

QUANTUM TECHNOLOGIES: The information revolution that will change the future

Personalized learning model for university-industry integration through PBL problem-solving

Juliana de Santana Silva^{1*}, Herman Augusto Lepikson ^{1,2}

¹ Federal University of Bahia, Polytechnic School/Institute of Computing, Salvador, Bahia, Brazil

² Senai Cimatec University, Salvador, Bahia, Brazil

*Corresponding author: Federal University of Bahia; R. Prof. Aristídes Novis, 2 - Federação;

julianadesantanasilva3@gmail.com

Abstract: Modern educational models recommend Problem-Based Learning (PBL) and Adaptive Learning (AL) to increase the alignment of education and work organization. PBL is a technique that focuses on learning through problem-solving. However, understanding how and why PBL works is a current challenge. To advance this issue, systems that personalize learning processes are recommended. The present study developed an AL approach for PBL to align education with industry through problem-solving. The proposed approach is based on ontologies, complex multilayer networks, Bayesian networks, a recommendation system, and multi-agent architecture. The proposed tool consists of descriptive, diagnostic, predictive, and prescriptive models. This tool is available on eduCAPES with guidelines for implementing these models. Reduced PBL planning effort, increased collaboration in the development of innovation projects, enhanced educational quality, and the availability of data for Artificial Intelligence (AI) training are some benefits of this tool. To evaluate the proposed approach, nine graduate students completed the User Experience Questionnaire. The attractiveness, hedonic quality, and pragmatic quality of the models were positively perceived. Therefore, the results showed that students have a positive perception of the model's functions. The present study was limited to experiments with a small sample of students. Evaluation of the perceptions of university, educational administrators, the graduate program, the educational institution, industry, and a larger sample of students is suggested for future studies. Currently, the model is implemented with a set of existing tools. Therefore, studies to develop a platform with a user-friendly interface that integrates the proposed models are recommended.

Keywords: Personalized learning. Adaptive learning. Problem-based learning. Industry. University.

1. Introduction

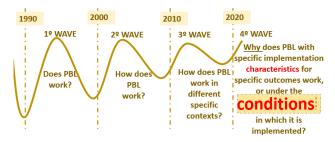
The current educational landscape is characterized by the emerging concept of social organization known as Society 5.0 [1]. This model is challenged by the emergence of new types of work and the automation of many existing jobs [2]. To address this challenge, 4.0/5.0 educational models have been proposed [3]. These models are based on Problem-Based Learning (PBL) and Adaptive Learning (AL) [3].

PBL is an approach in which students learn by solving problems contextualized within their future professional environment [4]. Collaborative, contextualized, self-directed, and constructive learning are the main functions of

this technique [5]. Understanding how and why PBL achieves these functions is a research gap [6]. Therefore, a lack of quality control techniques for PBL educational functions challenges the adoption of this technique.

To address this challenge, AL techniques are recommended for prescribing PBL specifications that achieve previously defined learning outcomes [6]. AL are approaches that adapt learning aspects to student needs to improve their outcomes [3]. The solution proposed by the present study is an AL model to integrate university and industry through PBL problem-solving.

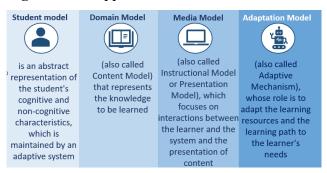
ISSN: 2357-7592



2. Related work

PBL has expanded to a variety of courses. Consequently, the initial proposed format of this technique has been modified. Therefore, there is considerable variability in PBL implementations [7]. This variability has challenged research on how and why PBL works [6, 8], as shown in Figure 1.

Figure 1. Wave of PBL research


The present study aims to advance the fourth and current wave of PBL research. This wave aims to answer the question: "Why does PBL with particular implementation characteristics for specific outcomes work or not work in the condition where it is implemented?" [6]. The discovery of this period of research was made through a review study of reviews and meta-analyses published between 1980 and 2019 conducted by [6].

To advance this issue, Hung et al. [6] recommend the development of theoretical approaches and probabilistic models. Studies that advanced in the fourth wave of research proposed guidelines for developing realist reviews [9], design-based research [10], and causal maps [11]. These studies recommended:

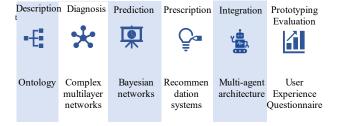
the use of personalized approaches [10], the development of repositories [11], the use of AI in causal maps [11], and the investigation of adaptations of PBL approaches [12].

