce)− η (ne) .

Hence, letting c (·) := ϕ−1(·), one solves

C(W ) = max
p,ce,cu,n,W̃

p

1− β

[
n− c− κϑ(p)

p

]
+ (1− p)

[
−cu + βC(W̃ )

]
,
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subject to the promise keeping,

W =
p

1− β
[ϕ(c)− η (n)] + (1− p)

[
ϕ(cu) + βW̃

]
,

and the incentive constraint,

ϕ(c)− η (n)

1− β
≥ ϕ(cu) + βW̃ . (5)

We can rely on Lemma 5 to write the following Khun-Tucker problem,

C(W ) = max
p,ce,cu,n,W̃

p

1− β

[
n− ce − κϑ(p)

p

]
+ (1− p)

[
−cu + βC(W̃ )

]
+

µ

[
p

1− β
[ϕ(ce)− η (n)] + (1− p)

[
ϕ(cu) + βW̃

]
−W

]
+

ψ

[
ϕ(ce)− η (n)

1− β
− ϕ(cu)− βW̃

]
The first-order conditions for the problem above are

n− ce − κϑ(p)

p
+ cu − βC(W̃ ) +

µ

1− β

{
ϕ(ce)− η (n)

− (1− β)
[
ϕ(cu) + βW̃

]}
− κϑ′(p) = 0, [ p ]

p

1− β

(
1− µη′ (n)− ψη′ (n)

p

)
= 0, [ n ]

p

1− β

[
−1 + µϕ′(ce) +

ψϕ′(ce)

p

]
= 0, [ ce ]

− (1− p) + µ (1− p)ϕ′(cu)− ψϕ′(cu) = 0, [ cu ]

C ′(W ) = −µ, [ W ]

and

(1− p)
[
βC ′(W̃ ) + βµ− βψ

1− p

]
= 0. [ W̃ ]
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To evaluate these first-order conditions we must first assess whether the moral

hazard and the promise keeping constraints bind at the optimum. Lemma 1, below,

states that, whenever agents search for a job they are indifferent between doing so

and remaining unemployed for another period.

Lemma 1 In any period in which there is positive search, the moral-hazard con-

straint binds, [ϕ(ce)− η (n)] [1− β]−1 = ϕ(cu) + βW̃ , and ψ > 0.

Note that in each period t in which the moral-hazard constraint binds we have

µt+1 = µt −
ψt

1− pt
,

which implies that

cut−1 = (ϕ′)
−1 (

µ−1
t

)
> (ϕ′)

−1 (
µ−1
t+1

)
= cut .

The consequence is that unemployment consumption decreases over time.

Also,

1

ϕ′
(
cut−1

) = µt = pt
[
µt + ψtp

−1
t

]
+ (1− pt)

[
µt + ψtp

−1
t

]
=

pt
ϕ′ (cet )

+
1− pt
ϕ′ (cut )

.

The consumption process is described by an inverse Euler equation. In contrast

with our one-period model with non-observed contracts, effort is not distorted at the

optimum in the dynamic model with observed contract according to Proposition 1.

Proposition 1 The solution for the planner’s problem when contracts are observable

has the following properties:

[i)]

1. It entails a zero marginal income tax rate.

2. The unemployment insurance is decreasing over time. Moreover, if there is

search at period t then the unemployment insurance is strictly lower than the

one from the previous period.
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3. The consumption process is described by an inverse Euler equation.

First, the government observes contracts offered by firms. Because of that, the

relevant incentive-compatibility constraint (19) depends only on the agent’s utility

when employed, not on how it is generated. Therefore, given any utility level, there

is no reason to distort effort, which implies i). Second, unemployment insurance

should decrease over time in order to make more costly to turn down employment

opportunities, which is the content of ii). Finally, similar to several dynamic moral-

hazard models (Rogerson (1985)), the consumption process is described by an inverse

Euler equation.

This model assumes that the government observes the contracts chosen by workers

and hence the disutility of effort from a particular job. The next section studies

optimal contract under non-observable contracts.

3.2 Non-observable Contracts

Assume that the planner does not observe the contracts that are offered to agents.

Policy must, therefore be based on whether the agent is employed or not, his earnings

and on the length of his unemployment spell only. To characterize the optimal

unemployment insurance program in this case we rely on a first-order approach.

With Lemma 6, we prove that the solution for this relaxed problem is the solution

to the original program.

Start by noting that the planner’s program has a recursive structure,

C (W0) = max
p

1− β
(ye − ce) + (1− p) [−c(u) + βC (W1)] ,

subject to

p

1− β

[
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)]
+ (1− p) [u+ βW1]−W0 ≥ 0, (6)
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and

1

1− β

[
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)]
− u− βW1 =

1

1− β
pη′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
.

(7)

We show that the planner’s problem is differentiable, and hence the optimal

must satisfy a constraint optimization maximization in which we write µ and λ for

the multipliers relative to the constraints (6) and (7) respectively.

We associate to (6) the Lagrange multiplier µ and to (7), λ. Both are strictly pos-

itive. µ is strictly positive for otherwise the planner could save by giving less utility

to the agent in both states with no consequences for incentives. λ is strictly positive

because the worker does not internalize the fiscal externality when unemployed.

Combining the first order conditions with respect to ye and ce one obtains

ϕ′(ce)− η′
(
ye + κ

ϑ(p)

p

)
=

λ

µp+ λ
pη′′

(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
> 0.

The optimal allocation now displays a positive wedge at the intensive margin. The

static is inherited by the dynamic model. If a firm deviates by offering higher quality

work, i.e., those requiring less effort for the same earnings then will attract more

workers which, in turn, will find it harder to land a job, thus remaining unemployed

for longer periods. Conditional on getting one of these jobs a workers would have

a higher willingness to make effort, than someone who got one of the jobs offered

by firms along the equilibrium path. To make these deviations less attractive the

planner distort effort downwards by taxing earnings at the margin.

As for the inverse Euler equation. The fact that preferences are separable in

consumption and effort means that it is always feasible to vary the unemployment

consumption utility in a period and compensate it by varying the consumption util-

ity in all states of nature in the subsequent period changing neither incentives nor

expected utility. This being the case, these perturbations cannot save resources at

the optimum. Because the marginal cost of delivering utility is the 1/ϕ′, the inverse

Euler equation ensues.

These findings are summarized in Theorem 1, proved in the appendix.
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Theorem 1 At the optimum, in every period in which there is positive search,

[i)]

1. the moral-hazard constraint (7) binds, and the government benefits from strictly

increasing p;

2. the marginal income tax rate is always positive, and;

3. conditional on not finding a job at period t, the worker’s marginal utility of

consumption satisfies the inverse Euler equation,

1

ϕ′ (cut )
= E

[
1

ϕ′ (ct+1)

]
.

It is important to emphasize that the planner may avoid distorting the effort

margin. Taxes may be based on employment, independently of earnings. Moreover,

the utility conditional on finding a job depends on ϕ(ce)−η(ne), regardless of whether

ce and ne are efficiently chosen. What is then the rationale for distorting the intensive

margin prescribed in Proposition 1? It is the same that we have seen in a static

setting. Consider a worker deciding whether to apply for a job in a slightly tighter

sub-market, p̂ > p. The planner controls ye and ce, but not the amount of effort the

agent is making. Upon lending a job in a tighter market, the worker is required to

supply effort n̂ = ye +κ%(p̂)/p̂ < ye +κ%(p)/p = n, while receiving the same ce. This

worker, therefore, has a lower marginal disutility of effort than agents who abode by

the prescription. To make this downward deviation less valuable – this is the relevant

deviation according to (i) – the planner distorts downward effort by introducing a

positive wedge.

