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Abstract: With the advancement of quantum computing, traditional cryptographic algorithms have be-
come vulnerable, demanding solutions based on physical principles, such as continuous-variable quantum
key distribution (CV-QKD). One of the main challenges for the practical adoption of CV-QKD lies in the
digital signal processing (DSP) and post-processing stage, which imposes strict requirements for perfor-
mance, reliability, and robustness against noise and faults. In this context, architectures based on the open
fifth-generation Reduced Instruction Set Computing (RISC-V) standard have proven promising for build-
ing application-specific instruction set processor (ASIP) and specialized system-on-chip (SoCs), due to their
flexibility, customization capabilities, and growing support ecosystem. However, ensuring the functional
reliability of such systems requires the application of rigorous verification processes. This paper presents
a comparative study of four complementary functional verification approaches: modular block-based veri-
fication, instruction-level transaction-based verification, black-box verification, and cycle-by-cycle compar-
ison. Each approach was evaluated in terms of coverage, implementation complexity, and fault visibility.
The study also highlights how these methods complement each other when applied in layered verification
environments. The results show that no single approach can efficiently meet all requirements. High-level
strategies are better suited for integration testing and broad functional validation, while low-level techniques
are essential for localized debugging and precise timing analysis. This reinforces that verification success re-
lies more on strategic integration than on a single optimal method. The findings indicate that adopting
hybrid, layered solutions provides better scalability, supports regression testing, and improves both cover-
age and alignment with the security and performance goals required by CV-QKD systems.
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1. Introduction nature, enables the development of ASIP and

SoCs optimized to accelerate these DSP and post-

With the ongoing advancement of quantum com- .
going q processing tasks [8, 9, [10]. However, to ensure

) tional hic aleorith h
puting, traditional cryptographic algorithms suc the reliability of such systems, robust functional

as Rivest-Shamir-Adleman (RSA) and elliptic verification of the RISC-V core is essential, pre-

t hy (E ted to be-
curve cryptography (ECC) are expected 1o be senting a complex challenge due to the presence of

come insecure, requiring new secure communica- . . . .
pipelines, complex sequential logic, and temporal

i i h -QKD, which -
tion paradigms such as CV-QKD, which guaran dependencies.

tees security based on the laws of quantum physics

[1L12]. However, the high-speed DSP and intensive To manage this verification complexity, differ-

post-processing steps represent a bottleneck in the ent methodologies exist [ILL} [12], among which

the Universal Verification Methodology (UVM) is
commonly adopted [13, [14, [15]. UVM enables

practical implementation of CV-QKD [3 4} 15, 16]].

The use of RISC-V instruction set architecture ) . )
the creation of scalable and reusable verification

(ISA) [[7], due to its customizable and open-source
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environments across different levels of abstraction
(16, [17]. As shown in Figure [I] which illustrates
a standard structure UVM testbench environment,
each component has a specific function and can
be reused or extended according to verification
needs. In the RISC-V context, UVM enables hy-
brid verification strategies, combining internal sig-
nal analysis with input-output (black-box) based
tests [18, (19, [20].

This work presents an initial-stage comparative
study of four verification approaches applied to
a basic RISC-V implementation, aiming to eval-
uate the trade-offs between abstraction level, ver-
ification visibility, and methodological complex-
ity. The approaches investigated — ranging from
modular testing to clock-cycle-accurate compar-
ison — provide foundational insights into their
respective strengths and limitations. While this
study serves as an early investigation, its conclu-
sions are designed to inform and guide the selec-
tion of optimal verification strategies for the de-
velopment of more complex, security-dedicated
ASIPs and SoCs for CV-QKD DSP and post-
processing. The ultimate goal is to establish a ro-
bust verification methodology that ensures func-
tional reliability in future high-performance, real-
time systems where any flaw could compromise

cryptographic integrity.

The structure of this paper is organized as fol-
lows: Section 2 describes the four verification ap-

proaches adopted in this study. Section 3 presents
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the results obtained and the main observations
arising from their application. Section 4 discusses
the relationship between the level of abstraction
and verification visibility, as well as the relevance
of complementary strategies such as regression
testing. Finally, Section 5 summarizes the conclu-

sions.

2. Methodology

During the development of functional verification,
various strategies were explored, each operating at
a different level of abstraction. The approaches
evaluated included modular block-based verifica-
tion, instruction-level transaction-based verifica-
tion, black-box verification, and cycle-by-cycle
verification. These strategies support the develop-
ment of unit testing within the context of hardware
verification, enabling their application to both in-
dividual components and complete system imple-
mentations through the isolated analysis of spe-
cific design elements. The following sections pro-

vide a detailed description of each strategy.

