QUANTUM TECHNOLOGIES: The information revolution that will change the future

A Review on Coprocessing for Decarbonization: Bio-Oil Deoxygenation Towards FCC

Amanda Lienthier^{1,2*}, Gustavo Brandão de Melo², Ana Luiza Gomes², Luiz Antônio Magalhães Pontes^{2,3}, Ronaldo Costa Santos^{1,3}

¹ Universidade Senai Cimatec, Salvador, Bahia, Brazil
 ² Universidade Federal da Bahia, Salvador, Bahia, Brazil
 ³ IBTR, Salvador, Bahia, Brazil
 amandalienthier@fieb.org.br
 ronaldo.ead@gmail.com

Abstract: The growing demand for sustainable solutions has driven the development of processes for harnessing renewable resources, such as bio-oil derived from the pyrolysis of lignocellulosic biomass. This study presents a review of the literature, categorizing studies published in the last 15 years to evaluate the main pathways of bio-oil deoxygenation. The methodology applied searched indexed databases using keywords such as catalytic pyrolysis, deoxygenation, bio-oil, and zeolites. The results pointed to the main bio-oil deoxygenation pathways—hydrodeoxygenation (HDO), decarboxylation (DCX), and decarbonylation (DCO)—with a focus on the influence of heterogeneous catalyst types and operating parameters, aiming at the technical and environmental feasibility of coprocessing in fluid catalytic cracking (FCC) units. The use of model molecules enabled a deeper understanding of the reaction mechanisms involved and the identification of favorable conditions for producing hydrocarbons compatible with commercial fuels. The analysis of reaction mechanisms and catalyst properties revealed that the selectivity and conversion of deoxygenation reactions are closely related to the nature of active sites, the acidity of the support, and the porous structure of the materials. Metallic catalysts such as Pt, Pd, and Ru demonstrated high catalytic activity but entail high costs, reinforcing the interest in alternatives such as modified zeolites and bifunctional catalysts. Tuning acidity and introducing mesopores proved to be effective strategies for facilitating the diffusion of bulky intermediates, reducing secondary cracking, and minimizing coke formation. However, excessive desilication may compromise the structure and selectivity of the catalysts, requiring tighter control during material preparation. The results indicate that an in-depth investigation of catalysts, combined with precise control of reaction conditions, can optimize the performance of these materials in overcoming structural and operational limitations, thereby enabling the efficient integration of biofuels into conventional refining processes.

Keywords: decarbonization. Deoxygenation. Zeolites. FCC.

1. Introduction

The pressing need to mitigate the effects of climate change has driven decarbonization to become a strategic vector in the transition towards a low-carbon economy, demanding our immediate attention and action [1]. This process, which involves reducing the carbon intensity associated with economic activities—particularly within the energy matrix—stands as one of the key pillars for sustainable development on a global scale, uniting us in a common goal [2]. The pursuit of alternative pathways to those based on fossil feedstocks, with an emphasis on

the use of renewable sources, has become increasingly established to produce high-valueadded chemical and energy inputs Lignocellulosic biomass, in particular, stands out for its abundance, low cost, and conversion versatility, offering a strategic option for restructuring production chains to be more environmentally resilient and responsible. Among the emerging technologies for biomass utilization, pyrolysis has garnered significant attention due to its ability to produce bio-oil—a liquid rich in oxygenated compounds—as well as char and combustible gases [4].

ISSN: 2357-7592

Although bio-oil holds potential for electricity generation and fuel production, its high content of oxygenated compounds—derived mainly from lignin and hemicellulose—undermines its thermal stability, viscosity, and calorific value, thereby hindering its direct application as a fuel [5].

Deoxygenation - the process of reducing the content of oxygenated compounds - is a critical step in adapting bio-oil to the requirements of conventional industrial processes. Among the most relevant chemical pathways are hydrodeoxygenation (HDO), decarboxylation (DCX), and decarbonylation (DCO), which promote the removal of water, carbon dioxide, and carbon monoxide, respectively [6].

Following deoxygenation, the coprocessing of bio-oil in fluid catalytic cracking (FCC) units represents an attractive strategy for its integration into existing refineries [7]. However, significant gaps remain in our understanding of deoxygenation mechanisms under different reaction conditions, as well as in the rational selection of heterogeneous catalysts. Our novel approach is capable of promoting efficient and selective conversions, a unique contribution to the field.

