QUANTUM TECHNOLOGIES: The information revolution that will change the future

Potential Applications of Quantum Computing in 6G Networks

Washington Santana^{1*}, Roney das Mercês Cerqueira², Viviane Brandão Leite³, Alex Ferreira dos Santos⁴, Anderson Dourado Sisnando⁵

¹ Federal University of Bahia, Department of Electrical Engineering, Salvador, Bahia, Brazil

² Federal University of Bahia, Department of Electrical Engineering, Salvador, Bahia, Brazil

Abstract: The advent of 6G technology ushers in a new era in digital connectivity, characterized by universal, continuous, and ultra-high-performance communications, as well as integration with artificial intelligence. In the face of increasing computational demands, quantum security, advanced cryptography, and energy efficiency requirements of these networks, quantum computing emerges as a promising solution to address such challenges. This study comprehensively investigates the potential roles and implications of quantum computing in the context of 6G networks. The research was conducted in two stages. In the first stage, a thorough literature review was carried out from 2018 to 2024 to identify the main applications of quantum computing in 6G technology. In the second stage, these applications were analyzed regarding their practical feasibility. The literature review reveals a growing consensus on the role of quantum computing in the advancement of 6G. As a result, 9 potential applications of quantum computing were identified, organized into three thematic areas: Quantum Technologies, Data and Network Management, Ultra-Precise Timing and Sensing. Moreover, the study systematizes the best practices extracted from the literature to guide future implementations, providing a solid foundation for researchers and professionals interested in incorporating quantum computing into 6G networks. Among the identified applications, Quantum Key Distribution and Ultra-Precise Timing stand out for their potential impact on 6G performance and security. The findings significantly contribute to the advancement of knowledge in the field, pointing to pathways for the efficient adoption of quantum computing and strengthening the understanding of its applications and implementation strategies in a rapidly evolving technological landscape.

Keywords: 6G networks. Quantum computing. Quantum Technologies. Emerging technologies.

1. Introduction

The 5G network marked a milestone in telecommunications, delivering ultra-high speed, low latency, and support for innovative applications such as smart cities, autonomous vehicles, augmented reality, and mobile healthcare systems. Despite these advances, 5G still presents significant limitations, including the need for proximity to antennas, restricted coverage in remote areas, and insufficient performance for certain critical operations.

In this context, 6G emerges with the goal of overcoming these barriers. This new generation is expected to offer speeds up to 50 times faster than 5G and latency as low as 1 millisecond, enabled by low Earth orbit satellites. It also promises global coverage through multiple interconnected access points, along with greater sustainability, equipment will be as manufactured from eco-friendly materials [1]. One of its key differentiators will be deep integration with Artificial Intelligence (AI), enabling reduced data loss, optimized energy

ISSN: 2357-7592

³ Federal University of Campina Grande, Department of Physics, Campina Grande, Paraíba, Brazil
^{4,5} Federal University of Recôncavo da Bahia, Center for Science and Technology in Energy and Sustainability, Bahia,

Brazil
*Corresponding author: Federal University of Bahia; Salvador, Bahia, Brazil; washingtonsantana@ufba.br

consumption, automatic traffic adjustments according to demand, and lower operational costs. Such automation is expected to minimize the need for human intervention while increasing network efficiency and reliability.

Currently, 6G networks are in the development stage, with commercial deployment and initial use cases anticipated around 2030, starting in developed countries. However, this timeline is only indicative, as 5G implementation still faces considerable challenges. The adoption of 6G will depend on factors such as public policy, economic conditions, geographical constraints, and investment availability.

To facilitate comparison, Table 1 [2] presents the main characteristics of 5G and 6G networks, including access technology, maximum data rate, typical usage rate, and latency.

Table 1. Cellular generations and key applications.

Characteristics	5G	6G
Access technology	MIMO-OFDM A and mmWave beamforming	Terahertz technolog y
Peak data rate (downlink)	> 20 Gb/s	> 400 Gb/s
Typical user data rate (downlink)	> 200 Mb/s	> 1 Gb/s
Typical latency	< 1 ms	< 0.1 ms

One of the main drivers of the evolution toward 6G networks is the integration of quantum computing (QC) into wireless communication systems [2]. Quantum mechanics, once confined to the realm of theoretical physics, is now being applied to unlock new potential across various industries, including telecommunications [3].