A little less surprising is the fact that, as in Rogerson (1985); Atkeson and Lucas

(1995), the Inverse Euler Equation characterizes the dynamics of consumption for

the unemployed.

Proposition 2 The unemployment benefit is decreasing over time with cut > cut+1

whenever the worker searches in period t+ 1.

Moreover, whenever the worker searches in period t + 1, his consumption from

employment is strictly greater than the unemployment benefit from any period τ ≥ t.
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Hence, according to Proposition 2, provided that agents keep searching, the unem-

ployment insurance declines over time. The question is whether agents stop searching

as the unemployment spell becomes very long. We show — Lemma 9 — that this

is not the case; if there is search in one period then there is an infinite number of

periods in which there is search. Hence, at the optimum, for all t, cut > cut+1.

Finally, we ask what happens to the unemployment benefit as the unemployment

spell goes to infinity. Since cut > cut+1 for all t and cut ≥ 0, the unemployment

converges to a non-negative number. With Proposition 3 we show that this number

is 0.

Proposition 3 The unemployment benefits converge to zero.

In this section, we have followed most of the literature, and Hopenhayn and

Nicolini (1997), in particular, in assuming that the planner controls the worker’s

savings. This allowed us to define a one-to-one mapping from after-tax earnings,

ye− T , to consumption, ce. What happens if this is not the case? If the government

does not control savings, do these results remain valid? We answer these questions

next.

4 Hidden Savings

As we know from Allen (1985); Cole and Kocherlakota (2001), allowing for hidden

savings represents an important constraint for the design of optimal policies. In this

section, we consider the consequence of this constraint on optimal policy.

We address the case in which the government does not observe agents’ savings.

In the context of unemployment insurance, Shimer and Werning (2007) highlight

the distinction between the optimal consumption path and the optimal transfer path

when consumption and earnings need not coincide due to the possibility of borrowing

and saving.

We follow several papers in the literature and restrict ourselves to preferences

that do not exhibit income-effects. Concretely, we assume that preferences are of the
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GHH-CARA type,3

U(c, n) = − exp
{
−α
[
c− η(n)

]}
.

We also assume perfect capital markets with an interest rate r = β−1 − 1.

Assume that the worker starts with assets A0. In a deterministic mechanism, the

government adds liquidity a0 − A0 at time 0 and transfers bt to the unemployed in

period t. If a job is found at period t the government demands the amount of work

yet in every future period and makes a net transfer T et (which may be negative) in

every future period.

The planner’s program is to minimize the expected cost of delivering utility W0 for

the unemployed agent subject to providing incentives for him to follow the optimal

search strategy.

Recall that p→ (%(p)/p) is strictly increasing and strictly convex. We make the

following assumption, which guarantees that it is optimal for the agent to search for

a job.

Assumption H1: There exists y and p > 0 such that

y > η

(
y + κ

ϑ(p)

p

)
.

Intuitively, if H1 were violated, the disutility of effort would not compensate its

benefit and optimal programs would entail no vacancy creation.

Definition 2 A simple policy is a triple (a0, y
e, T e) in which the earnings, yt, of

an employed agent, are constant, yet = ye for all t, and the transfers, T et , that the

agent makes to the government once employed are also constant, T et = T e.

When facing a simple contract the worker’s problem can be written in a recursive

3The constant absolute risk aversion (CARA) case is the only one for which Shimer and Werning
(2007) have theoretical results. They offer numeric explorations for the constant relative risk
aversion (CRRA) case. Because we are also interested in understanding choices at the intensive
margin, we suppress income effects through the assumption of quasi-linearity as in Greenwood et al.
(1988).
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form as

Wt(at) = max
at+1∈R, p∈[0,1]

− exp
{
−α
(
at − β−1at+1

)}
+ β

{
pW e

t+1 (at+1, p) + (1− p)Wt+1 (at+1))
}
,

s.t.,

W e
t+1 (at+1, p) = − 1

1− β
exp

{
−α
[
ye − T e +

(
β−1 − 1

)
at+1 − η

(
ye − κ%(p)

p

)]}
For short, we write Wt = Wt(at), W

e
t = W e

t+1 (at+1, pt), W
u
t = Wt+1 (at+1), at the

optimal (at+1, pt).

Let ĉet,τ be the consumption at τ fo an agent who found a job in period t < τ . It

is immediate to see that ĉet,τ = cet for all τ > t. Hence, in what follows we omit the

current period subscript, τ , and write cet to denote the time-invariant consumption

of an agent who found a job in period t.

The next lemma links best response to simple policies.

Lemma 2 Assume that the planner offers a simple contract to the agent. In this

case, the agent chooses,

1. a stationary p;

2. cet+1 − cet = −∆c and cut+1 − cut = −∆c, for a constant, ∆c > 0;

3.
W e
t

Wt

=
1

1 + αp(1− p)η′ (ye + κϑ(p)/p)κ (ϑ(p)/p)′
= ke > 1,

and

W u
t

Wt

=

(
1 +

αp2η′ (ye + κϑ(p)/p)κ (ϑ(p)/p)′

1 + αp(1− p)αpη′ (ye + κϑ(p)/p)κ (ϑ(p)/p)′

)
= ku < 1;

4.
p

(1− β)Wt

exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
= 1− (1− p) ku.
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That is, under a simple contract the agent chooses a constant p and, for every

extra period in which he is unemployed, he reduces both the consumption while

unemployed, cut , and the consumption while employed, cet , by the same amount ∆c.
4

As a result, the ratios W e
t /Wt and W u

t /Wt remain constant at ke and ku, respectively.

Theorem 3 There exists a simple policy that implements the optimal allocation.

Under Assumption H1, GHH-CARA preferences imply that changes in asset po-

sitions have no impact on agents’ search choices while producing an easily character-

ized adjustment in consumption during the unemployment spell and a simple scaling

of expected utility. Given this invariance to asset position a Ricardian-equivalence

result obtains. Alternative paths are fully characterized by the time in which the

worker finds a job. The worker’s decision only depends on the present value of

transfers associated with each path. By performing simple changes in the timing of

payments one can show that simple insurance schemes are optimal.

The optimal unemployment contract, therefore, implements an allocation char-

acterized by a constant search effort, p, and a constant effort, ne = ye + κ%(p)/p.

To provide incentives for agents to keep searching one must guarantee that cet > cut
in every period t. Spreading consumption across the two states, unemployment and

employment, is, however, a costly way of delivering promised utility. To reduce this

cost, incentives are back-loaded; promised utility is reduced every time an agent fails

to find a job, as stated in (iii). For the preference specification we adopt, a lower

utility promise with the same p and ye can be made incentive compatible by an equal

reduction in ce and ue, which in Theorem 3 we prove to be optimal.

Next, we show how the optimal allocation can be implemented with a very simple

contract where the agent is given assets a0 and is promised a labor contract (ye, ce)

if he manages to land a job. Agents (dis)savings choices guarantee that cet and cut
will follow the path prescribed in Theorem 3.

Finally, we prove the following counterpart of the immiseration result that applies

here for hidden savings.

4Note that consumption is kept constant after the
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4.1 The Optimal Policy

Now that we have established that the optimal contract is stationary and of the form

(a0, c
e, ye), we rely on this simple structure to provide its complete characterization.

