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Abstract: This paper presents an application proposal and a comparative study between two bio-inspired op-
timization algorithms: Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The main objective
is to demonstrate the effectiveness of these algorithms in selecting a subset of sensors, aiming to minimize the
variance of the collected data. Through the analysis of results from two distinct datasets, this work explores the
convergence characteristics, final population distribution, and the profile of the sensors selected by each algo-
rithm. The results indicate that while both algorithms are capable of finding satisfactory solutions, GA tends to
achieve better optimization values (lower standard deviation), whereas PSO demonstrates faster convergence.
This study contributes to the understanding of the capabilities and limitations of each approach in problems of
feature selection and sensing systems optimization.
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1 Introdução

Optimization is a fundamental field in various areas of
science and engineering, seeking to find the best solutions
for complex problems, often with a vast search space. In
scenarios where traditional analytical methods prove to be
unfeasible or inefficient, metaheuristics, inspired by natural
phenomena, emerge as powerful alternatives. Among these,
bio-inspired algorithms, which mimic biological and beha-
vioral processes, have gained prominence due to their abi-
lity to handle non-linear, multimodal, and high-dimensional
problems (Carvalho et al., 2023).

Among the most established metaheuristics for solving
complex problems, Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO) stand out. GA emulates the
evolutionary process and principles of genetics, exploring
the search space through operators such as selection, cros-
sover, and mutation to converge towards the fittest solutions
(Carvalho et al., 2023). In turn, PSO models the collective
intelligence of flocks or swarms, where particles adjust their
trajectories based on individual experience and the global
knowledge of the swarm (Zhang et al., 2017; Carvalho et
al., 2023).

The robustness of these approaches makes them ideal
for solving combinatorial optimization challenges, such as
sensor selection. This problem consists of identifying an

optimal subset from a larger set of sensors, aiming not only
for system efficiency—through the reduction of costs, com-
plexity, and energy consumption—but also for improving
the quality and reliability of the acquired data (Zhang et al.,
2017; Carvalho et al., 2023). Minimizing data variance,
for example, is a frequently adopted optimality criterion, as
a reduced standard deviation suggests greater consistency
and precision in measurements (Sobreira et al., 2020).

In this context, the present article details an application
and a comparative analysis of GA and PSO in the sensor se-
lection problem for variance minimization. The study eva-
luates the advantages and disadvantages of each metaheu-
ristic in terms of convergence speed, final solution quality,
and the characteristics of the selected sensor subset.

To this end, the structure of the paper is organized as
follows: Sections 2 and 3 explore the theoretical foundati-
ons of Genetic Algorithms and Particle Swarm Optimiza-
tion, respectively. Section 4 describes the research metho-
dology and the datasets used. Section 5 presents and discus-
ses the experimental results. Finally, Section 6 consolidates
the conclusions, highlighting the main contributions of the
study and pointing out directions for future research.
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1.1 Original Contribution and Novelty
This work fills a gap by offering a comparative analy-

sis focused on variance minimization for sensor selection,
a critical aspect for data reliability not extensively covered
in prior studies [1, 3]. A key novelty is the detailed jus-
tification for algorithm parameters, enhancing reproducibi-
lity. Furthermore, a dedicated discussion on limitations and
practical implications provides a holistic view often over-
looked. The qualitative analysis of selected sensor profiles
reveals distinct search strategies, offering unique insights
for designing sensor systems.

2 Genetic Algorithms (GA)

2.1 Principles
Genetic Algorithms (GAs) are a class of optimization

algorithms inspired by the principles of natural selection
and biological genetics, as proposed by Charles Darwin.
They operate on a population of candidate solutions (indivi-
duals), which evolve over generations through genetic ope-
rators such as selection, crossover, and mutation (Carvalho
et al., 2023).

• Initial Population: The process begins with the cre-
ation of an initial population of individuals, usually
generated randomly. Each individual represents a po-
tential solution to the problem at hand (Carvalho et
al., 2023).

• Fitness Function: A fitness function is used to eva-
luate the quality of each individual in the population.
The higher the fitness, the better the solution (Carva-
lho et al., 2023).

