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Abstract: This literature review explores the integration of UAVs and AI in maritime surveillance, analyzing 

59 peer-reviewed studies from 2020–2025. It highlights trends in object detection and classification, common 
methodologies, model architecture (notably YOLO), and evaluation metrics like mAP. Detection targets 
include boats, ships, and swimmers, with varying research focus. The review identifies technological 

approaches, research gaps, and growing interest in UAV-based maritime monitoring. 
Keywords: UAV. Maritime Environment. Object Detection. Model Architecture. Machine Learning.  
Abbreviations: UAV, Unmanned Aerial Vehicle. mAP, mean Average Precision. CNN, Convolutional Neural 

Network. IoU, Intersection over Union. FPS, Frames Per Second. AI, Artificial Intelligence. 

 

 

1. Introduction 

 

Marine environments present challenges for 

object detection, these environments are typically 

more adverse and unstable than those 

encountered in autonomous driving applications, 

due to factors such as fog, rain, wave 

interference, shoreline complexity, and the 

absence of structured features like lane lines, all 

of which significantly reduce visibility [1]. 

Traditional monitoring systems also face 

limitations related to spatial coverage, temporal 

constraints, and operational costs. They often 

face limitations related to spatial coverage, 

temporal constraints, and operational costs [2]. 

Unmanned Aerial Vehicles (UAVs) integrated 

with Artificial Intelligence (AI) have emerged as 

an alternative approach for maritime object 

detection and classification, these can operate in 

coastal areas, harbors, and open ocean locations 

to collect imagery for monitoring. Their efficient 

deployment is particularly valuable when large 

regions need to be rapidly surveyed [3]. 

This literature review analyzes UAV-based 

maritime surveillance with AI integration by 

surveying methodological approaches, 

comparing performance across detection targets 

(vessels and swimmers), examining architectural 

preferences and evaluation metrics, and 

identifying research gaps. 

 

2. Methodology 

 

The study is characterized as exploratory, using 

literature review as method and bibliometric 

analysis as procedure, assisting in trends 

identification in knowledge expansion in UAV 

maritime object detection, as well as research 

gaps, and in the identification of journals most 

used for research dissemination in this specific 

area. 

The study design was divided into three main 

stages: planning, conduction, and 

systematization, as can be seen in Figure 1. From 

the objective, a protocol was developed with 

research questions, keywords, inclusion and 

exclusion criteria. 

 

Figure 1. Methodology diagram.

 
 

2.1. Planning 

 

The exploratory approach required planning 

research questions to map methods, identify 

trends, and point out gaps in UAV maritime 

object detection studies. 
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2.1.1 Formulate Research Questions 

 

The work is guided by seven research questions, 

addressing aspects of UAV-driven maritime 

object detection systems: RQ1: What are the 

primary research objectives in UAV-driven 

maritime object detection studies?; RQ2: What 

techniques enhance maritime imagery for 

automated analysis?; RQ3: Which deep learning 

architectures and computational techniques show 

optimal performance for maritime object 

detection tasks?; RQ4: What evaluation metrics 

and validation methodologies assess system 

performance?; RQ5: How extensively are UAV 

systems integrated into current research 

implementations?; RQ6: What environmental 

conditions and maritime contexts are primarily 

addressed in current research?; RQ7: How do the 

models perform on the defined dataset? 

RQ1 aims to map the main technology domain 

applications. RQ2 and RQ3 analyze technical 

aspects, with emphasis on image processing and 

AI architecture. RQ4 seeks to understand 

performance evaluation and validation methods. 

RQ5 examines system integration. Finally, RQ6 

and RQ7 synthesize the findings addressing 

application contexts. 

 

2.1.2 Search Strategy and Selected Databases 

 

The keywords used were: (learning model) AND 

("classification" OR "detection" OR 

"segmentation") AND (aerial image) AND 

("maritime" OR "boat" OR "ship" OR 

"swimmer"). 

The search was conducted in the following 

databases: IEEE Xplore Digital Library; 

ScienceDirect (Elsevier); MDPI Publications. 