We can restrict the search for the optimal contract to that of finding a triple

(a0, c
e, ye) that solves the problem

max
(a0,ce,ye)

{
p (ye, ce)

1− (1− p (ye, ce)) β

(
ye − ce

1− β

)
− a0

}
,

subject to

U (ye, ce, a0) ≥ U0.

Note that the incentive constraint is summarized by the dependence of p on ye

and ce. Also, the promise keeping constraint can equivalently be written as

U (ye, ce) exp {−α (1− β) a0} ≥ U0,

where we use the simplified form U (ye, ce) for U (ye, ce, 0).

The first order condition with respect to a0 allows us to eliminate the Lagrange

multiplier and the promise-keeping constraint. We may, then, write the planner’s

objective as

L =
p (ye, ce)

1− (1− p (ye, ce)) β

(
ye − ce

1− β

)
− a0 +

U (ye, ce)

exp {−α (1− β) a0}α (1− β) |U0|
.

The first-order condition with respect to ce is

− p (ye, ce)

1− (1− p (ye, ce)) β
+

∂U (ye, ce) /∂ce

exp {−α (1− β) a0}α (1− β) |U0|

+
∂

∂p

[
p

1− (1− p) β

](
ye − ce

1− β

)
∂p

∂ce
= 0, (8)
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whereas the one with respect to ye is

p (ye, ce)

1− (1− p (ye, ce)) β
+

∂U (ye, ce) /∂ye

exp {−α (1− β) a0}α (1− β) |U0|

+
∂

∂p

[
p

1− (1− p) β

](
ye − ce

1− β

)
∂p

∂ye
= 0. (9)

Consider the optimality conditions above. The first term regards the direct fiscal

cost of an increase in ye, the second term concerns the impact on the worker´s utility,

while the third terms regard indirect fiscal effects which are present because p is not

observable. Since, as we show, ∂p/∂ce > 0 and ∂p/∂ye < 0, the worker best responds

to a higher income by increasing the job-finding probability and decrease the job-

finding probability when he is offered. Of course, the fiscal effect depends on the

sign of ye − ce,that is, whether the fiscal effect is positive or negative. This is shown

in the following theorem.

Theorem 4 The efficient allocation is characterized by:

1. ye − ce is strictly positive;

2. The labor wedge,

1 +
∂U(ye, ce)/∂ye

∂U(ye, ce)/∂ce
,

is strictly positive;

3. The utility of the agent who does not get a job by period t diverges to minus

infinity as well as the utility of the agent who gets a job at period t.

According to item 1., ye − ce > 0; when the worker finds a job he pays a net

tax. Using this finding one concludes that an increase in ye increases the job-finding

probability, while an increase in ce decreases it. A worker that provides lower effort

responds better to incentives, being more prone to increase his job-finding rate due

to an increase in employment consumption. As a result, we obtain 2. from the

Theorem above. Hence, as in the model with observable savings, the moral-hazard

problem implies that effort should be desincentivized at the margin.
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It is important to emphasize that the moral hazard problem does not arise because

of positive marginal tax rate. On the contrary, a positive wedge is imposed to lessen

it. Indeed, the planner can make taxes dependent only on whether the agent is

employed regardless of how much he or she earns thus avoiding the distortions at the

work effort margin. The fiscal externality is important because it makes desirable for

the planner to induce agents to search harder. What ultimately makes it optimal for

the government to distort the effort margin is the fact that a positive effort wedge

increases the cost of downward deviation of the search margin.

Finally, the last point of the theorem. The worker always expects to find a job

with a constant probability in every period. Because of that, he dis-saves and hence

his unemployment consumption decreases along the duration of the unemployment

spell. The absence of income effects in our specification implies that his consumption

diverges to minus infinity as the unemployment spell becomes arbitrarily long.

5 Quantitative Exploration

[TO BE DONE]

6 Conclusion

We have explored the consequences for optimal unemployment insurance design of

adding to an otherwise standard search problem the real world feature that an im-

portant dimension of labor contracts is not observed by the policy maker: how hard

an agent is required to work in each job.

We found that it is always optimal to distort the intensive margin by imposing

a positive marginal income tax rate. This is true regardless of whether savings are

controlled by the planner or not.
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A Lemmata

A.1 Observable Savings

Lemma 3 If there exists W ∗ such that z (W ∗) = cu (W ∗), then z (W ) > cu (W ), for

all W > W ∗, and z (W ) < cu (W ), for all W < W ∗. Otherwise, z (W ) > cu (W )

for every W. Moreover, both mappings, z (·) and cu (·), are strictly increasing, twice

differentiable, and strictly convex.

Proof. [Proof of Lemma 3] Let ye (W ) be given by

argmax
ye

[ϕ (ye + z (W ))− η (ye + φ)] ,

and notice that if

ϕ′ (z (W ))− η′ (φ) ≤ 0,

then ye (W ) = 0. Otherwise, ye (W ) is given by

ϕ′ (ye + z (W ))− η′ (ye + φ) = 0.

Hence, we have

z′ (W ) =
1

ϕ′ (z (W ) + ye (W ))
>

1

ϕ′ (cu (W ))
= cu′ (W ) ,

because z (W ) + ye (W ) > cu (W ) . This implies that if z (·) and cu (·) cross at most

once, and z (W ) > cu (W ) (resp. z (W ) < cu (W )) for every utility greater (resp.

lower) than this utility.

Next, since Z (W ) → ∞ as W → ∞, we have ye (W ) = 0 for W large enough,

which implies z (W ) > cu (W ), and hence we may also have Z (W ) > cu (W ) for

every W.

It remains to show that both mappings are strictly convex. Since ce (W ) :=

z (W ) + ye (W ) is strictly increasing with positive derivative, we have

z′′ (W ) =
−ϕ′′ (ce (W ))

ϕ′ (ce (W ))2 c
e′ (W ) > 0,
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and

z′′ (W ) =
−ϕ′′ (cu (W ))

ϕ′ (cu (W ))2 c
u′ (W ) > 0.

Lemma 4 Assume that ϕ (cu0) < W ∗, which means that the worker is better off

working than consuming the first unemployment insurance. Then, there is positive

search in every period.

Proof. [Proof of Lemma 4] Since unemployment benefits are weakly decreasing, it

suffices to show that if there is no search in period t then the planner could profitably

deviate by offering a contract in which the worker also searches at t. Notice that the

(normalized) utility (1− β)Wt can be written as a convex combination of the terms:

[i.]

1.

ϕ
(
cet+k

)
− η

(
yet+k +

%(pt+k)

pt+k

)
,

which are obtained if the worker finds a job at period t+ k, and;

2. ϕ
(
cut+k

)
, which are obtained if the worker does not get a job by period t+ k.

Since cut+k ≤ cu0 , this implies that ϕ
(
cut+k

)
< W ∗. Hence, the cost of delivering

ϕ
(
cut+k

)
is less than Z

(
ϕ
(
cut+k

))
. Notice also that the cost of providing utility,

ϕ
(
cet+k

)
− η

(
yet+k +

%(pt+k)

pt+k

)
,

is less than

Z

(
ϕ
(
cet+k

)
− η

(
yet+k +

%(pt+k)

pt+k

))
.

Since the function Z is strictly convex, by Jensen’s inequality and a continuity ar-

gument, there exists ε > 0 such that, if the planner offers the contract in which de-

mands payments ye (Wt + ε) from the worker and delivers consumption ce (Wt + ε),
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the worker strictly searches for a job with positive probability, obtains a utility

W̃ > Wt from this search ,and the government has a strictly lower cost.

