

Influence of processing conditions on the colloidal stability of CNCs from coconut fiber

Marina R. de Andrade¹, Danilo H. Guimarães², Ingrid L. Leal^{1*}

¹ SENAI CIMATEC University, Industrial Microbiology, Salvador, Bahia, Brazil
² Green Coco Europe, Nürnberg, Germany

*Corresponding author: SENAI CIMATEC University, Orlando Gomes Avenue, 1845, Piatã, Salvador, Bahia, Brazil; ingrid.leal@fieb.org.br

Abstract: The production of cellulose nanocrystals (CNCs) from agro-industrial residues represents a sustainable and technically feasible alternative, promoting the reuse of low-cost materials with high cellulose content. This study evaluated the effect of two bleaching routes of coconut fiber — using buffered sodium hypochlorite (PC) and alkaline hydrogen peroxide (PP) — on the colloidal properties of CNC suspensions obtained by sulfuric acid hydrolysis. Four different reaction conditions were tested, combining acid concentration, time, and temperature, in the following configurations: 40 25 35, 60 25 35, 40 40 35, and 60 40 35. The samples were characterized by dynamic light scattering (DLS) and zeta potential analysis, assessing average particle size (Z-Average), polydispersity index (PdI), and colloidal stability. The results showed that sample PC60 40 35 presented the best performance, with reduced size (255.4 nm), moderate PdI (0.412), and high absolute zeta potential value (-32.36 mV), indicating good electrostatic stability and homogeneous particle size distribution. Samples such as PP40 25 35 and PP60 25 35 also exhibited intermediate particle sizes (≈530 nm), but with lower stability. Overall, the PC bleaching route, combined with higher acid concentration and longer reaction time, favored the production of CNCs with more suitable colloidal properties, demonstrating the combined impact of treatments on suspension quality. These data have practical relevance and can be used to optimize future industrial processes for producing nanocellulose. Keywords: Cellulose nanocrystals. Coconut fibers. Bleaching. Acid hydrolysis. Colloidal stability.

1. Introduction

Growing concerns over the environmental impacts resulting from the exploitation of nonrenewable resources have driven a global shift toward more sustainable production models, notably the circular economy. This approach emphasizes the valorization of waste and byproducts as feedstocks for new processes, thereby promoting resource recovery and minimizing waste generation. Within the agro-industrial sector, the utilization of lignocellulosic residues has gained prominence as a strategic pathway for the development of renewable materials, such as cellulose nanocrystals (CNCs), which offer advanced functional properties and potential applications across a wide range of industrial fields.[1]

Green coconut fiber, abundantly available in Brazil, is often discarded after the consumption of the water and inner pulp, thus becoming a significant environmental residue. Although it exhibits an intermediate cellulose content ranging from 23% to 43%, depending on factors such as soil conditions, maturation stage, and prior treatments — this fiber has been investigated as an alternative source for the production of cellulose nanocrystals (CNCs), primarily due to its wide availability and low cost. [2-3] CNCs are particles characterized by high crystallinity, rigidity, and colloidal stability, offering significant potential to replace synthetic materials in composites, packaging, coatings, and colloidal systems. [4]

The production of cellulose nanocrystals (CNCs) generally involves a sequence of steps, including cellulose bleaching and acid hydrolysis. The

bleaching stage aims to remove lignin and hemicelluloses, thereby facilitating acid access to the amorphous regions of the fiber. The choice of bleaching agents directly affects the composition, structure, and reactivity of the cellulosic pulp. Buffered sodium hypochlorite (PC) and alkaline hydrogen peroxide (PP) are commonly applied bleaching routes, each exhibiting distinct mechanisms of action, making it essential to understand their specific effects on nanocrystal extraction. [5]

In addition, sulfuric acid hydrolysis requires strict control of variables such as concentration, time, and temperature, as these factors directly influence the morphology, degree of sulfation, and stability of the final product. Improperly adjusted parameters may result in excessive cellulose degradation or the formation of unstable particles with poor colloidal quality. [6] Therefore, the careful selection of hydrolysis conditions, combined with the choice of pretreatment, is crucial to obtaining CNCs with physicochemical properties tailored to their intended applications.

The first colloidal analyses performed in aqueous suspension provide key indicators of the quality of CNC suspensions. Dynamic light scattering (DLS) allows for the measurement of the average particle size (Z-Average) and the polydispersity index (PdI), which indicate the degree of uniformity of the suspension. Zeta potential measurements, in turn, provide information on the electrostatic stability of particles in liquid media, being essential for predicting material behavior in formulations and during storage. In

general, absolute zeta potential values greater than 30 mV are associated with more stable suspensions. [7] Therefore, the integrated analysis of bleaching routes, hydrolysis parameters. and colloidal properties suspension is essential to optimize the CNC production process and ensure materials with suitable quality for technological applications.