These databases ensure peer-reviewed quality 

and academic credibility. 

Related to time, we are looking for studies 

published between January 2020 and April 2025 

to capture recent research developments, 

including both journal articles and conference 

proceedings in English. 

 

2.1.3 Selection Criteria 

 

Inclusion Criteria: 

• Studies addressing classification, 

detection, or segmentation of vessels or 

swimmers in maritime environments. 

• Research incorporating UAV applications 

or aerial imagery analysis. 

• Publications providing methodological 

descriptions and quantitative results. 

• Peer-reviewed studies published in 

reputable venues (2020-2025). 

• Full-text accessibility for analysis. 

• Primary research contributions 

(excluding reviews and meta-analyses). 

Exclusion Criteria: 

• Incomplete publications (expanded 

abstracts, conference posters, position 

papers). 

• Studies lack keywords in title, abstract, or 

keyword sections. 

• Research does not directly address 

maritime object detection tasks. 

• Inaccessible full-text publications. 

• Duplicated publications or multiple 

versions of same studies. 

• Secondary research (reviews, surveys, 

opinion pieces). 

 

2.2. Research Conduction 

 

The initial search yielded 2,498 results, with 127 

studies proceeding to full-text evaluation after 

title and abstract screening. As illustrated in 

Figure 2, publication volume increased from 8 

studies in 2020 to 47 in 2024. In terms of 

publication venues, ScienceDirect accounted for 

the largest share, followed by IEEE and MDPI, as 

shown in Figure 3. 
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Figure 2. Articles Distribution by Year.

 
 

Figure 3. Articles Distribution by Journal.

 
 

After applying the established criteria, 59 studies 

were selected for final analysis. Data extraction 

employed was helpful to address model 

architectures, evaluation metrics and 

preprocessing techniques. 

 

2.3. Research Systematization 

 

In the systematization of results, quantitative 

analysis was performed including frequency 

analysis of methodological approaches, 

aggregation of performance metrics and 

statistical analysis, temporal trend analysis of 

publication patterns, and comparative analysis 

between detection targets and environmental 

conditions. Qualitative synthesis involves 

thematic analysis of research trends, 

identification of methodological patterns, 

assessment of technological maturity levels. Data 

visualization and tabulation were performed by 

the authors using extracted information from the 

selected studies. All figures and tables represent 

original analysis and synthesis of the reviewed 

literature. 

 

3. Results 

 

The following sections seeks to answer the 

research questions, relating the found papers and 

their contributions on these topics. 

 

3.1. Research Objectives Analysis (RQ1) 

 

The research objectives focus on five main 

application domains, as shown in Table 1. 

Categories are not mutually exclusive. Articles 

may address multiple objectives simultaneously, 

resulting in overlapping classifications. 

Table 1. Objectives and References 

Objective References 

Maritime Monitoring (89.8%) [1–53] 

Coastal Security and 

Surveillance (25.4%) 

[3, 6, 11, 13, 15, 21–

25, 44, 45, 48, 50, 54] 

Beach Safety Management 

(23.7%) 

[5, 11, 13, 18, 22, 26–

29, 32, 36, 44, 46, 50] 

Search and Rescue Operations 

(15.3%) 

[3, 5, 18, 26, 27, 29, 

32, 36, 46] 

Environmental Protection 

(6.8%) 

[13, 44, 50, 54] 

 

3.2. Preprocessing Techniques Analysis (RQ2) 

 

The data composition involved public datasets 

(SeaDronesSee [55], Ships Dataset [56, 57], 

MOBdrones [58]), custom-built collections, and 

synthetic images generated to training. 

Preprocessing included resizing (640×640 or 

480×480), data augmentation (flips, rotations, 

contrast/brightness adjustments, mosaic), color 

conversion, histogram equalization, noise 

reduction, patch extraction, anchor box 

optimization, and simulation of adverse weather 

conditions. 

Annotations, whether manual or automated, 

followed COCO and PASCAL VOC formats, 

including rotated bounding boxes and 

segmentation masks for improved precision. Data 

splitting predominantly adopted the hold-out 

method (70/20/10 or 80/20). These steps aimed to 

improve training quality, reduce detection errors 
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and increase generalization, directly impacting 

metrics such as mAP, Precision. 