• Selection: Individuals with higher fitness have a gre-
ater probability of being selected for reproduction,
passing their characteristics on to the next generation.
Common methods include roulette wheel selection
and tournament selection, among others (Carvalho et
al., 2023).

• Crossover: Two individuals (parents) are combined
to generate new individuals (offspring) by exchan-
ging genetic material. This allows for the recombi-
nation of features from good solutions (Carvalho et
al., 2023).

• Mutation: Small, random changes are introduced
into the genes of individuals. Mutation helps to main-
tain genetic diversity within the population and pre-
vents the algorithm from getting stuck in local optima
(Carvalho et al., 2023).

• Replacement: The new generation of individuals re-
places the old population, and the process repeats for
a predefined number of generations or until a stop-
ping condition is met. Elitism is a strategy that en-
sures the best individual from the current generation
survives to the next (Carvalho et al., 2023).

2.2 Applications
Genetic Algorithms are widely applied in a variety of

fields due to their ability to explore complex search spaces
and find optimal or near-optimal solutions for optimization,
search, and learning problems (Carvalho et al., 2023). Some
notable applications include:

• Optimization: Solving combinatorial optimization
problems (such as the Traveling Salesperson Pro-
blem), function optimization, engineering design,
network and system optimization.

• Machine Learning: Feature selection, model para-
meter optimization (e.g., neural networks), rule lear-
ning.

• Engineering: Circuit design, industrial process op-
timization, route planning, resource allocation, and
global localization of robots (Carvalho et al., 2023).

• Finance: Portfolio optimization, market forecasting.

• Biology and Medicine: DNA sequence analysis,
drug discovery, modeling of biological systems.

2.3 Advantages and Disadvantages
Advantages:

• Robustness: Ability to handle complex, non-linear
problems with multiple local optima, as demonstra-
ted in challenging localization scenarios (Carvalho et
al., 2023).

• Implicit Parallelism: They explore multiple regions
of the search space simultaneously through their po-
pulation (Carvalho et al., 2023).

• No reliance on gradient information: They do not
require the objective function to be differentiable or
continuous.

• Flexibility: They can be applied to a wide variety of
problems with few modifications.

• Find global solutions: They exhibit a good
trade-off between computational cost and explora-
tion/exploitation capabilities, tending to find global
solutions (Carvalho et al., 2023).

Disadvantages:

• Computational Cost: They can be computationally
expensive, especially for large populations and many
generations (Carvalho et al., 2023).

• Parameter Definition: The choice of parameters
(population size, crossover and mutation rates) can
be challenging and significantly impact performance
(Carvalho et al., 2023).

• Slow Convergence: Although robust, they may take
many generations to converge to the optimal solution.
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• Fine-Tuning: They can be slow at fine-tuning the so-
lution in the later stages of optimization.

• Encoding: The problem representation (the indivi-
dual’s encoding) can be complex for some types of
problems.

2.4 Principles
Particle Swarm Optimization (PSO) is an optimization

metaheuristic inspired by the social behavior of bird flocks
or fish schools. Proposed by Kennedy and Eberhart in 1995,
PSO is a population-based algorithm where each candidate
solution (particle) moves through the search space, adjus-
ting its trajectory based on its own experience (personal best
position) and the experience of the swarm (global best po-
sition) (Kennedy & Eberhart, 1995, as cited in Zhang et al.,
2017; Carvalho et al., 2023).

• Particles: Each particle represents a potential solu-
tion in the search space and has a position and a ve-
locity (Zhang et al., 2017).

• Personal Best Position (pBest): Each particle keeps
a record of the best position it has ever reached in
the search space, along with its corresponding fitness
value (Zhang et al., 2017; Carvalho et al., 2023).

• Global Best Position (gBest): The swarm as a whole
keeps a record of the best position found by any parti-
cle in the swarm, along with its corresponding fitness
value (Zhang et al., 2017; Carvalho et al., 2023).

• Velocity and Position Update: The velocity of each
particle is updated based on three components: its
inertia (previous velocity), the cognitive component
(attraction to its personal best position), and the so-
cial component (attraction to the global best posi-
tion). The new position of the particle is then cal-
culated by adding the velocity to the current position
(Zhang et al., 2017; Carvalho et al., 2023).