2. Methodology

Green coconut fiber was first washed, oven-dried (Quimis Q314M222) at 60 °C for 24 h and milled using a Wiley-type mill (Tecnal, model R-TE-650/1). The resulting material was sieved (Bertel, AGT.P) through a 40-mesh screen (~425 μm) and subjected to a mercerization step, using 60 g of fiber in a 2% (w/v) sodium hydroxide solution under constant stirring (IKA, C-MAG HS4) at 80 °C. This procedure was repeated for four cycles to partially remove hemicelluloses and promote swelling of the cell walls, facilitating access to the cellulosic constituents.

Following this step, the mercerized pulp was divided and subjected to two distinct chemical bleaching routes:

- PC route: treatment with 1.7% (v/v) sodium hypochlorite buffered with acetate solution (pH ≈ 4.45), carried out at 80 °C for 6 h under constant stirring (IKA, C-MAG HS4).
- PP route: treatment with 16% (v/v) hydrogen peroxide buffered with 5% (w/v) sodium hydroxide, carried out at 55 °C for 2 h under constant stirring (IKA, C-MAG HS4).

In both routes, the post-bleaching material was filtered, dried (Quimis, Q314M222), and milled (Ariete, Universal PRO Grinder).

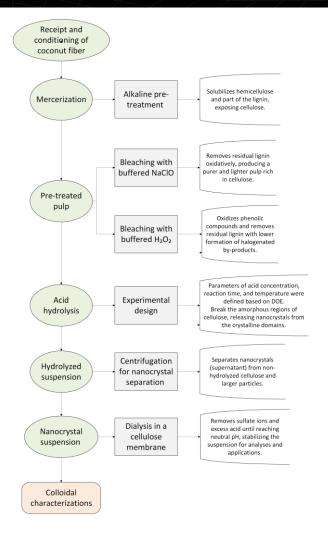

Acid hydrolysis was carried out in a water bath at 35 °C, using 2 g of bleached pulp in 40 mL of sulfuric acid (H₂SO₄), with variations in concentration and reaction time as indicated in Table 1. At the end of the reaction time, 40 mL of cold water was added to quench the reaction, and the hydrolyzed solution was placed in an icewater bath until reaching 20 °C. The sample was then centrifuged (Hettich, Rotina 380R) at 4400 rpm for 10 min, with 5 mL of distilled water being replaced in the Falcon tubes after each cycle until a constant volume of 20 mL was reached. The supernatants were dialyzed in a cellulose membrane (model D9402, Sigma-Aldrich) until reaching neutral pH.

Table 1. Reaction conditions applied for the acid hydrolysis of bleached coconut fibers.

Sample code	H ₂ SO ₄ concentration (%)	Reaction time (min)	Temperature (°C)
40_25_35	40	25	35
60_25_35	60	25	35
40_40_35	40	40	35
60_40_35	60	40	35

A flowchart (Figure 1) of the process for obtaining the nanocrystals is provided below.

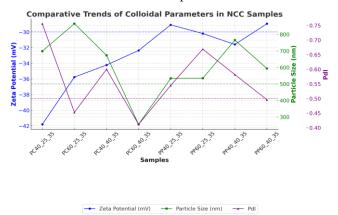
Figure 1. Simplified flowchart of the methodology for obtaining cellulose nanocrystals and the objective of each step.

The colloidal characterization of cellulose nanocrystal (CNC) suspensions was performed using Dynamic Light Scattering (DLS) and zeta potential analysis on a Zetasizer Ultra (Malvern Panalytical) equipped with a Non-Invasive Back Scatter (NIBS) system and a fixed backscatter detector angle of 173°. Samples were previously redispersed in ultrapure water (resistivity ≥ 18.2 $M\Omega \cdot cm$), standardized to 0.01% (w/v), and subjected to indirect sonication for 10 min in an ultrasonic bath (50/60)Hz) disrupt to agglomerates. The average particle size (Z-Average), polydispersity index (PdI), and zeta potential were obtained from three independent

measurements per sample at 25 °C, using disposable cells suitable for each analysis.

3. Results and Discussion

The colloidal evaluation of cellulose nanocrystal (CNC) suspensions obtained from coconut fiber enabled the identification of the direct impact of pretreatment steps (bleaching) and hydrolysis conditions on the physicochemical parameters of the material. Table 2 presents the results for zeta potential, average particle size (Z-Average), and polydispersity index (PdI) for the eight samples obtained from the PC and PP routes.


Table 2. Results of colloidal stability, particle size, and dispersion analyses of nanocrystals in suspension.