 

3.3. Model Architecture Analysis (RQ3) 

 

Regarding deep learning architecture, the 

analysis reveals a significant dominance of the 

YOLO (You Only Look Once) versions, which 

constitutes 65.9% of the analyzed 

implementations. Preference is distributed among 

its various versions, such as YOLOv5 and 

YOLOv8 with most implementations, as shown 

in Figure 4.  

 

Figure 4. Most Used Architecture.

 
 

Table 2 presents Faster R-CNN as the most 

significant alternative. SSD and CNN are present, 

but seldom. 

 

Table 2. Architecture and References 

Architecture References 

YOLOv8 [4, 10, 18, 26, 34, 37, 62] 

YOLOv5 [1, 4, 16, 43, 59–61] 

Faster R-CNN [1, 6, 24, 36, 61, 62] 

SSD [24, 47, 62] 

CNN [12, 27, 36] 

 

3.4. Evaluation Metrics Analysis (RQ4) 

 

The analyzed studies reveal the use of Mean 

Average Precision (mAP) as the main evaluation 

metric followed by Recall, Precision and FPS for 

processing speed, as shown in Figure 5. Other 

commonly used metrics include Average 

Precision (AP), F1-Score, Intersection over 

Union (IoU)  and Accuracy, and computational 

efficiency indicators like Parameters and Gflops, 

as seen in Table 3. 

 

Figure 5. Most Used Metrics.

 
 

Table 3. Metric and References 

 

Metric References 

mAP (50.8%)  [1, 2, 4, 5, 8–10, 13, 14, 17, 18, 21, 

22, 24–26, 28, 29, 34, 35, 39–41, 

43, 45, 54, 59–62] 

Recall (38.9%) [1, 4, 5, 10, 13–15, 20, 22, 23, 28, 

30, 35, 38, 39, 41–43, 46, 50, 51, 

54, 59] 

Precision (35.5%) [1, 5, 10, 14–16, 20, 23, 30, 34, 35, 

38, 39, 41–43, 46, 50, 51, 54, 59] 

FPS (22.0%) [7, 9, 11, 16, 21, 24, 25, 28, 38, 41, 

46, 49, 50] 

AP (20.3%) [5, 8, 10, 14, 31, 33, 36, 38, 40, 46, 

47, 50], 

F1-Score (15.2%) [2, 5, 14, 20, 23, 34, 41, 42, 49] 

IOU (11.8%) [2, 6, 11, 15, 19, 24, 36], 

Accuracy (11.8%) [6, 12, 23, 34, 42, 44, 62] 

Parameters (6.7%) [7, 33, 46, 49] 

Gflops (6.7%) [7, 9, 38, 41] 

 

3.5. UAV Integration Analysis (RQ5) 

 

Although the focus of this review was on UAV-

based applications, not all selected studies used 

images captured by UAVs. As presented in 

Figure 6, the UAV integration analysis shows that 

74.6% of studies explicitly reported UAV use, 

18.6% studies did not specify the aerial platform, 

and 6.8% studies employed other aerial sources, 

as presented in Table 4. 
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Figure 6. Articles related to UAV.

 
 

Table 4. UAV Related and References 

UAV Related References 

Yes [2–13, 15–32, 35, 36, 41, 46–50, 52, 

54, 59–61] 

No [1, 33, 34, 37–40, 42, 44, 45, 62] 

Others [14, 43, 51, 53] 

 

3.6. Environmental Context Analysis (RQ6) 

 

The analysis of detection targets shows the 

distribution of research across maritime object 

categories. As seen in Table 5 and Figure 7, 

vessel detection takes the largest share, followed 

by combined approaches, and swimmer detection 

last. 

 

Table 5. Object detection target and References 

Object References 

Vessel [1, 2, 5–8, 10–13, 15–17, 20–23, 25, 30, 31, 

33, 34, 37–40, 42–46, 48, 52–54, 62] 

Swimmer [26, 27, 36, 41, 47, 61] 

Both [3, 4, 9, 14, 18, 19, 24, 28, 29, 32, 35, 36, 

49–51, 59, 60] 

 

Figure 7. Articles focused on vessels or 

swimmers.

