

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

Automated Testing for Constrained Embedded Systems: A Maturity-Oriented Approach

Alan Gramacho dos Santos1, Andressa Oliveira Silva2*, Breno Prazeres Barbosa3, Frederico Garcia de Oliveira4,

Tassio Ferreira Vale5, Valter Estevão Beal6

1 Senai Cimatec, Department of Embedded Electronics, Salvador, Bahia, Brazil - alan.gramacho@fieb.org.br
2Senai Cimatec, Department of Embedded Electronics, Salvador, Bahia, Brazil - andressa_o_silva@hotmail.com

3Senai Cimatec, Department of Embedded Electronics, Salvador, Bahia, Brazil - breno.barbosa@fieb.org.br
4Senai Cimatec, Department of Mechanical Projects, Salvador, Bahia, Brazil - frederico.oliveira@fieb.org.br

5Federal University of Recôncavo da Bahia, Department of Computer Engineering, Cruz das Almas, Bahia, Brazil -

tassio.vale@ufrb.edu.br
6Senai Cimatec, Department of Mechanical Projects, Salvador, Bahia, Brazil - valtereb@fieb.org.br

*Corresponding author: SENAI CIMATEC, Av. Orlando Gomes. 1845. Piatã, Salvador Ba.

Abstract: The increasing complexity of embedded systems, especially in critical environments, demands

reliable and scalable validation methodologies. This work presents an automated testing framework based on

Python to validate embedded systems through acoustic and serial communication. The tool executes protocol-

defined commands, logs responses, and generates reports with quantifiable metrics. Through this structured

approach, the system enables proactive identification of edge-case failures and aligns with Capability Maturity

Model Integration (CMMI) and Technology Readiness Level (TRL) frameworks. Results indicate improved

test coverage, reduced post-deployment bugs, and process standardization, even in resource-constrained

environments.

Keywords: Automated Testing · System Maturity · Embedded Systems · Protocol Validation · CMMI

Abbreviations: CMMI, Capability Maturity Model Integration. TRL, Technology Readiness Level. ISTQB,

International Software Testing Qualifications Board. UART, Universal Asynchronous Receiver-Transmitter.

TTL, Transistor-Transistor Logic.

1. Introduction

The increasing complexity of embedded systems

demands structured, automated validation

techniques that contribute directly to the system's

maturity and reliability. As noted by Humble and

Farley [1], continuous, automated testing plays an

important role in enhancing system resilience and

reducing time-to-deployment. This paper

examines how automated testing frameworks,

such as the Python-based tool developed here,

enhance the maturity of complex systems by

standardizing validation processes, reducing

human error, and generating structured reports

with detailed outcome metrics.

The proposed solution leverages acoustic and

serial communication to interface with a

controller board, executing all protocol-defined

commands while generating reports with

success/failure rates and operational responses.

By supporting programmable test scenarios, the

tool validates functionality and identifies edge-

case vulnerabilities. This aligns with Capability

Maturity Model Integration (CMMI) principles,

where automated testing elevates maturity from

ad hoc routines to quantitatively managed

processes.

Prior studies highlight that automation

accelerates development and strengthens

resilience [1], but gaps remain in adapting these

methods to constrained embedded environments.

This work demonstrates how a lightweight,

protocol-aware tool enforces rigorous standards

while contributing to maturity metrics such as

process predictability and defect density [2].

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

2. Theoretical Framework

To assess the impact of automated testing on

embedded system development, this section

introduces two evaluation frameworks: the

CMMI and the Technology Readiness Levels

(TRL). CMMI provides a model for assessing

process maturity across five levels, from initial

(Level 1) to optimizing (Level 5), emphasizing

process standardization, measurement, and

continuous improvement [2]. TRL, on the other

hand, evaluates technological development

stages, from conceptual research (TRL 1) to full

operational deployment (TRL 7). This study

focuses on how the proposed testing framework

supports progression across these levels,

particularly through repeatability, traceability,

and data-driven feedback.

Given the remote and unassisted nature of the

Device Under Test (DUT), which operates in

environments such as sealed enclosures or

underwater conditions, the approach follows

black-box testing principles. The DUT cannot be

instrumented internally during operation and

therefore must be evaluated based solely on its

external responses to predefined commands [6].

