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Abstract: Accurate localization of mobile robots—particularly under conditions of initial uncertainty,
known as the Global Localization Problem (GLP)—remains a fundamental challenge in robotics, as it di-
rectly impacts autonomous navigation, precise mapping, and safe interaction with the environment. This
paper presents a comparative study of two optimization metaheuristics—Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO)—applied to the scan-to-map matching problem for 2D localization
with LiDAR sensing. A controlled simulation framework was developed, within which 150 independent
experiments were conducted on a high-resolution synthetic occupancy map, employing a cost function
based on a Euclidean distance field with penalties assigned to invalid poses. The methodology encompas-
sed automated data generation, parameterized execution of the algorithms, and comprehensive statistical
evaluation of key performance metrics, including position error, orientation error, computational time,
and convergence behavior. The experimental results demonstrate that both algorithms achieve high ac-
curacy in most trials, yet with notable differences. PSO exhibited faster convergence and attained a lower
median angular error (0.18° versus 0.45° for GA), though it displayed a greater tendency to converge to
local minima, occasionally resulting in substantial localization errors. In contrast, GA, while slower and
with a higher median angular error, proved more robust in avoiding large-magnitude failures, thereby
yielding more consistent solutions across the simulated scenarios. These findings suggest that the choice
between GA and PSO should be dictated by application-specific requirements: PSO is preferable in
domains where rapid convergence is essential, whereas GA is advantageous in safety-critical contexts
demanding reliability and fault tolerance. Future directions include the design of hybrid approaches
that combine the efficiency of PSO with the robustness of GA, as well as validation in real-world robotic
systems, extension to 3D localization tasks, and integration with multi-sensor data.
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1 Introduction

Autonomous and precise localization of mobile robots is a
cornerstone of modern robotics, serving as a prerequisite for
tasks such as navigation, mapping, and safe interaction with
the environment [1]. In many scenarios, localization beco-
mes a critical challenge, particularly when the robot’s prior
pose is unknown or uncertain—a condition referred to as the
Global Localization Problem (GLP). Unlike continuous lo-
calization, where the robot has an initial pose estimate that
is refined over time, the GLP arises when the robot’s ini-
tial pose is completely unknown or highly uncertain. This
situation may occur, for example, after a system failure, a
reset in an arbitrary location, or entry into a completely new

environment without prior position information [6].
The challenges inherent to the GLP are multifaceted. First,
the initial uncertainty requires the localization algorithm to
explore a vast search space, which can be high-dimensional
(position and orientation). Moreover, sensor noise (from Li-
DARs or cameras) and the dynamic nature of environments
(with moving objects or structural changes) add further
layers of complexity. The phenomenon of perceptual ali-
asing, where distinct locations in the map present similar
sensory characteristics (e.g., long repetitive corridors), can
cause the robot to misidentify its location, resulting in sig-
nificant localization errors [7].
Robust resolution of the GLP is crucial for a wide range
of real-world applications. In search-and-rescue operati-
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ons, robots must localize rapidly in unknown and hazar-
dous environments. Autonomous vehicles, when deployed
in unmapped areas or after being transported to new loca-
tions, require effective solutions to the GLP before naviga-
tion can begin. Planetary exploration rovers, operating in
GPS-denied environments, depend on autonomous and re-
liable methods to determine their absolute position. Failure
to solve the GLP robustly can lead to collisions, mission
loss, or safety risks [8].
It is important to note that the GLP is intrinsically related
to the problem of Simultaneous Localization and Mapping
(SLAM). While SLAM builds a map of the environment
while simultaneously localizing within it, the resolution of
the GLP is often a prerequisite or an essential component
for initializing or recovering a SLAM system. A robust
SLAM system must therefore be capable of handling the
GLP to ensure continuous and reliable operation in challen-
ging scenarios. Recent research continues to explore new
approaches to GLP, aiming for higher accuracy and robust-
ness in increasingly complex environments [9].
This work focuses on a central subproblem of localization:
scan-to-map matching, which consists of aligning a sensor
scan with a pre-existing map. Traditional methods such
as Iterative Closest Point (ICP) are widely used, but they
can be sensitive to local minima, particularly in environ-
ments with ambiguities or lacking distinctive features [4].
To overcome these limitations, metaheuristics such as Ge-
netic Algorithms (GA) and Particle Swarm Optimization
(PSO) have emerged as promising alternatives [2, 5]. These
algorithms are capable of performing global search in the
solution space, increasing robustness and the likelihood of
finding the correct pose [2].
This paper introduces a computational framework to com-
pare the performance of GA and PSO in solving the scan-
to-map matching problem for a robot equipped with a 2D
LiDAR sensor. Using a controlled simulation environment,
we investigate the effectiveness, accuracy, and computati-
onal cost of each approach, with the goal of determining
which method provides the best trade-off between robust-
ness and efficiency for global localization.