 

 

3.7. Performance Analysis (RQ7) 

 

Performance varies across datasets and detection 

targets, influenced by object type and 

environmental conditions. YOLO-based models 

generally provide stable results, achieving higher 

accuracy for vessel detection compared to 

swimmer detection.  

In maritime-specific datasets, YOLOv8 variants 

have reached up to 97% accuracy in controlled 

environments [34]. However, detecting small 

objects remains a persistent challenge, with 

reduced accuracy observed for targets such as 

swimmers or distant vessels. Adverse weather 

conditions, including rain and haze, significantly 

degrade detection performance, with mean 

average precision dropping by 73% to 93% in 

synthetic datasets [1]. Nevertheless, approaches 

such as weather simulation and synthetic data 

augmentation have demonstrated improvements.  

The use of multi-modal data, combining visible 

and near-infrared imagery, enhances 

generalization, achieving up to 99.5% AP@0.50 

for larger vessels [39]. Similarly, transfer 

learning from general-purpose datasets like 

COCO, when fine-tuned for maritime 

applications, has produced mAP scores of up to 

67.6% across detection classes [18]. Overall, 

vessel detection consistently outperforms 

swimmer detection across different models and 

environmental conditions. 

 

4. Discussion 

 

This review highlights UAV-driven maritime 

object detection trends. YOLO dominates 

implementations, reflecting efficiency needs for 

real-time UAV operations but limiting 

architectural diversity. Standardized metrics 

(mAP, Precision, Recall) enable cross-study 

comparison, and steady publication growth 

signals field maturation. However, performance 

gaps between vessel and swimmer detection 

expose persistent challenges in small-object 
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identification under dynamic maritime 

conditions. 

The analysis reveals that while maritime 

monitoring represents the dominant research 

objective, the field exhibits significant overlap in 

application domains. This multifaceted approach 

reflects the practical reality that UAV-based 

maritime surveillance systems must serve diverse 

stakeholder needs, from coastal security to search 

and rescue operations. 

 

4.1. Research Gaps and Future Directions 

 

Current research exhibits significant gaps in 

multi-modal sensor integration, with limited 

exploration of weather-robust fusion techniques 

despite maritime environments' demanding 

conditions. The absence of standardized 

benchmark datasets complicates method 

comparison and performance validation across 

studies.  

Swimmer detection research is severely 

underrepresented, limiting search and rescue 

capabilities. Real-world validation studies are 

scarce. Adverse weather conditions cause 

dramatic performance drops, highlighting 

robustness limitations. 

A few studies suggest improvement of small 

debris detection, exploration of architectures 

beyond YOLO, and development of frameworks 

for object identification, these directions lack 

implementation specificity. The call for 

multimodal systems for standardizing protocols 

and real-time operations requires more detailed 

technical frameworks. 

 

4.2. Limitations 

 

This review's scope limitations include English-

language restriction and temporal boundaries 

(2020-2025), potentially excluding relevant 

international research and foundational studies. 

Database selection may miss specialized 

maritime publications, while evaluation metric 

heterogeneity limits direct performance 

comparisons and benchmark establishment. 

 

5. Conclusions 

 

The literature review indicates that YOLO 

architecture models are the predominant 

approach for object detection and classification in 

maritime environments, driven by their real-time 

efficiency, although their dominance in the field 

raises questions about the overall performance 

across different types of objects and 

environmental conditions. The work also 

revealed some gaps in the area, such as limited 

articles focused on swimmer detection and 

limited use of multimodal approaches, which 

could significantly improve system robustness 

under adverse conditions. 

Furthermore, the growth of research in the area 

indicates field prosperity, with the following 

directions suggested for future studies: 

improvement of small debris detection; 

exploration of architectures beyond YOLO; a 

framework for object identification; and a 

multimodal system for standardizing protocols 

and real-time operations that considers the 

identified performance disparities. 
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