The AL approaches include the adaptation mechanism, student models, content models, and instructional models [13,14,15], as shown in Figure 2. The use of AL approaches for PBL focuses on adapting content [16], curriculum [17], feedback [18], and learning resources [19]. Therefore, there is a gap in AL development that advances the issue of the fourth wave of PBL research.

Figure 2. AL approaches

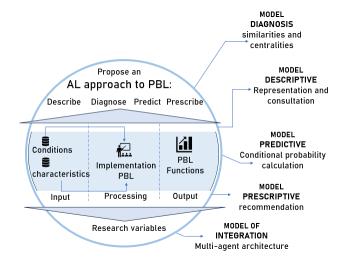
Based on the studies of [13,14,15]

3. Methodology


The AL approach proposed in this study encompasses descriptive, diagnostic, predictive, prescriptive, integrative, and evaluative models, as illustrated in Figure 3.

The ontologies will be used in the descriptive model. These data structures allow the representation of concepts within a given domain [20, 21]. The complex multilayer networks will substantiate the diagnostic model.

Figure 3. Methodology


These approaches represent the connections of nodes in layers [22]. In these networks, connections can grow vertically or horizontally [22]. The predictive model will be a Bayesian network. This network is a conditional probability graph [23]. The prescriptive model will be a recommender system. This system makes prescriptions based on user preferences [24]. To integrate these models, multi-agent architectures is used. This approach is standard for describing the integrated parts of a system [25, 26, 27]. The User Experience Questionnaire (UEQ) translated into Portuguese by [28] is used to analyze the students' perception of the AL proposed in the present study. This questionnaire analyzes three aspects. Attractiveness assesses whether users liked the proposal presented [29, 30]. Hedonic quality analyzes non-task-related aspects [29, 30]. Pragmatic quality assesses task-related aspects [29, 30]. Nine postgraduate students of the integrated manufacturing systems discipline answer the UEQ in a pilot study.

4. Proposed model

The proposed technological solution is an adaptive learning (AL) approach that aims to ISSN: 2357-7592

evaluate the performance of project-based learning (PBL) applied to technological disciplines. This solution is structured around five models to describe, diagnose, predict, and prescribe PBL characteristics and conditions that, when implemented, achieve the educational functions of PBL, as illustrated in Figure 4.

Figure 4. Proposed model

4.1. Variables

The characteristics are the problem, the assessment, the solution, the teacher, and the teams. The conditions are the implementation time, environment, format, and educational level. The functions of PBL are to promote knowledge acquisition, problem-solving, and collaborative, constructive, self-directed, and contextualized learning.

4.2. Model functions

The functions of the models are illustrated in Figure 5 and described in Table 1.

Figure 5. Proposed model

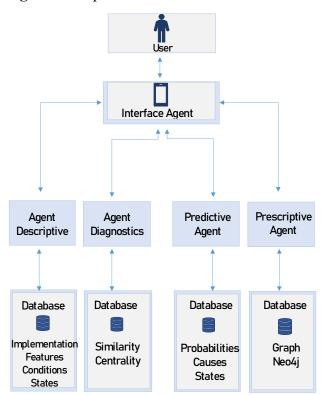


Table 1. Model functions

Models'	Description
functions	
Descriptive	The descriptive model aims to allow access and
	querying of the characteristics, conditions, and
	functional states of a PBL implementation.
Diagnostic	The diagnostic model proposes metrics to calculate
	centralities and similarities in the characteristics,
	conditions, and functional states of the PBL.
Predictive	The predictive model identifies the causal
	relationships related to the characteristics and
	conditions that lead a PBL implementation to achieve
	or not its educational functions.
Prescriptive	The prescriptive model aims to provide
	recommendations for characteristics and conditions to
	improve the PBL implementation results.
Integration	The integration model aims to establish how the
	descriptive, diagnostic, predictive, and prescriptive
	models are related.

4.3. Forms of use

The forms of use for teachers, students, researchers, industry, and educational institutions are detailed in Table 2 and 3.