2 Methodology

The methodology of this study was designed to systemati-
cally evaluate and compare GA and PSO in the task of 2D
pose optimization. The process involves constructing a si-
mulated environment, defining a robust cost (fitness) func-
tion, and performing controlled executions of the optimiza-
tion algorithms.

2.1 Scan-to-Map Matching Problem

The problem is formalized as the search for the pose p =
(x, y, θ) that minimizes a cost function, which quantifies the
misalignment between a 2D point cloud, S, obtained from
a laser sensor, and a pre-existing occupancy map, M. The
pose p consists of a translation (x, y) and a rotation θ. The
transformation of a point si ∈ S into its map representation,

s′i, is given by:

s′i =

(
cos θ − sin θ
sin θ cos θ

)
si +

(
x
y

)
(1)

The objective is to find the optimal pose p∗ that aligns all
points in S with the occupied regions of M.

2.2 Fitness Function

The evaluation of a candidate pose is carried out through the
scan_to_map_fitness function, which is minimized.
The efficiency and accuracy of this function are critical to
the success of the optimization algorithms [3]. To accele-
rate computation, a Euclidean distance field is precomputed
from the occupancy map. This field stores, for each free
cell, the distance to the nearest obstacle, significantly im-
proving performance by avoiding repeated searches.
The error (cost) of a pose p is computed as the sum of the
distances obtained from the distance field for each transfor-
med scan point, s′i:

Cost(p) =
1

N

N∑
i=1

DistanceField(s′i) (2)

where N is the number of points in the scan. A penalty is
added for points that, after transformation, fall outside the
map boundaries, discouraging invalid solutions. This ap-
proach is inspired by map-to-scan matching metrics such as
Perfect Match.

2.3 Optimization Algorithms

Both GA and PSO were implemented to explore the three-
dimensional search space (x, y, θ) and find the pose that mi-
nimizes the cost function.

2.3.1 Genetic Algorithm (GA)

GA is a metaheuristic based on the principles of natural
evolution [1]. The population is composed of individuals,
where each chromosome encodes a candidate pose. Evolu-
tion proceeds through genetic operators:

• Tournament Selection: Individuals are selected for
reproduction based on their fitness value, where a
lower error corresponds to a higher probability of se-
lection.

• Crossover: Selected parents exchange genetic infor-
mation (parts of their pose vectors) to generate offs-
pring.

• Mutation: Small random perturbations are introdu-
ced into the offspring to preserve diversity and avoid
premature convergence.

• Elitism: The best individuals of each generation are
preserved and carried forward, ensuring the retention
of the best solutions found.
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2.3.2 Particle Swarm Optimization (PSO)

PSO is inspired by the collective behavior of swarms [2].
Each particle in the swarm represents a candidate pose
and adjusts its trajectory based on its own best experience
(pBest) and the best experience of the group (gBest). The
velocity and position of each particle are updated iteratively
according to the following equations:

vk+1 = wvk + c1r1(pBestk −pk)+ c2r2(gBestk −pk)
(3)

pk+1 = pk + vk+1 (4)

where w is the inertia factor, c1 and c2 are the cognitive
and social coefficients, and r1, r2 are random values. This
dynamic allows the swarm to efficiently explore the search
space.

2.4 Simulation Framework

To ensure reproducibility and a fair comparison, a simula-
tion framework was developed:

1. Map and Data Generation: A synthetic 20×20
meter occupancy map with 0.05 m/pixel resolution
was created. Ground-truth poses were generated ran-
domly within free-space regions of the map. For each
pose, a 2D LiDAR scan was simulated using the func-
tion simulate_scan_from_pose, which casts
rays from the pose and computes distances to obsta-
cles, adding Gaussian noise of 0.01 m to emulate real
sensor imperfections.

2. Execution and Analysis: A total of 150 indepen-
dent experiments were conducted. In each run, a new
ground-truth pose was sampled and a corresponding
scan generated. GA and PSO were executed to opti-
mize a randomly initialized pose using the simulated
scan. Performance metrics such as position error, an-
gular error, and runtime were recorded for compara-
tive statistical analysis.

3 Results and Discussion

The performance evaluation of the algorithms was conduc-
ted on the simulated map developed in this work, presented
in Figure 1. White areas represent obstacles, while black
areas correspond to free navigable space. The map was de-
signed to include a variety of elements, such as obstacles
with different geometric shapes (e.g., circles, squares, and
angled lines) and structural divisions that segment the envi-
ronment into distinct regions. This configuration was inten-
ded to assess the robustness of the algorithms in scenarios
with spatial diversity and moderate complexity.