This article aims to address these gaps by evaluating deoxygenation pathways for bio-oil, with a focus on the influence of catalyst types and operational parameters. Our research has the potential to significantly impact the technical and economic feasibility of coprocessing in FCC units, and to advance knowledge on the

integration of biofuels into conventional infrastructures, promoting sustainable solutions for the refining industry.

2. Deoxygenation Reactions

The chemical composition of bio-oil, although variable depending on the biomass source and processing conditions, is predominantly composed of fatty acids, alcohols, aldehydes, and ketones [8]. According to Hermida and colleagues (2014), the chemical deoxygenation of bio-oil proceeds via primary reaction pathways such as decarboxylation, decarbonylation, and hydrodeoxygenation, whose prevalence strongly influenced by the reaction atmosphere and the type of catalyst employed [9].

As illustrated in Figure 1, the decarboxylation (DCX) process involves the selective removal of oxygen from oxygenated biomass compounds, releasing it predominantly in the form of carbon Decarbonylation dioxide (CO₂).(DCO) eliminates oxygen as carbon monoxide (CO) and water, requiring higher energy input and potentially accelerating catalyst deactivation. Hydrodeoxygenation (HDO), in turn, removes oxygen as water (H2O) through hydrogen consumption and is effective in converting unsaturated fatty acids and triglycerides into more stable saturated hydrocarbons [10].

Figure 1. Chemical Deoxygenation Pathways

QUANTUM TECHNOLOGIES: The information revolution that will change the future

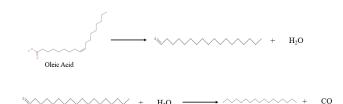
Hidrodeoxygenation
$$R \longrightarrow OH + H_2 \longrightarrow R + H_2O$$

Decarbonylation $R \longrightarrow OH \longrightarrow R + CO + H_2OH \longrightarrow COH \longrightarrow R + CO_2$

Under inert atmospheres, the DCX and DCO pathways are predominant, resulting in n-alkanes, isoalkanes, cyclic hydrocarbons, and aromatics. However, the introduction of hydrogen shifts the dominant pathway to HDO, favoring the formation of n-alkanes and the saturation of double bonds. These pathways are often accompanied by parallel reactions such as thermal and catalytic cracking, as well as gasphase reactions that break carbon chains and generate lower molecular weight hydrocarbons. [11].

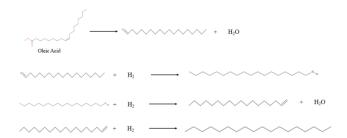
3. Reaction Parameters

According to the reaction mechanism proposed by Nguyen et al. (2024), DCX occurs through the formation of a carboxylate intermediate on the catalyst surface, which is thermally decomposed with the release of CO₂ and a saturated hydrocarbon, as shown in Figure 2 [12].


Figure 2. Reaction Mechanism of Oleic Acid DCX

In DCO, the process begins with the hydrogenation of the carbonyl group of the free fatty acid (FFA), forming water and an aldehyde molecule. The aldehyde then decomposes,

producing CO and a saturated hydrocarbon, as illustrated in Figure 3 [13].


Figure 3. Reaction Mechanism of Oleic Acid DCO

Both DCO and DCX are endothermic processes and yield hydrocarbons with one carbon less than the original FFA.

In contrast, HDO is an exothermic process involving three consecutive reactions that produce a hydrocarbon with the same number of carbons as the original FFA, as shown in Figure 4 [14].

Figure 4. Reaction Mechanism of Oleic Acid HDO

The HDO mechanism of oleic acid (OA) holds great promise for the future of biofuel technology. It begins with the hydrogenation of the carbonyl group, initially forming a fatty aldehyde and water. This aldehyde then undergoes further hydrogenation to produce a primary alcohol, which subsequently undergoes sequential dehydration and additional hydrogenation steps, ultimately yielding the

QUANTUM TECHNOLOGIES: The information revolution that will change the future

corresponding saturated hydrocarbon and additional water. In parallel, the generated saturated hydrocarbons may undergo isomerization, resulting in branched compounds with enhanced properties for biofuel applications. [15].

