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Abstract: The increasing complexity of embedded systems, especially in critical environments, demands 

reliable and scalable validation methodologies. This work presents an automated testing framework based on 

Python to validate embedded systems through acoustic and serial communication. The tool executes protocol-

defined commands, logs responses, and generates reports with quantifiable metrics. Through this structured 

approach, the system enables proactive identification of edge-case failures and aligns with Capability Maturity 

Model Integration (CMMI) and Technology Readiness Level (TRL) frameworks. Results indicate improved 

test coverage, reduced post-deployment bugs, and process standardization, even in resource-constrained 

environments. 
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Abbreviations: CMMI, Capability Maturity Model Integration. TRL, Technology Readiness Level. ISTQB, 

International Software Testing Qualifications Board. UART, Universal Asynchronous Receiver-Transmitter. 

TTL, Transistor-Transistor Logic.

1. Introduction 

The increasing complexity of embedded systems 

demands structured, automated validation 

techniques that contribute directly to the system's 

maturity and reliability. As noted by Humble and 

Farley [1], continuous, automated testing plays an 

important role in enhancing system resilience and 

reducing time-to-deployment. This paper 

examines how automated testing frameworks, 

such as the Python-based tool developed here, 

enhance the maturity of complex systems by 

standardizing validation processes, reducing 

human error, and generating structured reports 

with detailed outcome metrics. 

The proposed solution leverages acoustic and 

serial communication to interface with a 

controller board, executing all protocol-defined 

commands while generating reports with 

success/failure rates and operational responses. 

By supporting programmable test scenarios, the 

tool validates functionality and identifies edge-

case vulnerabilities. This aligns with Capability 

Maturity Model Integration (CMMI) principles, 

where automated testing elevates maturity from 

ad hoc routines to quantitatively managed 

processes. 

Prior studies highlight that automation 

accelerates development and strengthens 

resilience [1], but gaps remain in adapting these 

methods to constrained embedded environments. 

This work demonstrates how a lightweight, 

protocol-aware tool enforces rigorous standards 

while contributing to maturity metrics such as 

process predictability and defect density [2]. 
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2. Theoretical Framework 

To assess the impact of automated testing on 

embedded system development, this section 

introduces two evaluation frameworks: the 

CMMI and the Technology Readiness Levels 

(TRL). CMMI provides a model for assessing 

process maturity across five levels, from initial 

(Level 1) to optimizing (Level 5), emphasizing 

process standardization, measurement, and 

continuous improvement [2]. TRL, on the other 

hand, evaluates technological development 

stages, from conceptual research (TRL 1) to full 

operational deployment (TRL 7). This study 

focuses on how the proposed testing framework 

supports progression across these levels, 

particularly through repeatability, traceability, 

and data-driven feedback. 

Given the remote and unassisted nature of the 

Device Under Test (DUT), which operates in 

environments such as sealed enclosures or 

underwater conditions, the approach follows 

black-box testing principles. The DUT cannot be 

instrumented internally during operation and 

therefore must be evaluated based solely on its 

external responses to predefined commands [6]. 

This justifies the choice of protocol-centric and 

interface-aware testing, especially considering 

the constraints in accessibility, power cycling, 

and communication.  

2.1 Automated Testing as a Maturity Catalyst 

Automated testing plays an important role in 

promoting system maturity, as defined by 

the CMMI framework [2]. As systems evolve, 

their validation processes should transition from 

ad hoc routines to structured, repeatable, and 

quantitatively managed workflows. Crucially, 

CMMI is not limited to testing but integrates all 

organizational processes, from requirements 

through deployment. Automated validation 

contributes to maturity when embedded in this 

wider cycle, where results inform requirements, 

design corrections, and deployment readiness.  

The DUT includes a microcontroller-based 

system with sensors, control, and communication 

functions that must respond deterministically 

under diverse conditions. Manual testing is 

inefficient, error-prone, and inadequate for 

ensuring long-term reliability. Automated testing 

simulates operational conditions, validates 

protocol coverage, and generates structured 

reports that support both system validation and 

organization-wide process improvement. 

This scenario justifies the development of an 

automated testing framework that can simulate 

real operational conditions, validate complete 

protocol coverage, and generate structured 

performance reports. Automated build-test-

deploy pipelines accelerate feedback loops [1], a 

principle applied here through acoustic/serial 

communication with embedded systems. 

Compared to existing tools such as Robot 

Framework and Latch [6], which are typically 

tailored to either high-level system APIs or 

desktop-class embedded platforms, the proposed 

framework addresses low-level, protocol-specific 

testing in highly constrained environments. 