This justifies the choice of protocol-centric and

interface-aware testing, especially considering

the constraints in accessibility, power cycling,

and communication.

2.1 Automated Testing as a Maturity Catalyst

Automated testing plays an important role in

promoting system maturity, as defined by

the CMMI framework [2]. As systems evolve,

their validation processes should transition from

ad hoc routines to structured, repeatable, and

quantitatively managed workflows. Crucially,

CMMI is not limited to testing but integrates all

organizational processes, from requirements

through deployment. Automated validation

contributes to maturity when embedded in this

wider cycle, where results inform requirements,

design corrections, and deployment readiness.

The DUT includes a microcontroller-based

system with sensors, control, and communication

functions that must respond deterministically

under diverse conditions. Manual testing is

inefficient, error-prone, and inadequate for

ensuring long-term reliability. Automated testing

simulates operational conditions, validates

protocol coverage, and generates structured

reports that support both system validation and

organization-wide process improvement.

This scenario justifies the development of an

automated testing framework that can simulate

real operational conditions, validate complete

protocol coverage, and generate structured

performance reports. Automated build-test-

deploy pipelines accelerate feedback loops [1], a

principle applied here through acoustic/serial

communication with embedded systems.

Compared to existing tools such as Robot

Framework and Latch [6], which are typically

tailored to either high-level system APIs or

desktop-class embedded platforms, the proposed

framework addresses low-level, protocol-specific

testing in highly constrained environments.

Unlike Robot Framework, which requires OS-

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

level support, or Latch, which focuses on

constrained systems without domain-specific

interfaces, the proposed framework combines

lightweight execution with protocol-centric

testing for remote and inaccessible environments.

Its integration of acoustic communication and

maturity-oriented reporting distinguishes it from

existing tools, which typically validate

functionality without linking outcomes to

organizational improvement.

2.2 Protocol-Centric Testing in Constrained

Environments

Embedded systems face validation challenges

due to resource limitations. As prior research

shows [7], lightweight, protocol-aware

approaches are essential. The paradigm of

protocol-centric validation enables testing in

inaccessible conditions, such as underwater

deployments, where traditional wired methods

fail. Configurable test logic reflects agile testing

principles, supporting scenario simulation.

Compliance with international guidelines ensures

behavioral consistency and deterministic

validation.

2.3 Structured Reporting and Maturity

Benchmarking

Structured reporting transforms raw test data into

maturity indicators. Standardized metrics such as

success/failure rates, response times, and defect

density underpin statistical process control,

supporting CMMI progression from Level 3 to

Level 4 [2]. These measurements also benchmark

TRL advancement, from laboratory validation

(TRL 4–5) to operational readiness (TRL 6–7)

[4].

Research [7,8] shows structured reporting

generates transparency, root-cause analysis

capability, and historical data for risk modeling.

As formalized by CMMI [2] and ISTQB [3],

automated reporting functions as a maturity

accelerator by converting reactive testing into

proactive, data-driven practice.

Transparency through auditable command-

response records eliminates informational gaps in

validation processes [4]. Temporal and decoded

logs enable root-cause failure analysis rather than

symptomatic troubleshooting [8]. Historical data

standardization supports probabilistic risk

modeling essential for predictability [1].

Theoretical frameworks synthesize structured

reporting's role as a maturity catalyst. As

formalized by CMMI [2] and ISTQB standards

[3]: "Automated reporting functions as a maturity

accelerator, converting reactive practices into

data-driven proactivity". This evolution

materializes when quantitative indicators support

CMMI Level 4 decision-making, structured logs

enable continuous optimization (Level 5), and

traceability validates higher TRLs (≥6) for

operational deployment [4].

3. Methodology

This study adopts an applied engineering

methodology grounded in experimental

observation and measurement. The hypothesis is

that a lightweight, protocol-aware framework

improves maturity, reliability, and efficiency in

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

constrained embedded systems. The

methodological path followed five stages: (1)

requirements and constraints definition, (2)

framework design, (3) implementation on DUT

hardware, (4) systematic test execution via

UART and acoustic channels, and (5) analysis

through predefined metrics.