This strategy makes both the worker as well as the planner better-off at period

t, but may decrease worker’s incentives at period t − 1. To avoid that, the planner

decreases the worker’s unemployment consumption at period t − 1 until a point at

which the worker is indifferent at period t − 1. This further improves the planner’s

utility at t− 1, showing a strictly more profitable contract.

Lemma 5 The value function, W →C (W ), is differentiable.

Proof. [Proof of Lemma 5] Consider the function W̃ → Ĉ
(
W̃
)

define for W̃ ∈
(W − ε,W + ε) and for every t ≥ 0 by

ϕ
(
c
e(t)
t

(
W̃
))

= ϕ
(
c
e(t)
t (W )

)
+ (1− β)

(
W̃ −W

)
and

ϕ
(
cut

(
W̃
))

= ϕ (cut (W )) + (1− β)
(
W̃ −W

)
,

where
{
c
e(t)
t (W ) , c

e(t)
t (W ) ...,

}
is the consumption stream if employment is found at

t and cut (W ) is the unemployment insurance at t. Clearly this allocation is incentive

compatible and yields utility W. Its cost is

C(W̃ )−
∑
t≥0

βtE
[
ϕ−1

(
ϕ (c$t (W )) + (1− β)

(
W̃ −W

))]
,

where $ ∈ {e (t)}∞t=0 ∪ {u} . The function −ϕ−1 is concave and hence so is the sum

above. The result follows from Benveniste and Scheinkman (1979).

Lemma 6 Suppose that if a worker gets a job then he must earn ce + T , paying T

to the government, to consume ce whereas if the worker fails to get a job then he

obtains the continuation utility W. Then this problem admits a unique solution. If

the solution is interior then it is given by the associated first order conditions.
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Proof. [Proof of Lemma 6] Consider the problem

max p

[
ϕ(ce)− η

(
ce + T + κ

ϑ(p)

p

)
−W

]
This problem admits an interior solution if and only if

ϕ(ce)− η (ce + T ) > W.

Assume that this is the case and consider p that makes its derivative equal to

zero:

ϕ(ce)− η
(
ce + T + κ

ϑ(p)

p

)
−W − pη′

(
ce + T + κ

ϑ(p)

p

)
κ
d

dp

(
ϑ(p)

p

)
= 0

Differentiate the left hand side again to obtain

− 2η′
(
ce + T + κ

ϑ(p)

p

)
κ
d

dp

(
ϑ(p)

p

)
− pη′

(
ce + T + κ

ϑ(p)

p

)
κ
d2

dp2

(
ϑ(p)

p

)
− pη′′

(
ce + T + κ

ϑ(p)

p

)
κ

[
d

dp

(
ϑ(p)

p

)]2

.

To show that the expression above is negative, it suffices to show that

− 2
d

dp

(
ϑ(p)

p

)
− p d

2

dp2

(
ϑ(p)

p

)
< 0⇔

− 2

(
ϑ′(p)p− ϑ(p)

p2

)
− p d

dp

(
ϑ′(p)p− ϑ(p)

p2

)
< 0⇔

− 2

(
ϑ′(p)p− ϑ(p)

p2

)
−

(
d
dp

[ϑ′(p)p− ϑ(p)] p2 − 2p [ϑ′(p)p− ϑ(p)]

p3

)
< 0⇔

−
(
ϑ′′(p)

p

)
< 0.

27



Lemma 7 1) If there is a random-correlation device, C is concave, then it is differ-

entiable.

2) If there is no random-correlation device, then letting Wt be the promised utility

in period t, C is differentiable at Wt for every t > 0.

Proof. [Proof of Lemma 7] We first prove 1). Assume that the following equations

hold (the case in which p = 0 is analogous and omitted)

p

1− β
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)
+ (1− p) [u+ βW1]−W0 = 0,

and

1

1− β
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)
−u−βW1−

1

1− β
pη′
(
ye + κ

ϑ(p)

p

)
κ
d

dp

(
ϑ(p)

p

)
= 0

Let

A := η

(
ye + κ

ϑ(p)

p

)
− (1− p) βW1,

B := η

(
ye + κ

ϑ(p)

p

)
+ βW1 +

1

1− β
pη′
(
ye + κ

ϑ(p)

p

)
κ
d

dp

(
ϑ(p)

p

)
Then, we have

p

1− β
ϕ(ce) + (1− p)u = A+W0,

and
1

1− β
ϕ(ce)− u = B.

Substituting one equation into the other we get

p

1− β
[B + u] + (1− p)u = A+W0.

Hence,

u = W0 +D1,
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and

ϕ(ce) = (1− β) (W0 +D2) ,

implying that the function,

C̃ (W0 + ε) = p
ye − ϕ−1

(
(1− β) (W0 +D2) + ε

)
1− β

+ (1− p) [β − c(W0 +D1 + ε)] ,

is a strictly concave function of ε and lies below C (W0 + ε). Apply Benveniste-

Scheinkman.

Now we prove 2). More precisely, we prove that C is differentiable at W1. For

that we assume that p1 > 0 as the other case is analogous. Consider any small ε ∈ R
and notice that the following perturbation is feasible:

(ũ0, ũ1, c̃
e
1) =

(
u0 + ε, u1 − εβ−1, ϕ−1 (ϕ(ce1) + ε)

)
.

One can thus apply the argument in Clausen and Strub (2020) to conclude that

C ′ (W1) = −c′(u0) =
1

ϕ′(u0)
.

Lemma 8 The multipliers µ and λ are strictly positive if there is search.

Proof. [Proof of Lemma 8] First notice that

[µ(1− p)− λ]ϕ′(cu) = (1− p)
pµ+ λ

1− β
ϕ′(ce) =

p

1− β

hence µ = 0 implies ϕ′(cu)ϕ′(ce) ≤ 0 which is an absurd.

Hence assume towards a contradiction that λ0 ≤ 0. Clearly, there is a last period

at which λt ≤ 0 and λt+1 > 0, otherwise, as we will verify below, cut ≥ cet for every t,

and hence there is no search. Assume that λ1 > 0 (case in which λs ≤ 0 for all s < t

and λt > 0 for some t > 1 can be analogously handled).
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From the first-order condition with respect to p we get

ϕ′(cu) =
1

µ− λ(1− p)−1
≤ 1

µ+ λp−1
= ϕ′(ce),

hence cu ≥ ce.

Moreover, notice that from the first order condition we have

C ′ (W0) = −µ0,

and

C ′ (W1) = −µ0 +
λ0

(1− p)
= −µ1,

which implies

µ1 = µ0 −
λ0

(1− p)
≥ µ0.

This, and λ0 ≤ 0 < λ1 imply

ϕ′(ce1) =
1

µ1 + p−1
1 λ1

<
1

µ0 + p−1
0 λ0

= ϕ′(ce0).

Hence,

ce1 > ce0. (10)

We can rearrange the first order condition with respect to ye to get

µη′
(
ye + κ

ϑ(p)

p

)
= 1− λη′′

(
ye + κ

ϑ(p)

p

)
κ
d

dp

(
ϑ(p)

p

)
− λ

p
η′
(
ye + κ

ϑ(p)

p

)
.

Therefore, λ0 ≤ 0 < λ1 imply

η′
(
ye1 + κ

ϑ(p1)

p1

)
< µ−1

1 .