		-	
Sample Code	Zeta potential	Particle size	Polydispersity
	(mV)	(d.nm)	Index (PdI)
PC40_25_35	-41,80	699,0	0,756
PC60_25_35	-35,76	865,5	0,453
PC40_40_35	-34,22	673,9	0,600
PC60_40_35	-32,36	255,4	0,412
PP40_25_35	-29,08	533,9	0,545
PP60_25_35	-30,19	534,6	0,669
PP40_40_35	-31,59	765,5	0,582
PP60_40_35	-28,93	593,6	0,496

Based on the literature, the ideal criteria for CNCs in suspension indicate that absolute zeta potential values greater than 30 mV ensure good electrostatic stability [7], while average particle sizes between 100 and 500 nm suggest effective degradation of amorphous regions while preserving the integrity of crystalline domains [8]. Additionally, PdI values below 0.3 indicate monodispersion; however, materials obtained from agro-industrial residues often exhibit values up to 0.5, which are still considered acceptable [3]. Figure 1 presents an integrated comparison of

the three main colloidal parameters analyzed: zeta potential, particle size, and polydispersity index (PdI). The combined analysis facilitates the identification of the sample with the best performance in terms of stability, uniformity, and hydrolysis efficiency.

Figure 2. Comparative trends of colloidal parameters in NCC samples.

In this context, the PC60 40 35 sample exhibited superior performance, with a zeta potential of -32.36 mV, a particle size of 255.4 nm, and a PdI of 0.412. This profile suggests a stable suspension, with relatively homogeneous particles and dimensions comparable to those reported in studies on sisal residue, corn husk, and rice husk, fibers that present a lignocellulosic composition similar to that of coconut fiber. When compared to CNCs obtained from rice straw [9], which presented significantly smaller dimensions (11.2–30.7 nm in width and 117–270 nm in length, as determined by microscopy), the CNCs produced in this study (255.4 nm hydrodynamic diameter, -32.36 mV potential, PdI = 0.412) exhibited particle sizes closer to the reported lengths but considerably larger widths, which is expected given that DLS

measures hydrodynamic diameters of aggregates in suspension. In relation to nanocellulose derived from sugarcane bagasse [10], which was reported to have particle sizes within the nanorange by DLS without specific values in the abstract, the CNCs from coconut fiber showed a tendency toward larger hydrodynamic sizes, possibly due to residual lignin and hemicelluloses or the specific hydrolysis conditions employed. Nevertheless, the zeta potential value obtained (-32.36 mV) indicates good electrostatic stability, comparable to or potentially superior to that observed for CNCs from both rice straw and sugarcane bagasse, highlighting the potential of coconut fiber as a competitive lignocellulosic source for CNC production.

The influence of the bleaching route was also evident. The PC route (buffered hypochlorite) resulted in greater electrostatic stability under all tested conditions. This can be attributed to the more efficient removal of lignin and the exposure of reactive sites on the fiber surface, facilitating acid action during hydrolysis. In contrast, the PP route, although also oxidative, resulted in zeta potential values lower than |30| mV, suggesting a lower density of negative surface charges. When compared to CNCs obtained from cotton via different bleaching methods followed by acid or enzymatic hydrolysis [11], the CNCs produced in this study demonstrated a level of electrostatic stability above the |30| mV threshold, indicating a high density of negative surface charges and good suspension stability. In the cotton-based study, variations in bleaching method were shown to significantly influence hydrodynamic

properties and surface charge density, although specific zeta potential values were not provided in the abstract. Considering this, the stability observed in the coconut fiber CNCs produced under the PC60_40_35 condition suggests that the chosen bleaching and hydrolysis parameters effectively enhanced surface charge density, achieving stability levels that are likely comparable to or greater than those reported for cotton-derived CNCs, despite differences in raw material composition and fiber morphology.

Regarding the polydispersity index, none of the samples reached the ideal value of < 0.3. However, the values observed for samples PC60 40 35 (0.412), PC60 25 35 (0.453), and PP60 40 35 (0.496) indicate a reasonably acceptable distribution for systems derived from complex fibers. In the present study, the CNCs obtained from green coconut fiber indicating a moderately narrow particle size distribution and an acceptable level of monodispersion for CNCs derived from complex lignocellulosic fibers. In contrast, studies involving coconut shell powder or particles as fillers in polymeric matrices [12, 13] do not report quantitative PdI values, but morphological analyses via SEM agglomeration and uneven distribution of filler particles, suggesting a high degree the polydispersity at microscale. These observations align with the understanding that achieving low polydispersity is more feasible in nanocellulose suspensions, where surface chemistry and colloidal stabilization mechanisms can be optimized, than in particulate polymer

composites, where interfacial adhesion and particle wetting dominate dispersion behavior.