Deoxygenation, cracking, and isomerization reactions are catalyzed in the presence of specific functional groups and acidic sites on the catalyst, with the carboxyl (–COOH) group of OA being particularly susceptible to decarboxylation, releasing CO₂ [16]. Thus, effective catalysts for HDO must exhibit a high capacity to adsorb and activate C-O and C-C bonds, in addition to hydrogenation promoting selective $\lceil 17 \rceil$. Although noble metals such as Pt, Pd, and Ru exhibit superior performance in these steps, their high cost and limited availability have driven research into alternative catalysts, such as supported transition metals (Ni, Co, Mo), which can combine catalytic activity, selectivity, and economic feasibility for industrial-scale applications.

4. Desired Catalyst Properties

The efficiency of deoxygenation reactions is closely linked to the physicochemical properties of the catalysts employed, particularly the nature of the active sites present on their surface. Activation of the carboxylic group (–COOH) at acidic sites and the subsequent cleavage of the C–C bond are critical steps for CO₂ release via decarboxylation. In specific catalytic systems, competitive CO₂ adsorption may indicate a

stronger preference for this pathway, potentially limiting the occurrence of other desired reactions. This limitation underscores the need for further research and development in this area [18].

Ferreira et al. (2024) investigated the reaction conditions for palmitic acid deoxygenation in a 100 mL Parr reactor, employing carbon nanotube (CNT) materials as catalysts, achieving 90% C16 conversion at 350 °C and 30 bar hydrogen (H₂). Reactions using higher amounts of Co–Mo/oxidized CNT catalysts produced greater quantities of C15, indicating that DCX reactions were favored due to increased acidity [19].

Strapasson et al. (2025) explored the role of catalyst support acidity and metal-support interactions in the selectivity and stability of acetone hydrodeoxygenation reactions, with a specific focus on bifunctional catalysts based on Platinum (Pt) and Platinum-iron (Pt/Fe). The study found that catalysts with predominantly Brønsted acidity favor the selective cleavage of C–O bonds, while those with predominant Lewis acidity promote the formation of C-C coupling products and cascade cleavage. The authors also highlighted the crucial role of metallic sites in hydrogenation and dehydrogenation, shedding light on this aspect of the process and making the reader feel enlightened about the intricacies of HDO reactions [20].

The use of zeolites as catalysts not only holds promise for reducing operational costs but also signifies a potential shift in the landscape of fuel production. Some of these materials are already commercially employed in conventional fuel

production processes, paving the way for a more cost-effective and sustainable future.

In their study, B Valle et al. (2021) delved into the role of zeolite properties in bio-oil deoxygenation and hydrocarbon production via catalytic cracking. They highlighted the pivotal role of zeolite Y in hydrogen transfer reactions, attributing this to its shape selectivity, which leads to the production of more aliphatic than aromatic hydrocarbons [21].

Li et al. (2018) explored the potential of La₂O₃-modified ZSM-5 zeolite in the production of light olefins from three bio-oil model compounds, including oleic acid, through catalytic deoxygenation. Their study concluded that the introduction of La³⁺ into the zeolite channels significantly increased the pore radius and

enhanced the acidity of weak and medium acid sites. This promising result led to the production of approximately 90% of the liquid product being composed of aromatic hydrocarbons such as naphthalene and BTX [22].

Pacheco et al. (2025) evaluated hydrogen-free deoxygenation using ZSM-5 and Y zeolites as catalysts in a micro-pyrolyzer, finding that zeolite Y produced more branched alkanes, and that incorporating sodium (Na) increased the yield of gasoline-range hydrocarbons and light olefins [23].

Based on data reported in the literature, Table 1 was compiled with the reaction conditions for bio-oil deoxygenation, presenting the results corresponding to the highest conversion obtained.