Similarly,

η′
(
ye0 + κ

ϑ(p0)

p0

)
≥ µ−1

0 .
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Since µ1 ≥ µ0, this implies

ye1 + κ
ϑ(p1)

p1

< ye0 + κ
ϑ(p0)

p0

,

and

η

(
ye1 + κ

ϑ(p1)

p1

)
< η

(
ye0 + κ

ϑ(p0)

p0

)
,

because η is strictly convex.

Since p0 > 0, by assumption of the lemma, we have

0 <
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− [ϕ(cu0) + βW1]

=
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− ϕ(cu0)

− β
[
p1

1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
+ (1− p1) [ϕ(cu1) + βW2]

]
= ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)
− ϕ(cu0) + β

[
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]

− p1
1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
− (1− p1) [ϕ(cu1) + βW2]

]

=
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− ϕ(cu0)

− β
[
p1

1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
+ (1− p1) [ϕ(cu1) + βW2]

]
(11)

Since p1 > 0, due to λ1 > 0, we have

1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
> ϕ(cu1) + βW2
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Hence,

ϕ(ce0)− η
(
ye0 + κ

ϑ(p0)

p0

)
− ϕ(cu0) + β

{
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]

− p1
1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
− (1− p1) [ϕ(cu1) + βW2]

}

< ϕ(ce0)− η
(
ye0 + κ

ϑ(p0)

p0

)
− ϕ(cu0)

+ β

[
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− [ϕ(cu1) + βW2]

]
Since the first line from the last term is negative, the entire term is less than

β

[
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− [ϕ(cu1) + βW2]

]
,

which is less than,

1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− [ϕ(cu1) + βW2] ,

since the term is positive.

Since ϕ(ce0) < ϕ(ce1), and

η

(
ye0 + κ

ϑ(p0)

p0

)
> η

(
ye1 + κ

ϑ(p1)

p1

)
,

this is less than

1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
− [ϕ(cu1) + βW2] .

Hence, using the first-order conditions with respect to p, the algebra just per-

formed means that

p1

1− β
η′
(
ye1 + κ

ϑ(p1)

p1

)
κ

(
ϑ(p1)

p1

)
>

p0

1− β
η′
(
ye0 + κ

ϑ(p0)

p0

)
κ

(
ϑ(p0)

p0

)
. (12)
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Since

ye1 + κ
ϑ(p1)

p1

< ye0 + κ
ϑ(p0)

p0

,

if ye1 ≥ ye0, we will have p1 < p0 which together contradict (12). We conclude that

ye1 < ye0. (13)

Finally, notice that λ1 > 0 and the first order condition with respect to p and the

fact that p is a local maximum imply

ye0 − ce0
1− β

≤ −cu0 + βC (W1) . (14)

Analogously, in period 1, using λ0 ≤ 0, the first order condition with respect to

p implies
ye1 − ce1
1− β

≥ −cu1 + βC (W2) .

But notice that

C (W1) = p1
ye1 − ce1
1− β

+ (1− p1) [−cu + βC (W2)] (15)

≤ ye1 − ce1
1− β

Hence, using (14), we have

cu0 ≤ βC (W1)− ye0 − ce0
1− β

⇔ cu0 + (ye0 − ce0) ≤ βC (W1)− β (ye0 − ce0)

1− β

Since cu0 ≥ ce0 and ye0 ≥ 0 we have

0 ≤ β

[
C (W1)− ye0 − ce0

1− β

]
.
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Using (15), the last term is less than

β

[
(ye1 − ce1)

1− β
− (ye0 − ce0)

1− β

]
= β

[
(ye1 − ye0)

1− β
+

(ce0 − ce1)

1− β

]
.

Hence, using (12) and (13), we see that (ye1 − ye0) + (ce0 − ce1) < 0.

A contradiction.

Lemma 9 If there is search in one period, then there is an infinite number of periods

in which there is search.

Proof. [Proof of Lemma 9] Suppose towards a contradiction that there is a last

period t∗ at which search happens. Lemma 8 implies that λt∗ > 0 and hence the first

order condition of the government with respect to pt implies

yet∗ − cet∗
1− β

>
−cut∗
1− β

,

where we have used the fact that if there is a last period in which there is search

then cus = cut∗ for every s ≥ t∗.

Moreover, the fact that the worker actively searches at t∗ implies that

ϕ(cet∗)− η
(
yet∗ + κ

ϑ(pt∗)

pt∗

)
> ϕ(cut∗).

With this at hand, we can propose a deviation in which the government offers

(cet∗ , y
e
t∗) at period t∗ + 1. The worker searches with the same intensity (because

cus = cut∗ for every s ≥ t∗ + 1) and the government decreases cut∗ to make the worker

indifferent.

A.2 Non-observable Savings

Lemma 10 Consider any deterministic mechanism. Assume that the agent starts

with income a0 and let (cut , pt) be his optimal choices at period t. Then, an agent who
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starts with income ã0 optimally chooses (cut + (ã0 − a0) (1− β) , pt) in every period t

and obtains exp{−α (1− β) (ã0 − a0)}Wt where Wt is the utility obtained at t by the

agent who starts the game with assets a0.

Proof. [Proof of Lemma 10] The proof will be based on the optimality principle.

We will guess and verify that if Wt is the agent’s continuation utility when period

t is started with income a1
t , then exp{−α (1− β) (a2

t − a1
t )}Wt is the continuation

utility when starts period t with a2
t .

Take any optimal strategy {(cuτ (at) , pτ (at))}τ≥t when period t game starts with

income at ∈ {a1
t , a

2
t} and let W i

t , i = 1, 2., be its value. Notice that the strategy,{
(cuτ
(
a1
t

)
+
(
a1
t − a2

t

)
(1− β) , pτ

(
a1
t

)
)
}
τ≥t ,

is feasible for a worker who starts with assets a2
t . Hence, by revealed preference,

W 1
t ≥ exp{−α (1− β) (a2

t − a1
t )}W 2

t .

Analogously,

W 2
t ≥ exp{−α (1− β) (a1

t − a2
t )}W 1

t .

Thus,

W 1
t = exp{−α (1− β) (a2

t − a1
t )}W 2

t .

Finally, let W0 be the value from following the optimal strategy when the initial

asset is a0 and observe that strategy (cut + (ã0 − a0) (1− β) , pt) is feasible and it

leads to exp{−α (1− β) (ã0 − a0)}W0. This strategy is, therefore, optimal.

Lemma 11 Consider any deterministic mechanism. This mechanism can be im-

plemented by an initial endowment a0 and unemployment benefits bt = 0 for every

t.

Proof. [Proof of Lemma 11] Let ct = (cut , c
e
t )
∞
t=0 the consumption stream under the
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original mechanism. Choose ã0 =
∑∞

t=0 β
tct and transfers

(
T̃e

)
so that

(
β−tã0 −

t−1∑
t=0

β−tcut

)
(1− β) + T̃e = cet , (16)

In this new mechanism, the initial wealth is ã0, unemployment benefits are zero,

yet = ỹet for every t and T̃e is given by the equation above. Moreover, (16) implies

that the same strategy profile is feasible. Using Lemma 10 one can check that there

is no profitable deviation.

Lemma 12 In every period, t, pt > 0.