2.1. Block-Level Verification

This technique involved the isolated verification of
individual processor components such as the arith-
metic logic unit (ALU), decode unit, comparators,
and multiplexers [22]. Stimuli were applied di-
rectly to the inputs of these blocks, and the out-
puts were monitored to verify compliance with the
expected behavior. Tests were implemented using

simple testbenches and could be complemented
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Figure 1: Standard UVM environment setup. Source:

ENV

[21]
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Figure 2: Block-level verification strategy.
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2.2. Transaction-Based Verification

This approach focused on verifying individual in-
structions in isolation. In this setup, a single in-
struction was sent to both the processor and the
reference model every four clock cycles. The ref-
erence model processed the instruction instanta-
neously, while a monitor captured the processor’s
response after the natural pipeline latency. The
output signals were then compared against the re-

sults produced by the reference model (Figure [3).
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Figure 3: Transaction-based verification at the in-
struction level.
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2.3. Black-Box Verification

In this strategy [23]], instruction sequences were
composed of LOAD operations, intermediate in-
struction set operations, and concluding STORE in-
structions. Registers were initialized with known
values, and the final data written to memory was
used for verification. No internal signals were
monitored; evaluation was based solely on ob-

servable results after program execution. This ap-

proach is particularly useful in scenarios where in-
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ternal signals — such as ALU outputs or intermedi-
ate data — are not externally accessible. This is es-
pecially relevant in the context of RISC-V, where
there is no official hardware implementation, only

an ISA specification [7].

Different cores may expose or conceal internal
signals in various ways, as discussed in [18].
Verification at this level of abstraction is there-
fore highly reusable across different RISC-V-
compliant implementations, representing the most
generic form of functional verification. This ap-
proach is also inherently robust to pipeline and
timing variations, as checking is performed only

after execution has completed (Figure [).

Figure 4: Black-box verification using memory
output comparison.
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2.4. Cycle Accurate Verification (Clock Level)

This approach combined elements from the two
previous strategies in a hybrid method. Instruc-
tion blocks were composed of LOAD operations,
randomly selected arithmetic or logical instruc-
tions, and concluded with STORE operations, sim-
Howeyver, in this

ilar to the black-box strategy.

version, internal signals — such as memory ad-
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dresses, data to be written, and the instruction ad-
dress (programCounter) — were monitored and
compared on a cycle-by-cycle basis. These sig-
nals were also used as analysis parameters in
[19]. To support this, the reference model was ex-
tended to simulate a complete processor, capable
of handling stalls, forwarding, and other typi-

cal pipeline behaviors.

Although this approach is not fully generic across
all RISC-V implementations, it enables precise
cycle-by-cycle comparison of input and output
signals for this specific processor. This strategy
offers a balanced trade-off between observabil-
ity and practicality, facilitating error identification
and providing deeper insights into processor be-

havior (see Figure[3)).

Figure 5: Cycle-accurate verification with internal
signal monitoring.
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3. Results and Observations

Throughout the verification of the RISC-V proces-
sor, each of the previously described approaches
was applied at different stages of the project. This
section presents the main results observed for each

strategy, along with the practical challenges en-
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countered during their implementation.

3.1. Modular Verification

Modular verification proved to be highly effec-
tive in identifying localized faults and providing
an initial validation of the core modules before
full processor integration. It exhibited low imple-
mentation complexity, reduced development time,
and facilitated debugging. However, it does not
cover the integration between components, timing
effects, hazards, or complex sequential behavior
typical of processor pipelines, thus limiting its ap-

plicability in global behavior testing.

3.2. Instruction-Level Transactional Verifica-

tion

The transactional approach enabled effective anal-
ysis of simple instructions by comparing the out-
put signals of the device under test (DUT) with
those of the reference model, and it facilitated the
detection of decoding errors. However, it pre-
sented difficulties with instructions that affect con-
trol flow or require forwarding, such as BEQ and
JAL. The absence of mechanisms to indicate ex-
ecution completion required the manual insertion

of NOP instructions, making the approach timing-

sensitive and unstable in complex scenarios.

Although initially promising due to its ability to
perform targeted validations with good granular-
ity, the approach proved unreliable in tests in-

volving execution dynamics, such as branches,
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stalls, or paths with forwarding, compromis-

ing its effectiveness in realistic environments.