Table 01. Reaction Conditions for Bio-Oil Deoxygenation

N°	Reaction Condicions	Reactor	Main Products	Reference
1	1,75g AO, 6La/ZSM5, 600 °C	Fixed bed	Light olefins	(Li et al., 2018)
2	Bio oil, ZSM-5, 450 °C	Fluid bed	C2-C4, C5+	(Valle et al., 2022)
3	5% AO, Ni/Z, 380 °C	Fixed bed	C8-C16	(Liu et al., 2025)
4	Bio oil, ZnO, 300 °C	Parr	Hidrocarbons	(Cheng et al., 2017)
5	OAME, Na/Y/ZSM5, 650 °C	Micropyroliser	Hidrocarbons	(Padilha et al., 2022)
6	Palmitic acid, Co-Mo/Al2O3	Parr	C16	(Ferreira et al, 2024)
7	Tetralin, Ecat-DI, 500 °C	Fixed bed	C5-C11	(Pujro et al., 2019)
8	Glycerol, TS1/ZSM5, 320 °C	Fixed bed	Gasoline, LCO, HCO	(Rafiani et al., 2025)
9	Bio oil, NaZSM5, PtZSM5, 300 °C	Parr	C9-C20	(Pacheco et al., 2025)
10	Biomass, ZSM5, 450 °C	Fixed bed	Aromatic	(Pagano et al., 2025)

Data analysis reveals that the reaction conditions employed in deoxygenation processes show a certain degree of convergence, with temperatures ranging between 300 °C and 400 °C, depending

on reactor configuration and the nature of the catalyst used. Catalyst selection is directly related to the desired product profile, influencing both selectivity and conversion efficiency. Acidic,

ISSN: 2357-7592

metallic, or bifunctional catalysts are employed according to the predominant pathway (DCX, DCO, or HDO) and the type of model substrate. Product characterization is typically performed using gas chromatography (GC), often coupled with mass spectrometry (GC-MS), enabling precise identification of the hydrocarbons formed and monitoring of compound distribution in the C₁-C₂₀ range. This analytical approach is essential for correlating operating conditions with the underlying reaction mechanisms, providing valuable insights for optimizing coprocessing processes in industrial units.

Recent studies indicate that catalysts with basic modified sites. such as zeolites, deoxygenation via decarbonylation, initially reacting with fatty acids to form metal salts that subsequently decompose into hydrocarbons. Conversely, aluminosilicates and oxides with Lewis acidity have proven effective decarboxylation reactions, whereas oxides such as ZnO and acidic zeolites favor decarbonylation [24].

To enable the coprocessing of bio-oil in FCC units, the aromatic content must be minimized, as aromatics in these units lead to high coke formation. Therefore, secondary reactions such oligomerization, cyclization, as aromatization should be avoided. In this regard, zeolites with high acidity and/or restricted microporosity may not deliver good yields [25]. The high acidity and shape selectivity of unmodified HZSM-5 make it highly selective in the cracking of vegetable oils, resulting in the

production of light hydrocarbons and aromatics [26].

Analyzing the effects of zeolite Y on fatty acid deoxygenation, Li et al. (2018) reported low yields in the production of light olefins and gasoline-range hydrocarbons [22]. Although such limitations exist for lighter fractions, studies such as that by Sun et al. (2025) suggest that zeolite Y may be effective for producing heavier hydrocarbons. These zeolites have larger pore sizes, which facilitate the ingress and egress of bulky intermediates derived from fatty acids, favoring formation heavier the hydrocarbons—ideal for coprocessing in FCC units [27].

Modifying acidity and introducing mesopores can improve the diffusion of bulky intermediates and reduce secondary cracking. However, excessive desilication may compromise catalyst structure and selectivity, requiring greater care in preparation [15].

5. Final Considerations

The catalytic deoxygenation of bio-oil is an essential step for its coprocessing in conventional petroleum refining processes, such as fluid catalytic cracking (FCC), directly contributing to decarbonization strategies and the energy transition. The use of suitable catalysts capable of promoting selective pathways—such as decarboxylation, decarbonylation, and hydrodeoxygenation—is crucial for obtaining hydrocarbons compatible with commercial fuels.

ISSN: 2357-7592

QUANTUM TECHNOLOGIES: The information revolution

The information revolution that will change the future

In this context, the use of model molecules, such has proven effective oleic acid, understanding reaction mechanisms and evaluating the influence of operating parameters on conversion and selectivity. The literature shows that metallic catalysts, although highly active, present economic limitations, reinforcing the interest in alternatives such as modified zeolites, which offer advantages in terms of cost, availability, and compatibility with established processes.