Proof. [Proof of Lemma 12] Let W1 be the value from starting the first period with

zero assets. Consider the problem

C(W0) = max
W1,ce,ye

{
p
ye − ce
1− β

+ (1− p) βC
(

exp{−αa (1− β)}W1

)}
subject to

p = argmax
p̃

{
p̃

[
− 1

1− β
exp

{
−α
{
ce − η

(
ye + κ

ϑ(p̃)

p̃

)}}]

− (1− p̃) max
a′

[− exp{αa′β}+ exp{−αa′ (1− β)}βW1]

}

and

max

{
p̃

[
− 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p̃)

p̃

)]}]

− (1− p̃) max
a′

[− exp{αa′β}+ exp{−αa′ (1− β)}βW1]

}
= W0
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Notice that p = 0 implies

W0 = max
a′

[− exp{αa′β}+ exp{−αa′ (1− β)}βW1] ,

hence,

β exp{αa′β} = (1− β) exp{−αa′ (1− β)}βW1.

Therefore,

W0 = max
a′

[(1− β) exp{−αa′ (1− β)}W1 + exp{−αa′ (1− β)}βW1] = W1,

implying that there exists an optimal contract that is stationary and involves no

employment. By assumption H1, there exists ye, ce and p such that ye > ce and

ce − η
(
ye + κϑ(p)

p

)
> 0. This shows that there exists a profitable deviation.

Lemma 13 Consider an equilibrium generating (cut , c
e
t , y

e
t , pt)

∞
t=0 from assets a0 and

bt = 0 for every t. The same equilibrium can be generated from any level of assets

ã0 < a0.

Proof. [Proof of Lemma 13] Take the initial level of assets ã0 and set asset holdings

(ãt) to generate the unemployment consumption profile (cut )
∞
t=0 . At each point of

time define yet and Tt so that

ãt (1− β) + Tt = cet .

It follows that if the agent chooses (cut , pt) at every time t then the original allo-

cation (cut , c
e
t , y

e
t , pt)

∞
t=0 is implemented. We must therefore show that this allocation

satisfies the intertemporal budget constraint and that it is optimal. Budget con-

straint feasibility follows from lemma 12 and the fact that consumption is decreasing

over time (see Lemma 14 below).

Lemma 14 Wt and cut are strictly decreasing in t.
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Proof. [Proof of Lemma 14] The agent’s first-order condition with respect to p

implies

− 1

1− β
exp

{
−α
{
ce − η

(
ye + κ

ϑ(p)

p

)}}[
1 + αpη′

(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′]
= max

a′
[− exp{αa′β}+ exp{−αa′ (1− β)}βW1] .

Hence,

W0 > − exp{αa′β}+ exp{−αa′ (1− β)}βW1.

Next notice that

max
a′

[− exp{αa′β}+ exp{−αa′ (1− β)}βW1]

implies

−β exp{αa′β} = (1− β) exp{−αa′ (1− β)}βW1,

and thus,

− exp{αa′β} = max
a′

[− exp{αa′β}+ exp{−αa′ (1− β)}βW1] . = W1.

Therefore, W0 > W1 and similarly W1 > W2. Since − exp{−αcu0} = W1, we have

cu0 =
ln (−W1)

−α
>

ln (−W2)

−α
= cu1 ⇐⇒ W1 > W2,

which was just proved.

Lemma 15 Let (cut , c
e
t , y

e
t , pt)

∞
t=0 solve the government’ s problem when the agent

starts with utility W0. Then (cut +∆, cet+∆, yet , pt)
∞
t=0 solves the government’ s problem

when the agent who starts with utility W̃ = e−α∆W0.

Proof. [Proof of Lemma 15] We claim that (cut +∆, cet+∆, yet , pt)
∞
t=0 is at least as good

as any allocation (c̃ut , c̃
e
t , ỹ

e
t , p̃t)

∞
t=0 that yields utility W̃ . Indeed, take (c̃ut , c̃

e
t , ỹ

e
t , p̃t)

∞
t=0

and notice that (c̃ut −∆, c̃et −∆, ỹet , p̃t)
∞
t=0 generates utility W0. Hence, the optimality
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of (cut , c
e
t , y

e
t , pt)

∞
t=0 implies

∞∑
t=0

βt

{∑
τ≤t

(Πs<τ (1− ps)) pτ [yeτ − ceτ ]

+

(
1−

∑
τ≤t

(Πs<τ (1− ps)) pτ

)
[−cut ]

}

≥
∞∑
t=0

βt

{∑
τ≤t

(Πs<τ (1− p̃s)) p̃τ [ỹeτ − (c̃eτ −∆)]

+

(
1−

∑
τ≤t

(Πs<τ (1− p̃s)) p̃τ

)
[− (c̃ut −∆)]

}
,

which holds if and only if

∞∑
t=0

βt

{∑
τ≤t

(Πs<τ (1− ps)) pτ [yeτ − (ceτ + ∆)]

+

(
1−

∑
τ≤t

(Πs<τ (1− ps)) pτ

)
[− (cut + ∆)]

}

≥
∞∑
t=0

βt

{∑
τ≤t

(Πs<τ (1− p̃s)) p̃τ [ỹeτ − c̃eτ ]

+

(
1−

∑
τ≤t

(Πs<τ (1− p̃s)) p̃τ

)
[−c̃ut ]

}
,

which proves the optimality of (cut + ∆, cet + ∆, yet , pt)
∞
t=0 when the promised utility

is W̃ .

Proof. [Proof of Lemma ??] Start with the the first order condition with respect to

39



p

−
exp

{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

−max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− αp

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
= 0. (17)

Next we remark that the problem is strictly concave in p and hence the derivative

of (17) with respect to p is strictly negative. Differentiating the left hand side of (17)

condition with respect to ce we obtain

α
exp

{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

− d

dce
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
+ α2p

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
Now notice that

d

dce
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
< αmax

a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
as the last number is obtained by the derivative of an increase in c in every state of

nature.
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Therefore, we have

α
exp

{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

− d

dce
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
+ α2p

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
= α

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

+αmax
a′

{
−exp{αa′β}+exp{−αa′ (1− β)}βW1

}
+ α2p

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
− αmax

a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− d

dce
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
= −αmax

a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− d

dce
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
> 0,

where we have used (17) and (??). Therefore, ∂p/∂ce > 0.

Next, differentiating the first order condition with respect to ye we get

− αη′
exp

{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

− d

dye
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− α2pη′

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
− αpη′′

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
.
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Notice that

d

dye
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
>

αη′
d

dye
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
. (18)

Hence,

− αη′
exp

{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

− d

dye
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− α2pη′

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
− αpη′′

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
=

− αη′
exp

{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

− αη′max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− α2pη′

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
αη′max

a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− d

dye
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− αpη′′

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
=

αη′max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− d

dye
max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− αpη′′

exp
{
−α
[
ce − η (ye + κ (ϑ(p)/p))

]}
1− β

η′
(
ye + κ

(
ϑ(p)

p

))
κ

(
ϑ(p)

p

)′
< 0,
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where we have used (17) and (18).

Lemma 16 It is the case that

∞∑
t=0

pβt (1− p)t−1

[
exp{−α (1− β) at}

(1− β) |U0|
exp

{
−α
{
ce − η

(
ye + κ

ϑ(p)

p

)}}
− 1

]
< 0.