3.3. Black-Box Verification

The method proved simple and robust for basic
programs. Since it did not rely on the internal tim-
ing of the DUT, it avoided synchronization issues.
However, its low observability hindered fault di-
agnosis, requiring artificial mechanisms to iden-
tify the end of program execution. While advanta-
geous in eliminating timing-related concerns, this
approach is not suitable for validating temporal as-
pects of the design — such as the number of cycles
required to execute a program or the behavior un-
der conditions like forwarding and stalls. In
such cases, complementary verification methods

are essential.

3.4. Cycle-by-Cycle Verification

The most fine-grained approach provided the high-
est functional coverage among the methods, en-
abling the detection of subtle mismatches. How-
ever, it was extremely sensitive to desynchroniza-
tion between the DUT and the model, requir-
ing strict alignment of signals such as clock and
reset. The complexity of the reference model
and the comparison infrastructure increased sig-
nificantly, including the need to simulate pipelines,
stalls, forwarding, and other timing effects.
This approach proved viable only in scenarios
where synchronization could be maintained with

precision.
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3.5. Comparative of Verification

Methods

Analysis

To summarize the advantages and limitations of
each verification approach, Table [I| presents a
comparative analysis based on key evaluation cri-
teria.

The analysis shows that no single method is op-
timal for all verification needs. Modular verifica-
tion is most effective during the early stages of de-
velopment, while black-box techniques offer the
highest reusability. For comprehensive validation,
cycle-by-cycle verification provides the most de-
tailed insights, despite its implementation com-
plexity. An effective verification strategy should
combine these methods according to the specific

requirements and phase of the project.

4. Discussion

This section examines the key considerations and
trade-offs involved in the verification of digital
systems. Different strategies offer varying levels
of coverage, complexity, and maintainability. By
analyzing specific aspects such as levels of ab-
straction and regression testing, we aim to high-
light practical insights and common challenges en-

countered during functional verification.

4.1. The Core Trade-off: Abstraction, Cover-
age, and Complexity

The results reveal a clear trade-off between cov-

erage and complexity, which is directly influenced

ISSN: 2357-7592

by the chosen level of abstraction. Low-level tech-
niques, such as cycle-by-cycle verification, pro-
vide detailed visibility but are sensitive to small
design changes and can be difficult to maintain. In
contrast, block-level tests and high-level methods
like black-box verification are simpler and more
robust to internal modifications, but they offer lim-
ited coverage, making it more challenging to lo-
cate and diagnose functional failures. Validating
modules such as ALUs or decoders in isolation
enables early bug detection and serves as a foun-
dation for more complex validations. Ultimately,
the appropriate level of abstraction depends on the
project phase, available resources, and the types of
errors being targeted. Hybrid strategies that com-
bine multiple levels often provide the best balance

between verification effort and coverage.

4.2. Functional Verification Is Not Complete

Verification

Even when a design passes directed tests and in-
corporates techniques such as random testing, as-
sertions, and coverage analysis, it may still con-
tain latent bugs. Functional verification, although
comprehensive in scope, is inherently limited by
the scenarios it can realistically cover. Rare cor-
ner cases or complex interactions may go unde-
tected. Therefore, achieving complete verification
requires combining multiple strategies — including
formal methods and runtime validation — to min-
imize the risk of undetected failures and increase

overall design confidence.
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Table 1: Comparison of Verification Methods.

Criteria Modular | Transactional | Black-Box| Cycle
Implementation Complexity | Low Medium Low High
Level of Debugging High Medium Low Medium
Timing Sensibility None High None | Very High
Reusability Low Medium High Low
Reference Model Simple Medium Simple | Complex

4.3. The Importance of Regression Testing

Design changes can introduce regressions in previ-
ously stable functionalities. A comprehensive set
of regression tests is essential to ensure system in-
tegrity over time. Automation and continuous in-
tegration are key to detecting new bugs efficiently,
as demonstrated by [24], where cron jobs and
Bash scripts were used to run regressions automat-

ically.

5. Conclusion

This study presented a comparative analysis of
four functional verification strategies for a ba-
sic RISC-V core, demonstrating that no single
approach is universally optimal. Instead, effec-
tive verification relies on a multi-layered strategy
that combines high-level functional tests with low-
level, cycle-accurate debugging, with the choice of

technique involving a clear trade-off between ab-

straction, visibility, and complexity.

For security-critical applications such as CV-QKD
DSP and post-processing, this rigorous, multi-
faceted verification is a fundamental requirement
to ensure reliability. The insights and guidelines

derived from this work provide a practical foun-
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dation for selecting and integrating verification
strategies in the development of more complex,
dedicated RISC-V ASIPs and SoCs, where the
intelligent combination of these complementary

techniques will be critical to success.
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