The preparation of these catalysts involves tuning acidity, creating mesopores, and optimizing metal-support interactions. These approaches represent a promising strategy to overcome challenges associated with coke formation and the production of undesirable fractions. The selection of catalytic materials, combined with careful control of reaction conditions, can enable the efficient coprocessing of bio-oil in FCC units, fostering the production of renewable fuels with environmental lower impact and greater economic viability.

Moreover, the application of zeolites in catalytic deoxygenation processes can reduce the need for high hydrogen pressures, favoring oxygen removal in the form of CO and CO₂ through decarboxylation and decarbonylation reactions.

References

[1] Di Vaio A, Chhabra M, Zaffar A, Balsalobre-Lorente D. Accounting and Accountability in the Transition to Zero-Carbon Energy for Climate Change: A Systematic Literature Review. Bus

- Strategy Environ 2025. https://doi.org/10.1002/bse.4282.
- [2] Kircher M. Chemical Production Based on Biomass—Potential and Limits. Biomass (Switzerland) 2025;5. https://doi.org/10.3390/biomass5010008.
- [3] Eckert CT, Mari AG, Frigo EP, Ferreira PJ, Grzesiuck AE, Santos KG, et al. La producción de bio-aceite a partir de diferentes materias primas en Brasil. Revista de Ciencia y Tecnología 2016;26:32–9.
- [4] Raymundo LM. Desenvolvimento do processamento por pirólise rápida de resíduos ligno-celulósicos para melhoria do bio-óleo. Universidade Federal do Rio Grande do Sul, 2022.
- [5] Almeida MBB. Bio-óleo a partir da pirólise rápida, térmica ou catalítica, da palha da cana-de-açúcar e seu co-processamento com gasóleo em craqueamento catalítico. Universidade Federal do Rio de Janeiro, 2008.
- [6] Pujro R, Panero M, Bertero M, Sedran U, Falco M. Hydrogen Transfer between Hydrocarbons and Oxygenated Compounds in Coprocessing Bio-Oils in Fluid Catalytic Cracking. Energy and Fuels 2019;33:6473–82.
 - https://doi.org/10.1021/acs.energyfuels.9b01133.
- [7] Han X, Wang H, Zeng Y, Liu J. Advancing the application of bio-oils by co-processing with petroleum intermediates: A review. Energy Conversion and Management: X 2021;10. https://doi.org/10.1016/j.ecmx.2020.100069.
- [8] Padilha JF, Frety R, Santos AP, Pontes LAM, Santos MR, Arias S, et al. Deoxygenation of Oleic Acid Methyl Ester in FCC Process Conditions Over Protonated and Sodium Exchanged Y and ZSM-5 Zeolites. Waste Biomass Valorization 2022;13:185–94. https://doi.org/10.1007/s12649-021-01505-y.
- [9] Hermida L, Abdullah AZ, Mohamed AR. Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process condition, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews 2014;42. https://doi.org/dx.doi.org/10.1016/j.rser.2014.10.0 99.
- [10] Liu Z, Mei J, Kong X, Chen Z, Li D, Li H, et al. Rational design of hierarchical porous structure of ZSM-22 for boosting high-efficiency selective hydrogenation of oleic acid to jet fuel. Chemical Engineering Journal 2025;507. https://doi.org/10.1016/j.cej.2025.160585.
- [11] Lachos-Perez D, Martins-Vieira JC, Missau J, Anshu K, Siakpebru OK, Thengane SK, et al. Review on Biomass Pyrolysis with a Focus on Bio-Oil Upgrading Techniques. Analytica 2023;4:182–205. https://doi.org/10.3390/analytica4020015.
- [12] Nguyen NA, Forstater JH, McIntosh JA.
 Decarboxylation in Natural Products Biosynthesis.

 JACS Au 2024;4:2715–45.
 https://doi.org/10.1021/jacsau.4c00425.