The proposed framework integrates hardware and

software elements to establish a fully automated

testing pipeline.

Materials and parameters: The DUT was an

ARM Cortex-M4 controller with FreeRTOS,

acoustic modem, UART interface, and peripheral

modules. The host machine ran Python 3.12 with

PySerial and ReportLab. Evaluation metrics

included protocol coverage, success/failure ratio,

execution time, repeatability, and defect

detection. These parameters ensure

reproducibility and transparency.

3.1 Application Layer

Developed using the pyserial library [10], the

application layer is responsible for the automated

execution of all commands defined in the

embedded system’s communication protocol.

Such as power on and off modules, measure and

acquire sensors data.

The application is modular and configurable,

allowing users to define test sequences, edge-case

scenarios, and expected responses for each

command.

3.2 DUT Embedded System Layer

The device under test (DUT) is based on a real-

time operating system (FreeRTOS), executed on

an ARM Cortex-M4 microcontroller. It supports

multiple communication interfaces and

peripherals such as an acoustic transmission

module, MODBUS-compliant communication,

and various sensors.

The firmware is structured around a deterministic

command-response protocol, ensuring

traceability across the testing process.

By supporting both acoustic and TTL-level serial

communication interfaces, the framework

overcomes the inherent limitations of

inaccessible or remote systems, such as

underwater or sealed devices, where traditional

wired validation is not feasible [7].

3.3 Reporting Engine

A dedicated module within the Python

application generates structured reports using the

ReportLab library [10]. These reports include a

complete command execution log, a decoded

FreeRTOS protocol response with human-

readable descriptions, a success/failure status for

each test step, and temporal data to correlate

commands and environmental variables.

The system’s ability to generate detailed reports,

including success/failure metrics and decoded

response logs, directly contributes to CMMI

Level 4 ("Quantitatively Managed") by enabling

performance measurement, repeatability,

traceability, auditability of all test campaigns and

statistical control [6].

3.4 Dual-Channel Communication Strategy

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

Given the constraints of embedded environments,

such as limited physical access and low-level

hardware interfaces. The framework implements

two types of communication channels. The serial

for bit level in-lab validation and acoustic for

underwater environments. This feature extends

test coverage into operationally relevant

environments, enhancing realism and robustness.

3.5 Protocol Execution and Response

Decoding

Each protocol command is executed in isolation

and sequence. The system records raw responses

from the controller, decoded interpretations of

each response (e.g., translating 0x0B to “Measure

Clock Error”), and execution timestamps to

enable performance profiling.

This level of detail supports the identification of

behavioral inconsistencies and the early detection

of defects in both firmware and hardware

components.

The inclusion of user-configurable testing logic

enables simulation of a wide range of operational

conditions, including edge cases. This approach

follows best practices in agile software testing,

which emphasize adaptability and iterative

feedback; this supports auditability and facilitates

root-cause analysis [8,9].

3.6 Tool Limitations

Although designed to maximize coverage and

repeatability, the tool has certain operational

constraints. Its operation depends on strict

adherence of the DUT to the defined protocol

sequence and states. Test scenarios must be

preconfigured manually, as there is no dynamic

case generation yet. In addition, the tool runs

externally to the DUT, requiring intermediate

hardware for interfacing and power. These

constraints do not compromise their practical use

but influence the interpretation of metrics and the

generalization of results.

4. Test Bench and Execution Workflow

Figure 1 shows the block diagram of the

dedicated test bench assembled to validate the

effectiveness of the proposed automated testing

framework, simulating real-world operational

conditions for the embedded system.

Figure 1 - System Comms

4.1 Test Environment Setup

The test bench consisted of a controller board

featuring an ARM Cortex-M4 microcontroller

running FreeRTOS, connected to the test system

via UART and acoustic interfaces. Peripheral

Modules, including various sensors, an acoustic

transducer, and MODBUS-based communication

modules.

The Host Machine is a computer running the

Python-based automation tool, responsible for

managing all test procedures, capturing

responses, and generating reports.