Figura 1: Synthetic occupancy map used in the experi-
ments.

3.1 Statistical Analysis of Position Error
Quantitative analysis of position error reveals similar mean
performance between the algorithms. GA achieved a mean
position error of 0.4408 ± 0.7329 m, while PSO obtained
0.4664 ± 0.8069 m. The Wilcoxon test confirmed the ab-
sence of a statistically significant difference between these
distributions (p = 0.1580).
However, a more detailed analysis based on the median,
which is less sensitive to outliers, provides clearer insight:
the median position error was only 0.0536 m for GA and
0.0420 m for PSO. These values, shown in Figure 2, indi-
cate that both algorithms are capable of achieving high ac-
curacy in most runs. It is also notable that both algorithms
exhibit low medians alongside outliers. The high means
and standard deviations are therefore largely influenced by
a limited number of runs in which the algorithms conver-
ged to local minima. The boxplot (Figure 2) also suggests
that although the median error of PSO is slightly lower, the
spread of its outliers (larger errors) is greater than that of
GA, indicating a higher risk of large-magnitude errors.

Figura 2: Distribution of final position error.
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Tabela 1: Statistical summary of position and angular er-
rors.

Metric GA PSO
Position (m) Angle (°) Position (m) Angle (°)

Mean 0.4408 23.6882 0.4664 24.3806
Standard Deviation 0.7329 47.9431 0.8069 52.0710
Median 0.0536 0.4476 0.0420 0.1822
Minimum 0.0011 0.0184 0.0127 0.0028
Maximum 2.8100 179.9788 2.8284 179.9386

3.2 Statistical Analysis of Orientation Error

For orientation error, the Wilcoxon test indicated a statis-
tically significant difference (p = 0.0187). Examining the
data in Table 1 and Figure 3, we observe that PSO achieved
a median angular error of 0.18◦, considerably lower than
GA’s 0.45◦. This suggests that, in typical scenarios, PSO
demonstrated superior capability in correctly aligning the
robot’s orientation. The statistical significance, combined
with a lower median, supports the conclusion that PSO was
more accurate in terms of orientation. Similar to position er-
ror, outliers with high angular errors were observed in both
algorithms, representing a risk factor to be considered.

Figura 3: Distribution of final orientation error.

3.3 Convergence and Computational Cost
Analysis

Figure 4 shows that PSO exhibits faster initial convergence,
reaching lower fitness values in fewer iterations. GA, in
contrast, displays a more gradual convergence, but its mean
error curve concludes with smaller variability (standard de-
viation shadow), suggesting greater stability and consis-
tency across runs in the later generations.

In terms of computational cost, mean execution times were
13.77s for GA and 13.64s for PSO. The absence of a signi-
ficant difference indicates that, for the parameters used, the
choice between the two should not be based on computati-
onal efficiency but rather on their accuracy and robustness
profiles.

Figura 4: Average fitness convergence with standard devia-
tion.

3.4 Qualitative Alignment Analysis

Alignment error analysis provides further insight into the
robustness of the algorithms. Figure 5 illustrates the best-
case scenario, in which both methods correctly identified
the true pose with minimal residual errors, validating their
ability to reach the global optimum.

Figura 5: Alignment in the best-case scenario.

The most revealing scenario, however, is the worst-case out-
come (Figure 6). In this experiment, GA maintained an ac-
curate solution (error of 0.054 m), whereas PSO conver-
ged to an incorrect local minimum, resulting in an error of
2.83 meters. This finding highlights a fundamental trade-
off: PSO’s accelerated convergence, which favors speed
and lower median angular error, also increases its vulnerabi-
lity to failures. GA’s broader exploration, although slower,
proved more robust in avoiding this specific failure mode.
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Figura 6: Alignment in the worst-case scenario.

3.5 General Discussion and Conclusions
The results indicate that there is no absolute winner, but
rather a trade-off—namely, a balance between speed, accu-
racy, and robustness. PSO stood out for its faster conver-
gence and statistically superior median angular accuracy,
making it an attractive choice for applications where com-
putational efficiency is a priority. However, this efficiency
comes at the cost of reduced robustness, as PSO demons-
trated vulnerability to significant localization errors when
converging to incorrect local minima.
In contrast, GA, although slower in its convergence, pro-
ved to be more robust, avoiding the large-magnitude errors
observed with PSO in the constructed test scenario. This
characteristic positions GA as a safer alternative for high-
integrity systems, where preventing critical errors takes pre-
cedence over optimization speed.
The choice between the algorithms, therefore, depends on
the application domain. Systems that can tolerate and reco-
ver from occasional failures may benefit from the efficiency
of PSO. Conversely, safety-critical systems may require the
more cautious and robust exploration provided by GA. Fu-
ture work could investigate hybrid or adaptive techniques
that dynamically adjust the search strategy, aiming to com-
bine the efficiency of PSO with the robustness of GA.