OUANTUM HNOLOGIES: The information revolution

that will change the future

- Lopez C. CATALYTIC DEOXYGENATION OF [13] OLEIC ACID USING ALUMINA-SUPPORTED MOLYBDENUM CARBIDE. UFRJ, 2015. https://doi.org/10.13140/RG.2.2.27161.01125.
- [14] Rafiani A, Maghfirah A, Kadja GTM. Enhanced Catalytic Pyrolysis of Glycerol into Gasoline Over TS-1/ZSM-5 Hybrid Catalysts. Waste Biomass Valorization 2025. https://doi.org/10.1007/s12649-025-03122-5.
- [15] Feng R, Yan X, Hu X, Wang Y, Li Z, Hou K, et al. Hierarchical ZSM-5 zeolite designed by combining desilication and dealumination with related study of n-heptane cracking performance. Journal of Porous Materials 2018:25:1743-56. https://doi.org/10.1007/s10934-018-0587-2.
- Hu W, Wang H, Lin H, Zheng Y, Ng S, Shi M, et [16] al. Catalytic decomposition of oleic acid to fuels and chemicals: Roles of catalyst acidity and basicity on product distribution and reaction pathways. Catalysts 2019;9. https://doi.org/10.3390/catal9121063.
- Arora S, Gupta N, Singh V. Improved Pd/Ru metal [17] supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, lignin. vanillin and Green Chemistry 2020;22:2018-27. https://doi.org/10.1039/d0gc00052c.
- Margellou AG, Zormpa FF, Karfaridis D, [18] Karakoulia SA. Triantafyllidis Hydrodeoxygenation of Phenolic Compounds and Lignin Bio-Oil Surrogate Mixture over Ni/BEA Zeolite Catalyst and Investigation of Its Deactivation. Catalysts 2025;15. https://doi.org/10.3390/catal15010048.
- [19] Ferreira KK, Ribeiro LS, Pereira MFR. Analysis of Conditions Palmitic Reaction in Deoxygenation for Fuel Production. Catalysts 2024;14. https://doi.org/10.3390/catal14120853.
- Strapasson GB, Báfero GB, Leite DS, Santos DBL, [20] Albuquerque A, Barcelos ID, et al. Acidity drives selectivity: tuning reaction pathways of (Pt,Fe)supported catalysts under hydrodeoxygenation conditions. Applied Catalysis B: Environment and Energy 2025:125316. https://doi.org/10.1016/J.APCATB.2025.125316.
- [21] Valle B, Palos R, Bilbao J, Gayubo AG. Role of zeolite properties in bio-oil deoxygenation and hydrocarbons production by catalytic cracking. Fuel Technology Processing 2022;227. https://doi.org/10.1016/j.fuproc.2021.107130.
- [22] Li F, Ding S, Wang Z, Li Z, Li L, Gao C, et al. Production of Light Olefins from Catalytic Cracking Bio-oil Model Compounds over La2O3-Modified ZSM-5 Zeolite. Energy and Fuels 2018;32:5910-22.
 - https://doi.org/10.1021/acs.energyfuels.7b04150.
- [23] Pacheco JGA, Padilha JF, Santos BL, Santos MR, Liborio DO, Pontes LAM, et al. Hydrogen-free deoxygenation of oleic acid on acidic and basic ZSM-5 and Y-zeolites: Products for biofuel and

- reaction pathways. Catal Today 2025;445. https://doi.org/10.1016/j.cattod.2024.115094.
- [24] Guimarães Craqueamento FS. hidrocraqueamento catalítico de óleo de soja sobre catalisadores ácidos e básicos para obtenção de biocombustíveis. Universidade Federal da Bahia, 2019.
- Chaihad N, Karnjanakom S, Abudula A, Guan G. [25] Zeolite-based cracking catalysts for bio-oil upgrading: A critical review. Resources Chemicals Materials 2022;1:167-83. https://doi.org/10.1016/j.recm.2022.03.002.
- [26] Farah E, Demianenko L, Engvall K, Kantarelis E. Controlling the Activity and Selectivity of HZSM-5 Catalysts in the Conversion of Biomass-Derived Oxygenates Using Hierarchical Structures: The Effect of Crystalline Size and Intracrystalline Pore Dimensions on Olefins Selectivity and Catalyst 2023;66:1310-28. Deactivation. Top Catal https://doi.org/10.1007/s11244-023-01833-4.
- [27] Sun W, Yan Y, Wei Y, Ma J, Niu Z, Hu G. Catalytic Pyrolysis of Biomass: A Review of Zeolite, Carbonaceous, and Metal Oxide Catalysts. Nanomaterials 2025;15. https://doi.org/10.3390/nano15070493.