The role of QC in 6G technology is multifaceted and offers a wide range of benefits [4]. For example, quantum key distribution, grounded in the principles of quantum mechanics, can enable theoretically unbreakable encryption, thereby strengthening the security of the extensive IoT networks envisioned for 6G [5, 6, 7]. In addition, quantum sensors have the potential to significantly improve device positioning and navigation accuracy—an essential requirement in the highly connected environments expected with 6G.

Despite its potential, the integration of QC into 6G remains in its early stages and requires substantial research and development efforts [7, 8]. While recent studies provide valuable contributions, they often address specific aspects of this integration without offering a comprehensive analysis of the topic. This gap highlights the need for a broader understanding of QC's roles in the 6G context and for the identification of effective practices for its implementation.

Accordingly, this research aims to deepen the analysis of potential QC applications in 6G by examining 9 key use cases reported in the existing literature. Each application was

assessed in terms of its practical feasibility and the current limitations that must still be addressed

2. Methodology

The central problem of this research is: What are the main application areas of quantum computing (QC) in 6G technology? To address this question, a comprehensive literature review was conducted. The investigation included the analysis of peer-reviewed articles published in journals and conference proceedings between 2018 and 2024.

The search was carried out in Google Scholar and other academic search engines, using specific keywords to identify relevant studies. Works that directly discussed the applications of quantum computing in the context of 6G were considered, as well as studies that, although not exclusively focused on these applications, provided relevant insights and case reports.

The data processing and organization followed the qualitative coding steps proposed by Braun and Clarke [9], structured into three levels: "code," "theme," and "higher-level theme." Based on this procedure, the identified concepts were reformulated and organized, resulting in a final list of key applications. These applications were then mapped to their corresponding main areas, with continuous revisions throughout the process to minimize bias and ensure consistency in the classifications.

3. Results

In this section, the results and discussions are presented. Section 3.1 details the findings from the literature review, while Section 3.2 maps these areas, organizing them into four major thematic categories. The mapping aims to synthesize the main application domains of Quantum Computing (QC) in the context of 6G.

3.1. Results of the Literature Review

The literature review identified nine key application areas (Applications of Quantum Computing, AQC) with significant potential to drive the advancement and success of 6G through quantum computing. These areas are presented and described below.

(i) AQC-01 – Advanced data processing

Quantum computing, by processing large volumes of data simultaneously, can improve processing in 6G networks, increasing speed, reliability, and efficiency [10]. To overcome the main challenge of applying quantum technology to 6G, best practices such as skills development, early adoption, robust governance, and strategic partnerships are essential [11].

(ii) AQC-02 – Quantum Key Distribution (QKD)

Security is crucial in communication systems. QKD uses quantum principles to encrypt data and distribute keys with theoretically unbreakable security [12]. In 6G, QKD can

protect extensive IoT networks [13]. To enable this application, best practices such as training, adequate infrastructure, and multi-layered security are essential.

(iii) AQC-03 – Quantum Machine Learning Machine learning algorithms will be key to managing and optimizing 6G networks. Quantum computing can enhance the efficiency and accuracy of these algorithms, improving network performance [10]. Quantum machine learning enables features like predictive maintenance and automated optimization [14]. Hybrid classical-quantum practices, including data quality assurance and testing, are essential for this application.

(iv) AQC-04 – Quantum sensors

Quantum sensors can enhance the accuracy and positioning and resolution of navigation which are fundamental for systems, high-frequency, high-density 6G networks [15]. This application relies on best practices such as rigorous calibration and maintenance. integration with legacy systems, and ensuring data security and privacy.

(v) AQC-05 – Ultra-precise time

Quantum clocks, due to their high precision, can improve synchronization in 6G networks, which is essential for autonomous vehicles and industrial automation [16-17]. This application requires practices such as rigorous calibration,

maintenance, efficient integration with existing systems, and appropriate security measures. These practices ensure continuous adjustment of quantum components, minimizing drift and inaccuracies that could compromise the network's timing performance.

(vi) AQC-06 – Resource and Interference Management

Quantum computing can optimize resource allocation in 6G networks, addressing the diversity of services and devices [2]. Quantum algorithms offer greater efficiency in tackling these challenges, including interference management, which is critical due to high density and the use of high-frequency bands [18-19]. To mitigate interference in 6G, practices such as a hybrid quantum-classical approach, continuous experimentation, governance, and integration with network systems are essential.