2.5 Applications
PSO is known for its simplicity of implementation and

its effectiveness on a variety of optimization problems, es-
pecially in continuous domains. Its applications include:

• Function Optimization: Finding the minima or ma-
xima of non-linear mathematical functions (Carvalho
et al., 2023).

• Engineering: Control system design, antenna op-
timization, route planning, resource allocation, and
global localization of robots (Zhang et al., 2017; Car-
valho et al., 2023).

• Signal Processing: Adaptive filtering, pattern recog-
nition.

• Machine Learning: Training neural network
weights, feature selection, model parameter tuning,
and in particle filters for robot localization (Zhang et
al., 2017).

• Finance: Portfolio optimization.

2.6 Advantages and Disadvantages

Advantages:

• Simplicity: Easy to understand and implement, with
few parameters to adjust.

• Computational Efficiency: Generally faster than
other evolutionary algorithms for certain types of pro-
blems, reducing the number of particles needed com-
pared to approaches like particle filters (Zhang et al.,
2017).

• No reliance on gradient information: Like GAs,
they do not require the objective function to be dif-
ferentiable.

• Good exploration capability: Exhibits a good
trade-off between computational cost and explora-
tion/exploitation capabilities (Carvalho et al., 2023).

Disadvantages:

• Premature Convergence: Tendency to converge
prematurely to local optima in complex and multi-
modal problems.

• Parameter Sensitivity: Performance can be sensi-
tive to the choice of parameters (inertia weight, cog-
nitive and social coefficients).

• Difficulty with discrete problems: Originally desig-
ned for continuous problems, it may underperform on
discrete problems without specific adaptations.

• Fine-Tuning: It can have difficulty fine-tuning the
solution in the later stages of optimization, and its
precision may be limited without additional techni-
ques (Zhang et al., 2017).

3 Methodology

This section details the methodology employed for the
application and comparison of Genetic Algorithms (GA)
and Particle Swarm Optimization (PSO) to the sensor se-
lection problem. The main objective is to identify a subset
of sensors that minimizes the variance of the collected data,
ensuring the consistency and quality of the measurements.
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3.1 Problem Definition

The problem addressed consists of selecting a fixed
number of sensors from a larger set in order to optimize a
specific metric. In this study, the optimization metric is the
minimization of the variance of the data collected by the
selected sensors. Variance is a measure of the dispersion
of data around the mean; therefore, a lower variance value
indicates greater homogeneity and reliability in the sensor
readings.

Formally, given a set of N sensors and a desired num-
ber of K sensors to be selected (K < N ), the problem is
to find the subset of K sensors such that the variance of the
data collected by these K sensors is the smallest possible.
The objective function (or fitness function, in the context
of bio-inspired algorithms) is defined as the negative of the
variance, since optimization algorithms generally seek to
maximize fitness. Thus, maximizing the negative of the va-
riance is equivalent to minimizing the variance. This type of
optimization problem is common in various areas of robo-
tics and autonomous systems, where localization and sen-
sing are crucial.

3.2 Datasets

For the evaluation of the algorithms, two real-world
datasets from sensor readings were used. The files, na-
med scan.csv and scan(1).csv, contain multiple co-
lumns, of which only those prefixed with ranges_ were
considered. Each column that follows the ranges_* pat-
tern represents the readings of a specific sensor over time.
The use of two distinct datasets allowed for the evaluation
of the robustness and generalization of each algorithm’s
performance in different scenarios.

3.3 Algorithm Configuration

3.3.1 Genetic Algorithm (GA)

The GA was configured based on literature recommen-
dations and preliminary tests. A population of 50 indi-
viduals evolved over 100 generations, a setup that balan-
ced diversity and computational cost, ensuring convergence
without excessive processing. A mutation rate of 0.1 was
chosen to maintain genetic variability and prevent prema-
ture convergence to local optima. The number of sensors to
select was fixed at 10, as per the problem definition.

3.3.2 Particle Swarm Optimization (PSO)

The PSO was configured with 30 particles and 50 gene-
rations, leveraging its known rapid convergence. This se-
tup proved sufficient for reaching stable solutions efficien-
tly. The inertia weight (w=0.5) balanced exploration and
exploitation, while cognitive (c1=1.5) and social (c2=1.5)
coefficients were set to equally weigh individual and col-
lective knowledge, fostering a robust search. The number
of sensors to select was also 10.