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

Power supply and interface adapters are used to

ensure the reliable operation of modules under

test. Verifying the integrity of command-

response behavior across different operational

states and environments, the tool has compliance

with the ISTQB guidelines [2], ensuring that

protocol validation adheres to internationally

recognized standards.

4.2 Execution Procedure

The test execution followed a systematic

approach to ensure full protocol coverage and

reproducibility of results. First, all modules were

powered on and initialized through predefined

commands issued via the application layer. Initial

status checks were performed to validate

firmware readiness and confirm proper interface

activation. Then the entire set of protocol-defined

commands was executed in sequence, covering

operations such as power cycling modules,

triggering measurements, reading memory

blocks, and querying sensor data. Testing all

operational cases of the DUT 50 times to evaluate

the expected response and the consistency of the

firmware protocol and the DUT functionalities.

Each command was sent through both the UART

and acoustic interfaces to compare results across

communication channels. The system responses

were recorded in real time, and the raw outputs

were logged alongside decoded messages,

timestamps, and status classifications (e.g.,

success, failure, timeout).

The framework validated that command

responses were identical across both modes,

confirming functional equivalence and interface

robustness. However, it is important to note that

acoustic communication takes approximately

four times longer than serial communication to

receive a response from the module.

5. Empirical Validation

To assess the effectiveness of the proposed

automated testing framework, a series of in-lab

tests was executed using the complete set of

protocol-defined commands across multiple

operational scenarios. The goal was to evaluate

improvements in test coverage, system reliability,

and post-deployment defect rates.

At each new firmware release the tests were re-

executed to validate the quality and reliability of

the development. At each error reported a new

firmware version was released and evaluated on

the same premises. Executing all firmware

commands systematically aligns with

CMMI’s Defined (Level 3) stage, where

processes are documented, standardized, and

integrated across the organization [2].

5.1 Coverage and Automation Metrics

The tool successfully achieved 100% coverage of

the system’s communication protocol, validating

every command in both acoustic and UART

modes. This comprehensive coverage enabled a

full protocol compliance verification across

interfaces, a detection of undocumented or

unexpected behaviors, and consistent execution

of edge-case scenarios.

The automation capabilities allowed repeated

execution of test suites with no manual

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

intervention, reducing human error and

accelerating validation cycles. The integration

of programmable testing, hardware-aware

communication, and structured reporting creates

a feedback loop that elevates system maturity

from reactive to proactive — a critical

advancement for safety-critical embedded

applications [2,3].

5.2 Defect Reduction and Reliability Gains

Comparative analysis of firmware versions

before and after integrating the automated testing

framework demonstrated that numerous errors

were identified and resolved pre-deployment.

This proactive correction substantially reduced

field failure rates. The increased frequency of

firmware update versions following test

implementation provides empirical evidence of

these corrective actions. Key observations

include the early detection of issues that caused

power-saving failures, the elimination of

misconfigured responses related to sensor

modules and the identification of firmware

inconsistencies in the module’s integration.

5.3 Process Efficiency and Repeatability

The adoption of the framework also improved

overall test efficiency and traceability. Test

execution time per module decreased by ~90%,

thanks to batch automation and pre-defined test

profiles, as the average test cycle reduced from

180 minutes (manual) to 15 minutes (automated),

with minimal deviation across repeated sessions.

The reports enabled traceability across validation

sessions, with version control and serial number

signatures. Repeatability was validated by

executing the same test suite under different

environmental and hardware configurations with

consistent results.

5.4 Maturity Impact Assessment

The integration of automated testing and

structured reporting contributed to measurable

improvements in software process maturity,

aligned with CMMI and TRL frameworks.

This alignment positions the tool as a maturity

accelerator, transforming embedded system

validation from isolated checks into a lifecycle-

oriented process.

The automated tests enable the system's evolution

by enforcing consistency, accelerating feedback

cycles, and reducing the incidence of human-

induced errors. The tool records success rates,

failure diagnostics, and timing data, aligning with

the TRL framework [4]. These outcomes confirm

that the framework is not only a test tool but also

a maturity accelerator, capable of advancing

embedded systems validation into quantifiable,

repeatable, and improvement-oriented processes.