Unlike Robot Framework, which requires OS-
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level support, or Latch, which focuses on 

constrained systems without domain-specific 

interfaces, the proposed framework combines 

lightweight execution with protocol-centric 

testing for remote and inaccessible environments. 

Its integration of acoustic communication and 

maturity-oriented reporting distinguishes it from 

existing tools, which typically validate 

functionality without linking outcomes to 

organizational improvement. 

2.2  Protocol-Centric Testing in Constrained 

Environments 

Embedded systems face validation challenges 

due to resource limitations. As prior research 

shows [7], lightweight, protocol-aware 

approaches are essential. The paradigm of 

protocol-centric validation enables testing in 

inaccessible conditions, such as underwater 

deployments, where traditional wired methods 

fail. Configurable test logic reflects agile testing 

principles, supporting scenario simulation. 

Compliance with international guidelines ensures 

behavioral consistency and deterministic 

validation. 

2.3 Structured Reporting and Maturity 

Benchmarking  

Structured reporting transforms raw test data into 

maturity indicators. Standardized metrics such as 

success/failure rates, response times, and defect 

density underpin statistical process control, 

supporting CMMI progression from Level 3 to 

Level 4 [2]. These measurements also benchmark 

TRL advancement, from laboratory validation 

(TRL 4–5) to operational readiness (TRL 6–7) 

[4]. 

Research [7,8] shows structured reporting 

generates transparency, root-cause analysis 

capability, and historical data for risk modeling. 

As formalized by CMMI [2] and ISTQB [3], 

automated reporting functions as a maturity 

accelerator by converting reactive testing into 

proactive, data-driven practice. 

Transparency through auditable command-

response records eliminates informational gaps in 

validation processes [4]. Temporal and decoded 

logs enable root-cause failure analysis rather than 

symptomatic troubleshooting [8]. Historical data 

standardization supports probabilistic risk 

modeling essential for predictability [1]. 

Theoretical frameworks synthesize structured 

reporting's role as a maturity catalyst. As 

formalized by CMMI [2] and ISTQB standards 

[3]: "Automated reporting functions as a maturity 

accelerator, converting reactive practices into 

data-driven proactivity". This evolution 

materializes when quantitative indicators support 

CMMI Level 4 decision-making, structured logs 

enable continuous optimization (Level 5), and 

traceability validates higher TRLs (≥6) for 

operational deployment [4]. 

3. Methodology 

This study adopts an applied engineering 

methodology grounded in experimental 

observation and measurement. The hypothesis is 

that a lightweight, protocol-aware framework 

improves maturity, reliability, and efficiency in 
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constrained embedded systems. The 

methodological path followed five stages: (1) 

requirements and constraints definition, (2) 

framework design, (3) implementation on DUT 

hardware, (4) systematic test execution via 

UART and acoustic channels, and (5) analysis 

through predefined metrics. 

The proposed framework integrates hardware and 

software elements to establish a fully automated 

testing pipeline.  

Materials and parameters: The DUT was an 

ARM Cortex-M4 controller with FreeRTOS, 

acoustic modem, UART interface, and peripheral 

modules. The host machine ran Python 3.12 with 

PySerial and ReportLab. Evaluation metrics 

included protocol coverage, success/failure ratio, 

execution time, repeatability, and defect 

detection. These parameters ensure 

reproducibility and transparency. 

3.1 Application Layer 

Developed using the pyserial library [10], the 

application layer is responsible for the automated 

execution of all commands defined in the 

embedded system’s communication protocol. 

Such as power on and off modules, measure and 

acquire sensors data. 

The application is modular and configurable, 

allowing users to define test sequences, edge-case 

scenarios, and expected responses for each 

command. 

3.2 DUT Embedded System Layer 

The device under test (DUT) is based on a real-

time operating system (FreeRTOS), executed on 

an ARM Cortex-M4 microcontroller. It supports 

multiple communication interfaces and 

peripherals such as an acoustic transmission 

module, MODBUS-compliant communication, 

and various sensors. 

The firmware is structured around a deterministic 

command-response protocol, ensuring 

traceability across the testing process. 

By supporting both acoustic and TTL-level serial 

communication interfaces, the framework 

overcomes the inherent limitations of 

inaccessible or remote systems, such as 

underwater or sealed devices, where traditional 

wired validation is not feasible [7].  

3.3 Reporting Engine 

A dedicated module within the Python 

application generates structured reports using the 

ReportLab library [10]. These reports include a 

complete command execution log, a decoded 

FreeRTOS protocol response with human-

readable descriptions, a success/failure status for 

each test step, and temporal data to correlate 

commands and environmental variables. 