(vii) AQC-07 – Quantum Error Correction

Ouantum error correction codes improve transmission reliability 6G in networks, especially in challenging environments [20–22]. This area requires practices such as integration with existing systems, continuous monitoring, adjustments, and ongoing performance evaluation to optimize error correction.

(viii) AQC-08 - Signal Processing

Quantum computing can make signal processing more efficient, enhancing service quality in 6G

ISSN: 2357-7592

networks by increasing data rates and reducing latency [23–24].

This area relies on a hybrid quantum-classical approach, iterative testing, and security practices to optimize processing and handle signal complexity.

(ix) AQC-09 – Quantum Cryptography
Beyond Quantum Key Distribution (QKD),
techniques like quantum digital signatures can
protect data transmissions in 6G networks [12].
This area requires best practices such as a hybrid
quantum-classical approach, continuous
monitoring, and integration with existing
security infrastructure, combining the strengths
of both technologies to enhance 6G security
[25].

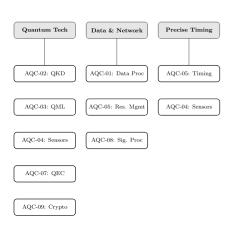
3.2. Thematic Mapping of QC Applications in 6G

This section presents a mapping of quantum computing applications in the context of 6G, organized into thematic areas that indicate the greatest need for tools, methods, and training. Finally, a figure summarizes all the elements (Figure 1).

(i) Quantum Technologies

Includes AQC-02 (Quantum Key Distribution - QKD), AQC-03 (Quantum Machine Learning), AQC-04 (Quantum Sensors), AQC-07 (Quantum Error Correction), and AQC-09 (Quantum Cryptography). These areas leverage quantum principles such as superposition and

entanglement to extend capabilities beyond classical limits, enabling ultra-secure communication, advanced learning, enhanced sensor precision, robust error correction, and strengthened cryptography.


(ii) Data and Network Management

Covers AQC-01 (Advanced Data Processing), AQC-05 (Resource and Interference Management), and AQC-08 (Signal Processing). Quantum computing can improve efficiency in optimize processing large data volumes, interference allocation and resource management, and accelerate and enhance signal processing in 6G networks.

(iii) Ultra-Precise Timing and Sensing

Focuses on AQC-05 (Ultra-Precise Timing) and AQC-04 (Quantum Sensors). Quantum technology can significantly improve timing accuracy and sensor sensitivity, enhancing synchronization and coordination in 6G networks and enabling detection with accuracy levels beyond traditional systems.

Figure 1. Mapping of Applications by Thematic Area in Quantum Computing

ISSN: 2357-7592

QUANTUM TECHNOLOGIES: The information revolution that will change the future

4. Conclusion

This study demonstrates the fundamental role of quantum computing in shaping the evolution of 6G networks. Based on an extensive literature feasibility analysis, nine key and applications were identified and grouped into three thematic areas: Quantum Technologies, Management, Data and Network and Ultra-Precise Timing and Sensing. Notably, Quantum Key Distribution (QKD) and advanced modulation schemes highly emerged as promising for improving security and performance.

By consolidating best practices for their implementation, the research offers a strategic framework for accelerating the integration of quantum computing into 6G. This research not only reinforces the transformative potential of quantum computing but also provides concrete guidelines for researchers and industry stakeholders, paving the way for innovation in next-generation networks.

Future research should address the scalability challenges of quantum computing in large-scale 6G deployments and assess real-world performance metrics.

References

[1] Shahraki A, Abbasi M, Piran MJ, Taherkordi A. A comprehensive survey on 6G networks: applications, core services, enabling technologies, and future challenges. *arXiv preprint* arXiv:2101.12475. 2021.