Table 2. Teaching and educational research.

**	
User	Forms of use
Researchers	Conduct research, train AI algorithms, and develop
	educational technologies using data generated by the
	proposed model.
	Conduct performance investigations of PBL
	implementations.
	Implement the integration of the technological
	solution's descriptive, diagnostic, predictive, and
	prescriptive models on a single platform.
Teachers	Plan the characteristics and conditions of a PBL
	implementation with process reuse, for example,
	projects, unsolved problems, and assessment models.
	Reuse has the potential to reduce the effort and time
	on planning PBL.
	Evaluate the quality of a PBL implementation by: (i)
	calculating similarities between implementations and
	states; (ii) analyzing the relationship between
	adaptations in implementations and the approach or
	distance from the achievement of PBL functions.
	Improve the quality of a PBL implementation through
	predictive analysis of the likely causes of the
	achievement or lack thereof of PBL functions in a
	specific implementation.
	Improve the quality of a PBL implementation through
	recommendations for: problems and students based on
	familiarity; problems based on area; existing solutions
	based on techniques; existing problems based on
	solutions; characteristics and conditions most likely to
	achieve collaborative learning, problem-solving, and
	knowledge acquisition.
	Manually integrate the descriptive, diagnostic,
	predictive, and prescriptive models of the
	technological solution with existing tools
Educational	Developing initiatives and strategically directing
managers	resources.
Students	Identify: teams for collaboration; solutions to existing
	problems to analyze innovation potential.
	Using metrics, assess the team's level of
	multidisciplinarity, familiarity with problems, and the
	scope of PBL learning functions.

Table 3. Use in the integration between universities, government, and industry.

ISSN: 2357-7592

User	Forms of use
Graduate	Considering that the problems are master's and
Program	doctoral projects, the problem data repository can
	help students identify: (i) advisors based on the
	projects; (ii) problems in topics of interest,
	familiarity, and ideal multidisciplinarity. This
	process can reduce research time and improve the
	indicators of postgraduate programs in Brazil.
Industry and	Considering that projects developed in a corporate
Corporate	environment are problems that generate
Environment	commercialized solutions, identifying development
	conditions (such as time, format, implementation
	environment) and characteristics (such as team
	problem-solution, supervisors' role) that lead the
	team to develop the project with self-direction,
	collaboration, constructiveness, and a problem
	solved within a specified timeframe impacts the
	success of this organization. Identifying the most
	appropriate teams for developing specific projects
	more quickly is another benefit for the corporate
	environment.
Higher	An overview of PBL practices implemented at the
Education	institution identifies: (i) the projects and problems
Institution	solved; (ii) the teams developing the solutions; (iii)
	the integration of teams within the institution; (iv)
	the implementations that achieve PBL functions.
	This process enables the educational institution to
	have a broad view of the projects developed for
	direct strategic resources.
Government	The Ministry of Education proposes new curricular
represented by	guidelines for engineering programs and other
the Ministry of	technologically-based programs. Therefore,
Education	identifying the characteristics and conditions that
	bring PBL implementations closer to achieving their
	intended purpose allows for: (i) identifying best
	practices; (ii) assisting in the improvement of these
	guidelines; and (iii) analyzing the results of the
	proposed guidelines.

The problems and solutions developed can integrate teams from universities and industry. The models proposed in this study allow: consultations, metrics analysis, and recommendations regarding which teams are developing specific solutions.

4.4. Expected benefits

The expected benefits are described in Table 4.

Table 4. Expected benefits of the project.

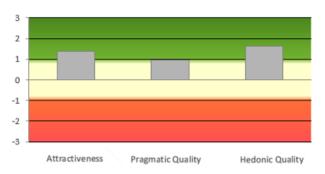
ID	Benefits of the project.
1	Reduced effort and time required by teachers.
2	Increased collaboration educational institution.
3	Increased innovative solutions designed in educational
	environments.
4	Performance analysis of PBL implementations.
5	Access to a database of educational needs and processes.
6	Improving educational quality.
7	Strategic development of research, initiatives, educational
	technologies, and AI algorithm training.

4.5. User Guidelines

Six modules were developed that present the proposed models, development techniques, usage methods, and extension methodologies, as shown in Figure 6.

Figure 6. User Guidelines.