Proof. [Proof of Lemma 16] We have

∞∑
t=0

pβt (1− p)t−1

[
exp{−α (1− β) at}

(1− β) |U0|
exp

{
−α
{
ce − η

(
ye + κ

ϑ(p)

p

)}}
− 1

]
< 0⇔

∞∑
t=0

pβt (1− p)t−1

[
− exp{−α (1− β) at}

(1− β)
∑∞

t=0 pβ
t (1− p)t−1 exp

{
−α
{
ce − η

(
ye + κ

ϑ(p)

p

)}}]
> U0.

Since z → −e−αz is strictly increasing. Notice that U0 is the mixture of the

distribution F e above and the distribution over −e−αcut , which we call F u. It follows

that if F e first-order stochastic dominates F u :∫
xdF e (x) >

∫
xdF u (x)

and hence for any λ ∈ (0, 1) ,∫
xd [λF e (x) + (1− λ)F e (x)] <

∫
xdF e (x) .
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B Proofs

B.1 Observable Savings

Proof. [Proof of Lemma 1] Assume towards a contradiction that, without loss of

generality, the constraint does not bind at t = 0,

ϕ′(cu0) = ϕ′(ce0) = µ−1
0 = η′ (n0) .

In this case,

ϕ(ce0)− η (n0) < ϕ(cu0). (19)

Notice that the moral-hazard constraint must bind for some t > 0, otherwise,

ϕ(cut ) = µ−1
0 ,

for every t. This means that getting a job in period zero is worse than being unem-

ployed forever.

Assume that the first period in which the constraint binds is t = 1 (the other

case is analogous). We have µ1 = µ0, ψ1 > 0 and, hence,

ϕ′(ce1) =
1

µ0 + ψ1

p1

= η′ (n1) .

Therefore,

ϕ(ce0)− η (n0) < ϕ(ce1)− η (n1) (20)

Hence, using (19) and (20) we obtain

ϕ(ce0)− η (n0)

1− β
< ϕ(cu0) + β

ϕ(ce1)− η (n1)

1− β
,

which, using the fact that the moral-hazard constraint was binding in the second

period, implies that worker strictly prefers being unemployed than getting a job at

zero, a contradiction.
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Proof. [Proof of Proposition 1] Part i) Immediate from the first-order condition.

Part ii) We have

(ϕ′e) =
p

µp+ λ

η′
(
ye + κ

ϑ(p)

p

)
=

p

µp+ λ
− pλ

µp+ λ
η′′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
Hence,

1−
η′
(
ye + κϑ(p)/p

)
(ϕ′e)

= λη′′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
> 0

Part iii) Notice that

1− pt
ϕ′(cut )

= [µt(1− pt)− λt]

1− pt+1

ϕ′(cut+1)
= [µt+1(1− pt+1)− λt+1] ,

If there is no search at period t+ 1, then

1

ϕ′(cut+1)
= µt+1 = µt −

λt
(1− pt)

1

ϕ′(cut )
.

If there is search in period t+ 1, then we have

µt+1pt+1 + λt+1 =
pt+1

ϕ(cet+1)
,

Thus
pt+1

ϕ(cet+1)
+

1− pt+1

ϕ′(cut+1)
= µt+1 =

1

ϕ′(cut )
.

Proof. [Proof of Proposition 2] Notice that

ϕ′(cut ) =
1

µt − λt
1−pt
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and

µt+1 = µt −
λt

(1− pt)
,

hence

ϕ′(cut+1)− ϕ′(cut ) =
1

µt+1 − λt+1

1−pt+1

− 1

µt − λt
1−pt

=
1

µt+1 − λt+1

1−pt+1

− 1

µt+1

≥ 0,

with strict inequality whenever the worker searches in t+ 1 and hence λt+1

1−pt+1
> 0.

Finally, for the last claim assume that the worker actively searches in period t+1,

use
pt+1

ϕ′(cet+1)
+

1− pt+1

ϕ′(cut+1)
=

1

ϕ′(cut )

and cut+1 > cut to conclude that cet+1 > cuτ for every τ ≥ t.

Proof. [Proof of Proposition 3] Notice that the unemployment insurance is decreas-

ing. Suppose towards a contradiction that it converges to cu∞ > 0. If it does not

converge to zero, since ϕ′(cut ) = 1
µt+1

, we conclude that µt → (ϕ′(cu∞))−1 . Therefore,

λt
1− pt

→ 0.

We claim that pt → 0. Suppose towards a contradiction that there is a subsequence

ptr → p̂ > 0 and notice that, since

ϕ′(cet ) =
1

µt + p−1
t λt

,

we have along the subsequence ϕ′(cetr) → ϕ′(cu∞), implying cetr → cu∞. By incentive

compatibility,

η

(
yetr + κ

ϑ(ptr)

ptr

)
→ 0,

which implies ptr → 0, a contradiction.

But then by a continuity argument, for every ε > 0, there exists a period t∗ such

that t ≥ t∗ implies that the government’s utility is ε away from −cu∞/(1 − β) while

the worker’s utility is ε away from ϕ(cu∞)/(1− β).
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Noting that

lim η′
(
yet∗ + κ

ϑ(pt∗)

pt∗

)
< limϕ′(cut ), (21)

it is easy to show that there exist α ∈ (0, 1) and χ > 0 and a (large) period t̃ at

which there is active search.

The following change thus improves the government’s payoff. The worker is asked

to produce ye
t̃

+ χ and his consumption is increased by χα, while the government

increases his revenue by χ (1− α) . Using (21), this can be done so that the worker

chooses a higher search intensity and increases his payoff. Recall that the first-order

condition for the government with respect to pt implies

ye
t̃
− ce

t̃

1− β
>
−cu∞
1− β

− ε.

Since ε is arbitrary we can, therefore, guarantee that

ye
t̃
− ce

t̃
+ χ (1− α)

1− β
>
−cu∞
1− β

+ ε.

In summary, this increases both the government as well as the worker’s payoff at

t̃. Finally, to keep previous periods search incentives as given, one can then decrease

cu
t̃−1

in order to keep the worker’s utility conditional on not obtaining a job at t̃− 1

constant.

This is a profitable deviation. A contradiction.

B.2 Non-observable Savings

Claim 1 If the agent has chosen cuτ at every τ < t for some t ≥ 0 and Wt+1 is

his continuation payoff under consumption choices (cu0 , ..., c
u
t ) in the new mechanism,

then, it is optimal for him to choose cut and pt at period t.

Proof. [Proof of Claim 1] To prove Claim 1, assume first that the agent did not get

a job at t and that his previous consumption choices were
(
cu0 , ..., c

u
t−1

)
, up to period

47



t. The agent chooses

max
c̃ut
{− exp{−α (1− β) c̃ut }+ β exp{−α (1− β) β−1 (c̃ut − cut )}Wt+1},

where we used the fact that if the agent chooses c̃ut = cut , then his continuation payoff

is Wt+1 and hence, by Lemma 10, it would be exp{−α (1− β) (c̃ut − cut )}Wt+1 if his

choice were c̃ut , instead.

Since this problem is strictly concave, the optimality condition is

− exp{−α (1− β) c̃ut } = exp{−α (1− β) β−1 (c̃ut − cut )}Wt+1.

However, since cut was optimal in the original mechanism and Wt+1 was his con-

tinuation utility, the respective optimality condition in the original mechanism reads

− exp{−α (1− β) cut } = Wt+1,

which then implies c̃ut = cut .

Next, to verify that pt is optimal, just notice that the algebra above implies that

the agent obtains continuation value Wt+1 if he does not get a job at t. Since his

employment utility is the same as in the original mechanism, the optimality of pt in

the original mechanism implies that pt is also optimal here.