6. Conclusion

This study presented the design, implementation,

and empirical validation of a protocol-aware

automated testing framework aimed at increasing

the maturity of embedded systems, particularly

those operating in constrained environments. By

integrating acoustic and serial communication,

structured reporting, and programmable test

ISSN: 2357-7592
XI INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY
Quantum Technologies: The information revolution that will change the future - 2025

scenarios, the framework effectively bridges the

gap between informal validation routines and

quantitatively managed test processes.

The results demonstrate that automated testing

not only enhances protocol compliance and

reduces human error but also significantly

improves defect detection, test coverage, and

execution efficiency. The use of structured

reports and decoded protocol responses provides

transparency and auditability, enabling traceable

and reproducible validation cycles aligned with

CMMI and TRL frameworks.

The role of the CMMI here is to coordinate the

organizational process model of testing as an

integrated element of the software development

lifecycle. The framework’s outputs feed back into

requirements refinement, design validation, and

deployment assurance, ensuring that automated

testing accelerates maturity across all process

domains. Furthermore, the framework’s

lightweight design ensures compatibility with

resource-constrained embedded systems,

extending its applicability to real-world, mission-

critical deployments. As a result, it serves not

only as a testing utility but also as a strategic asset

for advancing the reliability, maintainability, and

process maturity of complex embedded solutions,

as shown in Table 1.

Table 1 - Bridging Theory and Practice

Concept Implementation in This Work

CMMI Maturity [2]
Integrated into the organizational

development lifecycle

Agile-Testing Integration [7]
Programmable test scenarios for

diverse conditions

TRL Frameworks [4]

Quantitative benchmarks

including success/failure rates,

timing, and coverage metrics

ISTQB Compliance [3]

Structured black-box command

validation via acoustic and serial

communication interfaces

Future work may include integration with

continuous integration (CI) pipelines, graphical

dashboards for monitoring test metrics, and

expansion to support additional communication

protocols and hardware platforms.

References
[1] Humble J, Farley D. Continuous delivery: reliable

software releases through build, test, and deployment

automation. Boston: Pearson Education; 2010. p. 283.

[2] CMMI Product Team. Capability maturity model®

integration (CMMI SM), version 1.1. Pittsburgh:

Software Engineering Institute, Carnegie Mellon

University; 2002. Report No.: CMU/SEI-2002-TR-

029.

[3] ISTQB. Standard glossary of terms used in software

testing. International Software Testing Qualifications

Board; 2016 [cited 2024 Jul 10].

[4] Gil L, Andrade MH, Costa MC. Os TRL (Technology

Readiness Levels) como ferramenta na avaliação

tecnológica. Ingenium. 2014;139:94–6.

[5] Schach, Stephen R. "Testing: principles and

practice." ACM Computing Surveys (CSUR) 28.1

(1996): 277-279.

[6] Lauwaerts T, Marr S, Scholliers C. Latch: Enabling

large-scale automated testing on constrained

systems. Sci Comput Program. 2024;238:103157.

doi: 10.1016/j.scico.2024.103157.

[7] Liu Z, Mei P. Automated testing for large-scale

critical software systems. In: 2014 IEEE 5th

International Conference on Software Engineering

and Service Science; 2014 Jun 27–29; Beijing, China.

IEEE; 2014. p. 200–3.

doi: 10.1109/ICSESS.2014.6933544.

[8] Wang Y, Mäntylä MV, Demeyer S, Wiklund K, Eldh

S, Kairi T. Software test automation maturity - a

survey of the state of the

practice [preprint]. arXiv:2004.09210v1 [cs.SE].

2020 Apr 20 [cited 2024 Jul 10]. Available

from: https://arxiv.org/abs/2004.09210.

[9] Tyagi S, Sibal R, Suri B. Adopting test automation on

agile development projects: a grounded theory study

of Indian software organizations. In: Product-

Focused Software Process Improvement. PROFES

2017. Lecture Notes in Computer Science, vol 10611.

Cham: Springer; 2017. p. 184–98. DOI: 10.1007/978-

3-319-57633-6_12.

[10] Python Software Foundation. Python Language

Reference, version 3.12. Available at:

https://docs.python.org/3/. Accessed: Aug. 2025.