3.4 Evaluation Metrics
To compare the performance of the algorithms, the fol-

lowing metrics and analyses were used:

• Convergence of the Best Standard Deviation: Con-
vergence plots were generated to visualize how the
best standard deviation (lowest variance) evolves
over the generations for each algorithm and data-
set. This allows for the analysis of the optimization’s
speed and stability.

• Distribution of Standard Deviation in the Final
Population/Swarm: Box plots were used to analyze
the distribution of standard deviation values of the so-
lutions in the final population (GA) or final swarm
(PSO). This provides insights into the diversity and
quality of the solutions found.

• Sensor Profile of the Best Solution: Sensor profile
plots were generated to visualize the average readings
of the sensors selected by the best solution found by
each algorithm. This helps to understand which sen-
sors were considered most relevant for minimizing
variance and how their readings behave.

Through this methodology, the aim is to provide a com-
prehensive and comparative analysis of the performance of
GA and PSO in optimizing sensor selection, contributing to
the choice of the most suitable approach in different appli-
cation contexts.

4 Results and Discussion
This section presents and discusses the results obtained

from the application of the Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO). The analysis focuses
on the convergence of the algorithms, the fitness distribu-
tion of the final solutions, and the profile of the selected
sensors. Two distinct datasets were used, hereafter referred
to as Dataset A (scan_2019-05-07-17-40-30) and
Dataset B (scan_2019-05-07-15-54-45), providing
a basis for comparing their performances.

4.1 Convergence Analysis
The convergence graphs (Figures 1, 2, 3, and 4) illus-

trate the evolution of the best standard deviation value found
by each algorithm over the generations. For Dataset A, the
GA demonstrated a reduction in standard deviation from ap-
proximately 2.27 to 2.03 over 100 generations, showing a
gradual and stable convergence. Similarly, for Dataset B,
the GA converged from 2.22 to 1.97. In both cases, the
GA’s convergence curve exhibits discrete steps, indicating
significant improvements in certain generations, followed
by periods of stabilization.

In contrast, the PSO, executed for 50 generations, de-
monstrated faster convergence. For Dataset A, the standard
deviation was reduced from 2.30 to 2.14. In the case of Da-
taset B, the convergence was from 2.23 to 2.15. The con-
vergence speed of PSO is a notable characteristic, attributed
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to its nature of a guided search by the swarm’s global best
experience. However, it is observed that, despite the acce-
lerated convergence, the GA achieved slightly lower stan-
dard deviation values, suggesting a superior ability to find
higher-quality solutions in terms of variance minimization,
given a larger number of iterations.

4.2 Limitations and Practical Implications

This study has limitations, including parameter sensiti-
vity and the use of a single optimization metric (variance).
The scalability to larger sensor networks was not exhausti-
vely tested. The sensor selection was static, whereas dyna-
mic environments might require adaptive strategies.

Practically, the results guide algorithm choice: GA is
preferable for applications prioritizing data quality, while
PSO excels when rapid solutions are critical. This work
demonstrates that sensor subset selection can optimize re-
sources (cost, energy) and improve data reliability, offering
a foundation for advanced, adaptive sensing systems.

Figura 1: Convergence History of the Best Standard Devia-
tion for GA (Dataset A).

Figura 2: Convergence History of the Best Standard Devia-
tion for GA (Dataset B).

Figura 3: Convergence History of the Best Standard Devia-
tion for PSO (Dataset A).

Figura 4: Convergence History of the Best Standard Devia-
tion for PSO (Dataset B).

4.3 Fitness Distribution in the Final Popula-
tion/Swarm

The box plots (Figures 5, 6, 7, and 8) provide a view of
the distribution of standard deviation values of the solutions
in the final population (GA) and the final swarm (PSO). For
the GA, in Dataset A, most solutions had a standard devi-
ation concentrated between 2.15 and 2.20, with an outlier
at 2.30. In Dataset B, the distribution was slightly wider,
ranging between 2.15 and 2.25.