Claim 2 If the agent starts period t with assets ât, then it is optimal for him to

choose cut + (ât − ãt) (1− β) and pt if Wt+1 is his continuation payoff under con-

sumption levels (cu0 , ..., c
u
t ) in the new mechanism.

Proof. [Proof of Claim 2] The proof of Claim 2 follows directly from Lemma 10.

Proof. [Proof of Theorem 3] i) According to Lemma 15, p and ye are stationary.

ii) Consider an optimal mechanism for promised utility W0. Notice that the first-
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order condition reads

− 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
−max

a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− αp 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
η′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
= 0.

We have

W0 = pW e
0 + (1− p)W u

0 ,

and

W e
0 −W u

0 = −αpW e
0 η
′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
,

solving these two equations for W e
0 and W u

0 we get

W0 = pW e
0 + (1− p)

[
W e

0 + αpW e
0 η
′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′]
Thus

W e
0 =

W0

1 + αp(1− p)η′
(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′ > W0,

and

W u
0 =

1 + αpη′
(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′
1 + αp(1− p)η′

(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′W0 < W0.

iii) Notice that W u
0 = eα∆cW0 and

eα∆c =
W u

0

W0

=
1 + αpη′

(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′
1 + αp(1− p)η′

(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′ .
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Hence,

∆c = α−1 log

 1 + αpη′
(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′
1 + αp(1− p)η′

(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′
 .

iv) Consider the problem

C(W0) = max
W1,ce,ye

p

[
ye − ce
1− β

]
+ (1− p) βC(e−αa(1−β)W1),

subject to

− p

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
+

(1− p) max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
−W0 = 0

and

− 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
−max

a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− αp 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
η′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
= 0.

Plugging the last constraint into the problem, one obtains the following La-

grangian

C(W0) = max
W1,ce,ye

p

[
ye − ce
1− β

]
+ (1− p) βC(e−αa(1−β)W1)+

µ

[
− 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
−

α (1− p) p 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
η′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
−W0

]
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Therefore, we have the first-order conditions with respect to ce,

p = µα exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}[
1 + α (1− p) pη′

(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′]
with respect to ye,

p = µα exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}[
η′
(
ye + κ

ϑ(p)

p

)
+

α (1− p) pη′
(
ye + κ

ϑ(p)

p

)2

κ

(
ϑ(p)

p

)′ ]

+ µ (1− p) p exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
η′′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
Therefore, we have

η′
(
ye + κ

ϑ(p)

p

)
= 1−

(1− p) pη′′
(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′
α

[
1 + α (1− p) pη′

(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′] .

Proof. [Proof of Theorem ??] Let (p∗, ye∗, {(cu∗t , ce∗t )}∞t=0) be the optimal allocation.

The initial income of the agent when employed is ce∗0 and the desired utilities are

W ∗
0 ,W

e∗
0 and W u∗

0 satisfying W ∗
0 = pW e∗

0 + (1− p)W u∗
0 . We claim that there exists

(a0, c
e) that solves the system:

ce∗0 = (1− β) a0 + ce

W u∗
0 = max

c
−e−αc + βU

(
β−1 (a0 − c) , ye, ce

)
,

where U (a, ye∗, ce) is the utility of a worker who starts a period with assets a and

has the option to search for (ye∗, ce) in this and every future period.

The sequence of efforts that give rise to U (β−1 (a0 − c) , ye∗, ce∗) is stationary.
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Indeed, take a0 = ce∗0 (1− β)−1 , ce = 0, and note that

W u∗
0 < max

c
−e−αc + βU

(
β−1 (a0 − c) , ye∗, 0

)
.

When a0 = ce∗0 (1− β)−1 , ce = 0, the agent can keep consumption constant at ce∗

even without taking a job. In fact, he best responds to that contract by choosing

p = 0 in every period.

Next, notice that if we decrease a0 by − ε
1−β and increase ce by ε the planner’s

payoff is increased by

ε

1− β
− p (a0, c

e) ε

1− (1− p (a0, ce)) (1− β)
> 0. (22)

Assume towards a contradiction that if we take a0 to −∞ and increase ce to

infinity respecting ce∗0 = (1− β) a0 + ce we do not reach a point at which

W u∗
0 = max

c
−e−αc + βU

(
β−1 (a0 − c) , ye∗, ce

)
.

From the first order condition, we know that p remains bounded below p∗ (and by

lemma 10 this holds in every future period) and the principal obtains infinite profits

because of (22). At the same time the agent’ s utility is greater than pW e∗
0 + (1 −

p)W u∗
0 . A contradiction.

It follows that there is (ā0, c̄
e) that satisfies the system above. Notice that

W u∗
0 = max

c
−e−αc + βU

(
β−1 (ā0 − c) , ye∗, c̄e

)
.

Hence, from the agent’ s optimality condition, if we let

c̄1 := arg max−e−αc + βU
(
β−1 (ā0 − c) , ye∗, c̄e

)
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and ā1 := β−1 (ā0 − c), then, by construction,

W ∗
0 = max

p

[
− p

exp
{
−α
[
c̄e + (1− β) ā0 − η

[
ye∗ + κ

(
ϑ(p)
p

)]]}
1− β

+ (1− p)
[
max
c
−e−αc + βU

(
β−1 (ā0 − c) , ye∗, c̄e

)] ]
= U (ā0, y

e∗, c̄e) ,

which coupled with c̄e + (1− β) ā0 = ce∗t implies that the chosen p is p∗.

Moreover, by construction,

U
(
β−1 (ā0 − cu∗0 ) , ye∗, c̄e

)
= U (ā1, y

e∗, c̄e) = exp{−α (1− β) (ā1 − ā0)}U (ā0, y
e∗, c̄e) ,

where we have used Lemma 10.

Inductively the utility in the beginning of period t+ 1 satisfies

W ∗
t+1 = W u∗

t =
W u∗

0

W ∗
0

W u∗
t−1,

as desired. Finally, since the employment utility W e
t in period t satisfies

W u∗
t = p∗W e

t + (1− p∗)W u∗
t+1,

and hence

W e
t =

W u∗
t − (1− p∗)W u∗

t+1

p∗
,

as desired, and hence the employment consumption satisfies cet = ce∗t for every t.

Finally, since − exp{−αcut } = W u∗
t+1 we have cut = cu∗t as desired. This completes the

proof.

Proof. [Proof of Proposition ??] Notice that W ∗
t < W e∗

t and hence it suffices to
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show that limW e∗
t = −∞. We have

lim(1− β)W e∗
t =

− lim exp

{
−α
[
c∗0 + (1− β) ā0 − η

[
ye∗ + κ

(
ϑ(p∗)

p∗

)]]
α (t− 1) ∆c

}
= −∞.

Proof. [Proof of Proposition ??] Recall from (8)

∂

∂p

[
p

1− (1− p) β

](
ye − ce

1− β

)
∂p

∂ce
=

p (ye, ce)

1− (1− p (ye, ce)) β
− Uce (ye, ce)

eα(1−β)a0α (1− β) |U0|

Since
∂

∂p

[
p

1− (1− p) β

]
> 0 and

∂p

∂ce
> 0,

ye − ce has the same sign as

−
∞∑
t=0

pβt (1− p)t−1

[
−1

1− β
+

exp
{
−α
{
ce − η

(
ye + κϑ(p)/p

)}}
(1− β)2 |U0|

]
,

by Lemma ??, which is strictly positive by Lemma 16.
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