The present study also proposes guidelines for utilizing the models in conjunction with existing tools. These guidelines are available in


http://educapes.capes.gov.br/handle/capes/98387 6. The proposed tool is licensed under the Creative Commons CC BY-NC 3.0 BR license. Therefore, non-commercial use, adaptation, and sharing of the proposed models are allowed.

5. Validation

The results show that the proposed approach was positively evaluated by the students in terms of attractiveness, hedonic quality, and pragmatic quality, as shown in Figure 7.

As shown, students liked the proposed approach. The function-related and non-function-related aspects of the proposed models' approach were also positively evaluated.

Figure 7. Students' perception of the proposed models.

6. Discussion

This study proposes novel AL models for PBL. These models advance the fourth wave of PBL research. Existing approaches focus on content and the learner model. The proposed approach considers broader aspects, such as the team, the problem, the solution, the assessment, and the teacher. This approach presents diverse

functions for students, educational researchers, universities, graduate programs, the Ministry of Education, and industry.

Improved educational quality, increased collaboration on innovative projects, a database for AI training, and strategic educational decisions are some benefits of the proposed model.

The model validation showed positive student perception. However, this study was limited to experiments with a sample of students. Limitations and robustness related to study design are described in Table 5.

Table 5. Limitations and robustness

ID	Limitations and robustness
1	No reducing education to measurable outputs and no restricting it
	to corporate efficiency: The approach accommodates qualitative
	and quantitative data from descriptive and diagnostic models. This
	combination enriches the possibilities for understanding PBL and
	does not restrict education to measurable outcomes. The diverse
	uses for research, teaching, management, and organizational
	strategies demonstrate that the proposed approach considers
	critical analysis and is not limited to corporate efficiency.
2	Validation: The UEQ technique is not intended to assess
	educational quality. It only indicates evidence that potential users
	are interested in using it. The adaptability of PBL during
	implementation challenges evaluations using case-control designs.
	The diagnostic model's metrics can be used to measure the quality
	of the PBL implementations and analyze whether improvements
	in PBL functions are being achieved. Therefore, the proposed
	approach helps improve educational quality.

Future studies to analyze the perceptions of other potential users of the proposed model are recommended. Modules developed by the present study that guide the implementation of the proposed models in existing tools could aid these future studies. Manual integration of the

models is a limitation of this study. Therefore, the development of a platform with a user-friendly interface is another recommendation for future studies. This research advances several AL challenges described in Table 6.

Advances

Epistemological conflicts: Studies indicate epistemological weaknesses in AL related to reducing the complexity of education

by providing rules for action [31]. For Ross [31], AL should

suggest possible actions and an understanding of possibilities. In

Table 6. Advances

	line with this author's recommendations and unlike existing
	approaches, this study proposes recommendations for the
	characteristics and conditions of PBL for critical analysis by
	teachers and scientific research. The proposed approach is a
	digital method, and understanding epistemological limits is a
	challenge in multidisciplinary areas of science [32].
2	The proposed approach reconciles algorithmic personalization
	(AL) with the collective and open nature of PBL in: i) scalability -
	the proposed approach is open to collaborations. ii) variables -
	collaborative learning, the team, and interactions are model
	variables; iii) use - access to data from the prescriptive model
	allows solutions to be developed more collaboratively by allowing
	students to contribute to project solutions from other disciplines,
	courses, and institutions.
3	How can we avoid this from reducing PBL to a mechanistic
	process, emptying its critical and multidisciplinary function? How
	to prevent students from perpetuating disciplinary bubbles? The
	proposed approach has the following characteristics: i) it does not
	reduce PBL to a mechanistic process—the intention is to provide
	data for investigations into the complex interaction of PBL
	components; ii) it considers criticism—teachers and students
	consult on aspects of PBL, critically analyze it, and choose how
	they will plan the PBL; iii) it considers multidisciplinarity —
	problems can be modeled with a level of multidisciplinarity and
	familiarity defined by the teacher. With the help of the proposed
	approach, the teacher can prevent students from restricting
	themselves to their areas of expertise.
4	AL can reduce flexibility by standardizing ideal responses with
	limiting causality modeling by Bayesian networks, which stand
	out for their transparency [33]. AL needs transparency about
	algorithmic bias: The proposed approach does not indicate ideal
	responses, but rather possibilities. Access to implementation
	variability tends to increase the flexibility of PBL. The proposed
	Bayesian network does not recommend learning paths, but rather

	indicates probable causes of problems, which must be critically
	analyzed by the teacher and investigated by researchers.
5	No restriction of the predetermined paths and considering
	autonomous learning: There are no recommendations for
	predetermined paths in the proposed AL. Therefore, the system
	recommends, and the student has the autonomy to select problems
	and develop solutions different from those registered.