The system’s ability to generate detailed reports, 

including success/failure metrics and decoded 

response logs, directly contributes to CMMI 

Level 4 ("Quantitatively Managed") by enabling 

performance measurement, repeatability, 

traceability, auditability of all test campaigns and 

statistical control [6]. 

3.4 Dual-Channel Communication Strategy 
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Given the constraints of embedded environments, 

such as limited physical access and low-level 

hardware interfaces. The framework implements 

two types of communication channels. The serial 

for bit level in-lab validation and acoustic for 

underwater environments. This feature extends 

test coverage into operationally relevant 

environments, enhancing realism and robustness. 

3.5 Protocol Execution and Response 

Decoding 

Each protocol command is executed in isolation 

and sequence. The system records raw responses 

from the controller, decoded interpretations of 

each response (e.g., translating 0x0B to “Measure 

Clock Error”), and execution timestamps to 

enable performance profiling. 

This level of detail supports the identification of 

behavioral inconsistencies and the early detection 

of defects in both firmware and hardware 

components. 

The inclusion of user-configurable testing logic 

enables simulation of a wide range of operational 

conditions, including edge cases. This approach 

follows best practices in agile software testing, 

which emphasize adaptability and iterative 

feedback; this supports auditability and facilitates 

root-cause analysis [8,9]. 

3.6 Tool Limitations 

Although designed to maximize coverage and 

repeatability, the tool has certain operational 

constraints. Its operation depends on strict 

adherence of the DUT to the defined protocol 

sequence and states. Test scenarios must be 

preconfigured manually, as there is no dynamic 

case generation yet. In addition, the tool runs 

externally to the DUT, requiring intermediate 

hardware for interfacing and power. These 

constraints do not compromise their practical use 

but influence the interpretation of metrics and the 

generalization of results. 

4. Test Bench and Execution Workflow 

Figure 1 shows the block diagram of the 

dedicated test bench assembled to validate the 

effectiveness of the proposed automated testing 

framework, simulating real-world operational 

conditions for the embedded system.  

 

Figure 1 - System Comms 

4.1  Test Environment Setup 

The test bench consisted of a controller board 

featuring an ARM Cortex-M4 microcontroller 

running FreeRTOS, connected to the test system 

via UART and acoustic interfaces. Peripheral 

Modules, including various sensors, an acoustic 

transducer, and MODBUS-based communication 

modules. 

The Host Machine is a computer running the 

Python-based automation tool, responsible for 

managing all test procedures, capturing 

responses, and generating reports. 
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Power supply and interface adapters are used to 

ensure the reliable operation of modules under 

test. Verifying the integrity of command-

response behavior across different operational 

states and environments, the tool has compliance 

with the ISTQB guidelines [2], ensuring that 

protocol validation adheres to internationally 

recognized standards.  

4.2  Execution Procedure 

The test execution followed a systematic 

approach to ensure full protocol coverage and 

reproducibility of results. First, all modules were 

powered on and initialized through predefined 

commands issued via the application layer. Initial 

status checks were performed to validate 

firmware readiness and confirm proper interface 

activation. Then the entire set of protocol-defined 

commands was executed in sequence, covering 

operations such as power cycling modules, 

triggering measurements, reading memory 

blocks, and querying sensor data. Testing all 

operational cases of the DUT 50 times to evaluate 

the expected response and the consistency of the 

firmware protocol and the DUT functionalities. 

Each command was sent through both the UART 

and acoustic interfaces to compare results across 

communication channels. The system responses 

were recorded in real time, and the raw outputs 

were logged alongside decoded messages, 

timestamps, and status classifications (e.g., 

success, failure, timeout). 

The framework validated that command 

responses were identical across both modes, 

confirming functional equivalence and interface 

robustness. However, it is important to note that 

acoustic communication takes approximately 

four times longer than serial communication to 

receive a response from the module. 

5. Empirical Validation 

To assess the effectiveness of the proposed 

automated testing framework, a series of in-lab 

tests was executed using the complete set of 

protocol-defined commands across multiple 

operational scenarios. The goal was to evaluate 

improvements in test coverage, system reliability, 

and post-deployment defect rates. 

At each new firmware release the tests were re-

executed to validate the quality and reliability of 

the development. At each error reported a new 

firmware version was released and evaluated on 

the same premises. Executing all firmware 

commands systematically aligns with 

CMMI’s Defined (Level 3) stage, where 

processes are documented, standardized, and 

integrated across the organization [2]. 