- [2] Wang C, Rahman A. Quantum-enabled 6G wireless networks: opportunities and challenges. *IEEE Wirel Commun.* 2022;29(1):58-69.
- [3] Lee BH, Pitwon R. The evolution of optical interconnect technology: from long-haul telecommunication to quantum networks. In: *Quantum Technology: Driving Commercialisation of an Enabling Science II*. Bellingham (WA): SPIE; 2021. p. 30-37.
- [4] Prateek K, Altaf F, Amin R, Maity S. A privacy preserving authentication protocol using quantum computing for V2I authentication in vehicular ad hoc networks. *Secur Commun Netw.* 2022;2022:1-17.
- [5] Lele A. Quantum technologies and military strategy. Cham: Springer; 2021.
- [6] Khan LU, Yaqoob I, Imran M, Han Z, Hong CS. 6G wireless systems: a vision, architectural elements, and future directions. *IEEE Access*. 2024;8:147029-147044.
- [7] Nawaz SJ, Sharma SK, Wyne S, Patwary MN, Asaduzzaman M. Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future. *IEEE Access*. 2024;7:46317-46350.
- [8] Polymeni S, Plastras S, Skoutas DN, Kormentzas G, Skianis C. The impact of 6G-IoT technologies on the development of agriculture 5.0: a review. *Electronics*. 2023;12:2651.
- [9] Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3(2):77–101.
- [10] Duong TQ, Ansere JA, Narottama B, Sharma V, Dobre OA, Shin H. Quantum-inspired machine learning for 6G: fundamentals, security, resource allocations, challenges, and future research directions. IEEE Open J Veh Technol. 2022;3:375–87.
- [11] Siriwardhana Y, Porambage P, Liyanage M, Ylianttila M. ΑI and 6G security: opportunities and challenges. **Proceedings** of the Joint European Conference Networks and on & Communications 6G Summit (EuCNC/6G Summit); 2021. p. 616–21.
- [12] Liu R, Rozenman GG, Kundu NK, Chandra D, De D. Towards the industrialisation of quantum key distribution in communication

QUANTUM TECHNOLOGIES: The information revolution that will change the future

- networks: a short survey. IET Quantum Commun. 2022;3:151–63.
- [13] Okey OD, Maidin SS, Lopes Rosa R, Toor WT, Carrillo Melgarejo D, Wuttisittikulkij L, et al. Quantum key distribution protocol selector based on machine learning for next-generation networks. Sustainability. 2022;14:15901.
- [14] Suriya M. Machine learning and quantum computing for 5G/6G communication networks A survey. Int J Intell Netw. 2022;3:197–203.
- [15] Ganesan S, Venkatakrishnan K, Tan B. Wrinkled metal based quantum sensor for in vitro cancer diagnosis. Biosens Bioelectron. 2020;151:111967.
- [16] Schwartz M, Ryzhkov A. Modern trends in the development of network synchronization systems: from plesiochronous to coherent networks. In: Proceedings of the Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO); 2021. p. 1–7.
- [17] Nande SS, Lhamo O, Paul M, Bassoli R, Fitzek FH. Quantum time synchronization for satellite networks. In: Proceedings of the IEEE Aerospace Conference; 2023. p. 1–9.
- [18] Kim M, Kasi S, Lott PA, Venturelli D, Kaewell J, Jamieson K. Heuristic quantum optimization for 6G wireless communications. IEEE Netw. 2021;35:8–15.
- [19] Ohyama T, Kawamoto Y, Kato N. Quantum computing based optimization for intelligent reflecting surface (IRS)-aided cell-free network. IEEE Trans Emerg Top Comput. 2022;11:18–29.
- [20] Das S, Bassoli R, Ferrara R, Noetzel J, Deppe C, Fitzek FH, et al. Comparative study of quantum and classical error correction for future quantum-6G networks. In: Proceedings of the European Wireless 2022; 27th European Wireless Conference; 2022. p. 1–6.
- [21] Cabrera JA, Boche H, Deppe C, Schaefer RF, Scheunert C, Fitzek FH. 6G and the Post-Shannon theory. In: Shaping Future 6G Networks: Needs, Impacts, and Technologies. Wiley; 2021. p. 271–94.

- [22] Shenoy KG. Role of quantum technology in 6G. In: 6G Mobile Wireless Networks. Springer; 2021. p. 419–29.
- [23] Dong Y, Meng X, Whaley KB, Lin L. Efficient phase-factor evaluation in quantum signal processing. Phys Rev A. 2021;103:042419.
- [24] Salathé Y, Kurpiers P, Karg T, Lang C, Andersen CK, Akin A, et al. Low-latency digital signal processing for feedback and feedforward in quantum computing and communication. Phys Rev Appl. 2018;9:034011.
- [25] Abidin S, Swami A, Ramirez-Asís E, Alvarado-Tolentino J, Maurya RK, Hussain N. Quantum cryptography technique: a way to improve security challenges in mobile cloud computing (MCC). Mater Today Proc. 2022;51:508–14.