For PSO, the standard deviation distribution in the final
swarm for Dataset A was concentrated between 2.35 and
2.42. In Dataset B, the distribution varied between 2.32 and
2.40, with an outlier at 2.52. The analysis of the plots reve-
als that both algorithms generated outliers, but the GA, in
general, produced solutions with a lower average standard
deviation and a more compact distribution, indicating gre-
ater consistency in solution quality. The PSO, on the other
hand, showed a distribution at slightly higher values and,
in some cases, which might indicate greater diversity in the
swarm, but also less convergence to high-quality solutions
across all particles.
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Figura 5: Box Plot of the Standard Deviation Distribution
in the Final Population for GA (Dataset A).

Figura 6: Box Plot of the Standard Deviation Distribution
in the Final Population for GA (Dataset B).

Figura 7: Box Plot of the Standard Deviation Distribution
in the Final Swarm for PSO (Dataset A).

Figura 8: Box Plot of the Standard Deviation Distribution
in the Final Swarm for PSO (Dataset B).

4.4 Selected Sensor Profile
The sensor profile graphs (Figures 9, 10, 11, and 12)

illustrate the indices of the sensors selected by the best so-

lution of each algorithm, as well as their respective average
readings.

For the GA, in Dataset A, the selected sensors
were: 110, 177, 180, 181, 202, 209, 222,
223, 224, 225. In Dataset B, the chosen sensors
were: 149, 175, 183, 188, 190, 191, 194,
196, 208, 210. It is observed that the GA tended to se-
lect sensors with numerically close indices, suggesting that
the optimization sought a cohesive set to minimize the vari-
ance of the readings.

For the PSO, in Dataset A, the selected sensors were:
64, 80, 101, 116, 118, 163, 165, 168,
182, 194. In Dataset B, the sensors were: 156, 159,
182, 195, 197, 216, 284, 323, 388, 431.
Unlike the GA, the PSO selected sensors with more scatte-
red indices in the search space. This may indicate a broader
exploration, but it does not necessarily result in a cluster
of sensors with homogeneous characteristics, which is the
objective of variance minimization.

Figura 9: Sensor Profile of the Best Solution for GA (Data-
set A).

Figura 10: Sensor Profile of the Best Solution for GA (Da-
taset B).

Figura 11: Sensor Profile of the Best Solution for PSO (Da-
taset A).
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Figura 12: Sensor Profile of the Best Solution for PSO (Da-
taset B).

4.5 Overall Comparison

In terms of performance, the GA demonstrated a supe-
rior ability to find solutions with a lower standard deviation,
resulting in a more effective optimization for the proposed
problem. Its convergence, although slower, was more sta-
ble and consistent. On the other hand, the PSO stood out
for its convergence speed, reaching satisfactory solutions in
a smaller number of generations. However, the quality of
the PSO solutions, on average, was slightly inferior to that
of the GA, and the fitness distribution of the final swarm
was more dispersed.

The choice of the most suitable algorithm will depend
on the specific requirements of the application. If the pri-
ority is the quality of the solution and robustness in opti-
mization, the GA may be more indicated. If convergence
speed is a critical factor, PSO may be preferable, even if it
implies a slightly less optimized solution. The difference
in the selected sensor profiles also suggests that each algo-
rithm explores the search space differently, which can be an
advantage in problems where solution diversity is desirable.

5 Conclusion

This work presented a comparative study between GA
and PSO for sensor selection, focusing on data variance
minimization. The results demonstrated that GA, despite
slower convergence, achieved superior solutions with lower
standard deviation, indicating greater effectiveness in opti-
mizing data quality. PSO, on the other hand, excelled in

convergence speed, quickly reaching satisfactory solutions,
though of slightly lower quality.

The analysis of sensor profiles revealed distinct selec-
tion patterns: GA favored cohesive sensor clusters, while
PSO selected more dispersed sensors, reflecting different
search strategies. This trade-off between solution quality
(GA) and convergence speed (PSO) is a key takeaway. The
choice of algorithm should depend on application-specific
needs: prioritize optimality with GA or rapid deployment
with PSO.

Future work could explore hybrid approaches combi-
ning the strengths of both algorithms and investigate their
application in dynamic environments with multi-objective
optimization criteria.
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