7. Conclusion

The present study developed an AL approach to PBL. This innovative approach have potential: (i) reduced teacher effort in PBL planning; (ii) increased collaboration educational institution and industry; (iii) increased innovative solutions designed in educational environments; (iv) performance analysis of PBL implementations; (v) access to a database for improving educational quality, strategic development of research, initiatives, educational technologies, and AI algorithm training; (vi) interoperable with various technologies, such as ontology editor software, network analysis, knowledge graph analysis, and Bayesian network analysis. The functions of the proposed model were positively evaluated for students.

The study's limitations include: (i) validation related to the user experience with students; (ii) implementation with manual data integration using existing platforms. It is recommended that future studies: (i) implement the technological solution to integrate universities and industry; (ii) develop a web implementation of the solution with user training and support; (iii) use other validation techniques with a larger sample of students.

QUANTUM TECHNOLOGIES: The information revolution

The information revolution that will change the future

Acknowledgement

The authors express their gratitude for the financial support from the Bahia Research Foundation (FAPESB), grant number BOL0742/2020.

References

- [1] Huang, S., Wang, B., Li, X., Zheng, P., Mourtzis, D., and Wang, L. "Industry 5.0 and Society 5.0—Comparison, complementation and co-evolution." *Journal of manufacturing systems*, 64 (8). 424-428. Jul 2022.
- [2] Romero, D., and Stahre, J. "Towards the resilient operator 5.0: The future of work in smart resilient manufacturing systems." *Procedia cirp*, 104. 1089-1094. 2021.
- [3] Mukul, E., and Büyüközkan, G. "Digital transformation in education: A systematic review of education 4.0." *Technological* forecasting and social change, 194. 122664. 2023.
- [4] Wood, D. F. "Problem based learning." Bmj, 326 (7384). 328-330.2003.
- [5] Dolmans, D. H. "How theory and design-based research can mature PBL practice and research." Advances in health sciences education, 24(5). 879-891. 2019.
- [6] Hung, W., Dolmans, D. H., and Van Merriënboer, J. J. "A review to identify key perspectives in PBL meta-analyses and reviews: trends, gaps and future research directions." *Advances in Health Sciences Education*, 24 (5), 943-957, 2019.
- [7] Frambach, J. M., Talaat, W., Wasenitz, S., and Martimianakis, M. A. "The case for plural PBL: an analysis of dominant and marginalized perspectives in the globalization of problem-based learning." Advances in Health Sciences Education, 24. 931-942. 2019.
- [8] Servant-Miklos, V. F., Woods, N. N., and Dolmans, D. H. "Celebrating 50 years of problem-based learning: progress, pitfalls and possibilities." *Advances in Health Sciences Education*, 24(5). 849-851. 2019.
- [9] Bendermacher, G., Dolmans, D., and oude Egbrink, M. "How realist reviews might be helpful to further insights in Problem-Based Learning: from theoretical grounding to practical application." *Interdisciplinary Journal of Problem-Based Learning*, 17(2). 2023.
- [10] Dolmans, D. H. "How theory and design-based research can mature PBL practice and research." Advances in health sciences education, 24(5). 879-891. 2019.
- [11] Giabbanelli, P. J., Tawfik, A. A., and Wang, B. "Designing the next generation of map assessment systems: Open questions and opportunities to automatically assess a student's knowledge as a map." *Journal of research on Technology in educaTion*, 55(1). 79-93. 2023.
- [12] Tawfik, A. A., Gish-Lieberman, J. J., Gatewood, J., and Arrington, T. L. "How K-12 Teachers Adapt Problem-Based Learning." *Interdisciplinary Journal of Problem-Based Learning*, 15(1), n1. 2021.
- [13] Martin, F., Chen, Y., Moore, R. L., and Westine, C. D. "Systematic review of adaptive learning research designs, context, strategies, and technologies from 2009 to 2018." Educational Technology Research and Development, 68(4). 1903-1929. 2020.
- [14] V. Shute and B. Towle, "Adaptive e-learning," Educational Psychologist, 38(2).105–114, 2003.
- [15] Vandewaetere, M., Desmet, P., and Clarebout, G. "The contribution of learner characteristics in the development of