Additionally, the reduction in average particle size observed for the PC60 40 35 sample suggests that the combination of high acid concentration and prolonged reaction time, together with an effective pretreatment, promoted the selective degradation of amorphous regions without compromising the crystalline structure. Thus, the results demonstrate that the PC route combined with the 60 40 35 condition produces CNCs with superior colloidal characteristics compared to the other conditions, making it the most promising option for future applications in coatings, films, or nanocomposites. similarity between the results obtained and those reported in the literature for lignocellulosic residues confirms the feasibility of coconut fiber as an alternative source of cellulose nanocrystals.

4. Conclusion

The objective of this study was successfully achieved by producing cellulose nanocrystals (CNCs) from coconut fiber, using different bleaching routes and acid hydrolysis conditions, followed by a comprehensive evaluation of their colloidal properties. The results demonstrated that the PC bleaching route, when combined with the 60 40 35 hydrolysis condition, provided CNCs with greater electrostatic stability, adequate particle size distribution. dimensions comparable to those reported for other lignocellulosic residues. These findings confirm the potential of coconut fiber as an alternative and sustainable source for CNC

production, with promising applicability in films, coatings, and nanocomposite materials. Furthermore, future studies should focus on incorporating these CNCs into polymeric matrices to evaluate their reinforcing effect, mechanical performance, and compatibility with biodegradable polymers, thus expanding their potential for industrial applications in sustainable packaging, advanced composites, and functional coatings.

Acknowledgement

The authors would like to thank SENAI CIMATEC for granting the research scholarship.

References

- [1] Geyer, R., Jambeck, J.R. and Law, K.L., "Production, use, and fate of all plastics ever made," *Science Advances*, 3 (7), e1700782, 2017. https://doi.org/10.1126/sciadv.1700782.
- [2] Jonoobi, M., Oladi, R., Davoudpour, Y. and Oksman, K., "Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review," *Cellulose*, 22 (2), 935–969, 2015. https://doi.org/10.1007/s10570-015-0551-0.
- [3] Souza, E.S., Brito, R.A., Campos, N.L.F. and Ramos, D.P., "Aplicação da fibra de coco no processo de isolamento termo acústico," *Revista Gestão & Sustentabilidade Ambiental*, 4, 233–245, 2015. https://doi.org/10.19177/rgsa.v4e02015233-245.
- [4] Moon, R.J., et al., "Cellulose nanomaterials review: structure, properties and nanocomposites," *Chemical Society Reviews*, 40 (7), 3941–3994, 2011. https://doi.org/10.1039/c0cs00108b.
- [5] Zhang, Y., et al., "Bleaching of pulp: Efficiency and impact on cellulose structure," *Carbohydrate Polymers*, 189, 442–450, 2018. https://doi.org/10.1016/j.carbpol.2018.02.045.
- [6] Eichhorn, S.J., et al., "Review: current international research into cellulose nanofibres and nanocomposites," *Journal of Materials Science*, 45, 1–33, 2010. https://doi.org/10.1007/s10853-009-3874-0.
- [7] Gellerstedt, G., Hon, D.N.-S., Shiraishi, N. and Dekker, M., "Pulping Chemistry," in *Wood and Cellulosic Chemistry*, Marcel Dekker, New York, 2001, pp. 859–905.
- [8] Soleimani, S., Heydari, A. and Fattahi, M., "Isolation and characterization of cellulose nanocrystals from

- waste cotton fibers using sulfuric acid hydrolysis," *Starch/Stärke*, 74 (11–12), e2200159, 2022. https://doi.org/10.1002/star.202200159.
- [9] Lu, P. and Hsieh, Y.-L., "Preparation and characterization of cellulose nanocrystals from rice straw," *Carbohydrate Polymers*, 87 (1), 564–573, 2012. https://doi.org/10.1016/j.carbpol.2011.08.022
- [10] Mandal, A. and Chakrabarty, D., "Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization," *Carbohydrate Polymers*, 86 (3), 1291–1299, 2011. https://doi.org/10.1016/j.carbpol.2011.06.030
- [11] Rahman, M.M., Ghasemi, N., Kurniawan, A., et al., "A comparative study of the impact of the bleaching method on the production and characterization of cotton-origin nanocrystalline cellulose by acid and enzymatic hydrolysis," *Polymers*, 15 (16), 3446, 2023. https://doi.org/10.3390/polym15163446.
- [12] Joseph, P.V., Mathew, G., Joseph, K., et al., "Mechanical, thermal and morphological behaviors of coconut shell powder filled PU/PS biocomposites," *Advanced Materials Research*, 123–125, 331–334, Aug. 2010. https://doi.org/10.4028/www.scientific.net/AMR.123 -125.331
- [13] Agunsoye, J.O., Talabi, S.I. and Samuel, S.O., "Study of mechanical behaviour of coconut shell reinforced polymer matrix composite," *Journal of Minerals and Materials Characterization and Engineering*, 11 (8), 774–779, Jan. 2012. https://doi.org/10.4236/jmmce.2012.118065