5.1 Coverage and Automation Metrics 

The tool successfully achieved 100% coverage of 

the system’s communication protocol, validating 

every command in both acoustic and UART 

modes. This comprehensive coverage enabled a 

full protocol compliance verification across 

interfaces, a detection of undocumented or 

unexpected behaviors, and consistent execution 

of edge-case scenarios. 

The automation capabilities allowed repeated 

execution of test suites with no manual 
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intervention, reducing human error and 

accelerating validation cycles. The integration 

of programmable testing, hardware-aware 

communication, and structured reporting creates 

a feedback loop that elevates system maturity 

from reactive to proactive — a critical 

advancement for safety-critical embedded 

applications [2,3]. 

5.2 Defect Reduction and Reliability Gains 

Comparative analysis of firmware versions 

before and after integrating the automated testing 

framework demonstrated that numerous errors 

were identified and resolved pre-deployment. 

This proactive correction substantially reduced 

field failure rates. The increased frequency of 

firmware update versions following test 

implementation provides empirical evidence of 

these corrective actions. Key observations 

include the early detection of issues that caused 

power-saving failures, the elimination of 

misconfigured responses related to sensor 

modules and the identification of firmware 

inconsistencies in the module’s integration. 

5.3 Process Efficiency and Repeatability 

The adoption of the framework also improved 

overall test efficiency and traceability. Test 

execution time per module decreased by ~90%, 

thanks to batch automation and pre-defined test 

profiles, as the average test cycle reduced from 

180 minutes (manual) to 15 minutes (automated), 

with minimal deviation across repeated sessions. 

The reports enabled traceability across validation 

sessions, with version control and serial number 

signatures. Repeatability was validated by 

executing the same test suite under different 

environmental and hardware configurations with 

consistent results. 

5.4 Maturity Impact Assessment 

The integration of automated testing and 

structured reporting contributed to measurable 

improvements in software process maturity, 

aligned with CMMI and TRL frameworks. 

This alignment positions the tool as a maturity 

accelerator, transforming embedded system 

validation from isolated checks into a lifecycle-

oriented process. 

The automated tests enable the system's evolution 

by enforcing consistency, accelerating feedback 

cycles, and reducing the incidence of human-

induced errors. The tool records success rates, 

failure diagnostics, and timing data, aligning with 

the TRL framework [4]. These outcomes confirm 

that the framework is not only a test tool but also 

a maturity accelerator, capable of advancing 

embedded systems validation into quantifiable, 

repeatable, and improvement-oriented processes. 

6. Conclusion 

This study presented the design, implementation, 

and empirical validation of a protocol-aware 

automated testing framework aimed at increasing 

the maturity of embedded systems, particularly 

those operating in constrained environments. By 

integrating acoustic and serial communication, 

structured reporting, and programmable test 
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scenarios, the framework effectively bridges the 

gap between informal validation routines and 

quantitatively managed test processes. 

The results demonstrate that automated testing 

not only enhances protocol compliance and 

reduces human error but also significantly 

improves defect detection, test coverage, and 

execution efficiency. The use of structured 

reports and decoded protocol responses provides 

transparency and auditability, enabling traceable 

and reproducible validation cycles aligned with 

CMMI and TRL frameworks. 

The role of the CMMI here is to coordinate the 

organizational process model of testing as an 

integrated element of the software development 

lifecycle. The framework’s outputs feed back into 

requirements refinement, design validation, and 

deployment assurance, ensuring that automated 

testing accelerates maturity across all process 

domains. Furthermore, the framework’s 

lightweight design ensures compatibility with 

resource-constrained embedded systems, 

extending its applicability to real-world, mission-

critical deployments. As a result, it serves not 

only as a testing utility but also as a strategic asset 

for advancing the reliability, maintainability, and 

process maturity of complex embedded solutions, 

as shown in Table 1. 

Table 1 - Bridging Theory and Practice 

Concept Implementation in This Work 

CMMI Maturity [2] 
Integrated into the organizational 

development lifecycle 

Agile-Testing Integration [7] 
Programmable test scenarios for 

diverse conditions 

TRL Frameworks [4] 

Quantitative benchmarks 

including success/failure rates, 

timing, and coverage metrics 

ISTQB Compliance [3] 

Structured black-box command 

validation via acoustic and serial 

communication interfaces 

Future work may include integration with 

continuous integration (CI) pipelines, graphical 

dashboards for monitoring test metrics, and 

expansion to support additional communication 

protocols and hardware platforms. 
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