- computer-based adaptive learning environments." *Computers in Human Behavior*, 27(1). 118-130. 2011.
- [16] Putra, A., Gram, D., Stefanou, C., and Santoro, D. (2022). "The use of adaptive learning technology to enhance learning in clinical veterinary dermatology." *Journal of Veterinary Medical Education*, 49(1), 118-125. 2022.
- [17] Joshi, A., Desai, P., and Tewari, P. "Learning Analytics framework for measuring students' performance and teachers' involvement through problem based learning in engineering education." *Procedia Computer Science*, 172. 954-959. 2020.
- [18] Zakaria, M. I., Nasran, N. A. H. N., Abdullah, A. H., Alhassora, N. S. A., Pairan, R., and Yanuarto, W. N. "Unlocking the Future: Mathematics Teachers' Insight into Combination of M-Learning with Problem-Based Learning Teaching Activities." *Mathematics Teaching Research Journal*, 16(3), 196-216. 2024.
- [19] Jiménez Becerra, I., Fernández Palma, O. E., and Almenárez Moreno, F. T. "Adaptative pedagogical design for MOOC development: a strategy for developing competences in corporate contexts." Revista electrónica de investigación educativa, 22. 2020.
- [20] Gruber, T. R. "A translation approach to portable ontology specifications." Knowledge acquisition, 5(2). 199-220. 1993.
- [21] Borst, W. N. "Construction of engineering ontologies for knowledge sharing and reuse." [PhD Thesis - Research UT, graduation UT, University of Twente]. Centre for Telematics and Information Technology (CTIT). Sept. 1997.
- [22] Mata, A. S. D. "Complex networks: a mini-review." Brazilian Journal of Physics 50(5). 658-672. July. 2020.
- [23] Neapolitan, R. E. Probabilistic reasoning in expert systems: theory and algorithms. CreateSpace Independent Publishing Platform, 2012.
- [24] Chicaiza, J., and Valdiviezo-Diaz, P. A comprehensive survey of knowledge graph-based recommender systems: Technologies, development, and contributions. *Information*, 12(6), 232. 2021.
- [25] Bass, L.; Clements, P.; Kazman, R. "Software architecture in practice": Third Edition. [S.I.]: Addison-Wesley Professional, 2012
- [26] Roda, C., Navarro, E., Zdun, U., López-Jaquero, V., and Simhandl, G. "Past and future of software architectures for context-aware systems: A systematic mapping study." *Journal of Systems and Software*, 146. 310-355. 2018.
- [27] Do Nascimento, L. V., and De Oliveira, J. P. M. "Decentralized, distributed and fault-tolerant context recognition architectures for smart cities: A systematic mapping." SBC Reviews on Computer Science, 1(1), 2021.
- [28] Cota, M. P., Thomaschewski, J., Schrepp, M., and Gonçalves, R. "Efficient measurement of the user experience. A Portuguese version." *Procedia Computer Science*, 27, 491-498, 2014.
- [29] Schrepp, M. User experience questionnaire handbook. All you need to know to apply the UEQ successfully in your project, 10. 2015
- [30] Rauschenberger, M., Schrepp, M., Pérez Cota, M., Olschner, S., and Thomaschewski, J. (2013). Efficient measurement of the user experience of interactive products. How to use the user experience questionnaire (UEQ). Example: Spanish language version.
- [31] Ross, J. (2017). Speculative method in digital education research. *Learning, Media and Technology*, 42(2), 214-229.
- [32] Omena, J. J. (2019). Métodos Digitais: teoria-prática-crítica. Lisboa: Icnova.
- [33] Larrañaga, P. Interpretabilidad con redes bayesianas. Funcas; 2024. p.1-30. [cited 2025 Sep 10] Available from:https://www.funcas.es/wp-content/uploads/2025/02/06.-Larranaga-Pedro.pdf