4 Conclusion
This work presented a comparative analysis of Genetic Al-
gorithms (GA) and Particle Swarm Optimization (PSO) for
the scan-to-map matching problem, a fundamental compo-
nent of mobile robot localization. Through a simulation
framework, we demonstrated that both metaheuristics are
effective tools for 2D pose optimization, overcoming the li-
mitations of local search methods.
The main conclusion of this study is not the absolute supe-
riority of one algorithm over the other, but the identification
of a clear trade-off between accuracy, speed, and robust-
ness. PSO distinguished itself by its faster convergence and
statistically superior median angular accuracy, making it an
attractive option for applications where computational ef-
ficiency is paramount. However, this efficiency comes at
the cost of reduced robustness, with PSO showing vulnera-
bility to localization failures when converging to incorrect
local minima.

On the other hand, GA, although slower in convergence,
proved to be more robust, avoiding the large-magnitude
errors observed with PSO in the proposed test scenario.
This characteristic positions it as a safer alternative for
high-integrity systems, where preventing significant failu-
res outweighs optimization speed.
For future work, the investigation of hybrid approaches that
combine the stable exploration of GA with the aggressive
convergence of PSO represents a promising direction. Ad-
ditionally, validating these results with experimental data
from robots in real environments and extending the fra-
mework to 3D localization are natural next steps in the evo-
lution of this research. Parameter optimization of the algo-
rithms for different types of environments and the incorpo-
ration of more sophisticated evaluation metrics also consti-
tute important directions for future contributions.

Referências
[1] J. L. C. Carvalho, P. C. M. A. Farias, and E. F. Simas Fi-

lho, “Global Localization of Unmanned Ground Vehi-
cles Using Swarm Intelligence and Evolutionary Algo-
rithms,” Journal of Intelligent & Robotic Systems, vol.
107, no. 45, 2023.

[2] S. Bouraine, A. Bougouffa, and O. Azouaoui, “Par-
ticle swarm optimization for solving a scan-matching
problem based on the normal distributions transform,”
Evolutionary Intelligence, vol. 15, pp. 683-694, 2022.

[3] Q. Zhang, P. Wang, P. Bao, and Z. Chen, “Mobile Ro-
bot Global Localization Using Particle Swarm Optimi-
zation with a 2D Range Scan,” in Proceedings of the
2017 International Conference on Robotics and Artifi-
cial Intelligence, 2017.

[4] J.-S. Gutmann and C. Schlegel, “AMOS: Comparison
of Scan Matching Approaches for Self-Localization in
Indoor Environments,” in Proceedings of EUROBOT
'96, 1996.

[5] M. Pinto, H. Sobreira, A. P. Moreira, H. Mendonça,
and A. Matos, “Self-localisation of indoor mobile ro-
bots using multi-hypotheses and a matching algorithm,”
Mechatronics, vol. 23, no. 6, pp. 727-737, 2013.

[6] H. Yin, X. Xu, S. Lu, X. Chen, R. Xiong, S. Shen, and
S. Li, “A survey on global lidar localization: Challen-
ges, advances and open problems,” International Jour-
nal of Robotics Research, vol. 132, pp. 3139-3171,
2024.

[7] M. Stefanoni, P. Sarcevic, J. Sárosi, and A. Odry, “Op-
timization Techniques in the Localization Problem: A
Survey on Recent Advances,” Machines, vol. 12, no. 8,
pp. 569, 2024.

[8] S. Campbell, N. O'Mahony, A. Carvalho, L. Krpalkova,
D. Riordan, and J. Walsh, “Where am I? Localization
techniques for mobile robots: a review,” in Proceedings

5



of the 2020 6th International Conference on Mecha-
tronics and Robotics Engineering (ICMRE), pp. 43–47,
2020.

[9] Y. Chen, K. Wu, Y. Guo, K. Zhao, and L. Liu, “Long-
distance target localization optimization algorithm ba-
sed on single robot moving path planning,” Scientific
Reports, vol. 15, Art. no. 25157, 2025.

6


	Introduction
	Methodology
	Scan-to-Map Matching Problem
	Fitness Function
	Optimization Algorithms
	Genetic Algorithm (GA)
	Particle Swarm Optimization (PSO)

	Simulation Framework

	Results and Discussion
	Statistical Analysis of Position Error
	Statistical Analysis of Orientation Error
	Convergence and Computational Cost Analysis
	Qualitative Alignment Analysis
	General Discussion and Conclusions

	Conclusion

