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Abstract: Traffic congestion is a major issue in large cities and urban areas, with impacts that are not only
social but also environmental. Its solution is complex and involves processing large volumes of data, which
can exceed the capabilities of classical systems. Therefore, the advent of quantum computing offers new
tools to address this challenge. In this paper, we present a traffic optimization model based on the Quadratic
Unconstrained Binary Optimization (QUBO) framework, which can be solved using quantum annealing
algorithms.
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1. Introduction

From the early 2000s to the end of the first decade

of the 21st century, Brazil experienced an un-

precedented increase in its vehicle fleet, with 86%

growth in the number of cars, 97% in trucks, and

a 314% increase in motorcycles [1]. A direct re-

flection of improvements in the population’s eco-

nomic conditions, increased credit availability, the

decline of public transportation, and changes in

population dynamics, the dream of millions of

people to own their means of transportation earned

the national industry the title of sixth-largest auto-

mobile producer in 2010 [1, 2].

Through heavy investment in advertising, the au-

tomotive sector has come to play a critical role in

the Brazilian economy [1]. However, the expan-

sion of the private vehicle fleet has come at a very

high social and environmental cost [1, 2]. The in-

crease in average commute times from home to

work, caused by growing traffic congestion, high-

lights that even with significant investments, road

expansion has been insufficient [1, 2]. At the same

time, Braess’ paradox demonstrates that simply in-

creasing the number of streets is not enough to re-

duce travel time [3].

In addition to increasing traffic congestion in vir-

tually every city across the country, road transport

has become the leading contributor to greenhouse

gas emissions, far surpassing the role of industry

[1]. Air pollution (which not only damages vege-

tation but also irritates the human respiratory sys-

tem) tends to be higher during traffic jams, as sta-

tionary or slow-moving vehicles require their en-

gines to work harder to keep the car running.

Several strategies have been developed to reduce

traffic congestion problems; however, processing

vast volumes of data remains a significant chal-

lenge for current technology. As such, recent stud-

ies have focused on the feasibility of quantum so-

lutions to address this issue. In this initial study,

we initiate the investigation and analysis of traf-

fic flow solutions based on the Quadratic Uncon-
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strained Binary Optimization (QUBO) formula for

traffic optimization, utilizing quantum annealing

algorithms, quantum computers, or digital anneal-

ers to achieve efficient results. The QUBO formal-

ism has a natural equivalence to the Ising model

and can be described by "a graph with qubits as

vertices and couples as edges connecting qubits"

[4, 5].

The basic QUBO formulation is a model expressed

as an optimization problem—minimizing or max-

imizing the following objective function:

Ob j(x,Q) = xT .Q.x, (1)

where x is a binary decision variable vector of

size N, and Q is a square constant matrix of size

N ×N [6, 7, 5]. Given the matrix Q, finding the

binary variable assignments that minimize the ob-

jective function in Equation 1 is equivalent to solv-

ing an Ising model minimization problem, which

is known to be NP-hard for classical computers

[8].

This work analyzes the optimization model pro-

posed by Tambunam (2023) et al [5], which aims

to reduce travel time for a group of vehicles. In

Section 2, we introduce the graph representing the

streets under analysis, explaining some elements

relevant to the model, such as the cost function,

constraint equations, and both unweighted and

weighted segments. In Section 3, we begin by sim-

ulating a model without weighted segments, and

later analyze models with arbitrary street weight

values. Section 4 concludes the discussions initi-

ated in the third section.

2. Method for traffic flow optimization

This work analyzes an optimization model for traf-

fic flow between points A and B, aiming to mini-

mize the total travel time for a group of vehicles

across the available routes [5]. A major factor

contributing to increased travel time is congestion,

which arises as the number of vehicles on a given

route grows. To estimate congestion effects, a sim-

plifying assumption is adopted: the time required

to traverse a street is modeled as a function pro-

portional to the number of vehicles currently on

that street [7]. The objective, therefore, is to min-

imize the total travel time along the trajectory by

reducing congestion across all possible routes.

To simulate the traffic scenario, the graph shown

in Figure 1 is considered. This graph is composed

of four vertices and five edges, where each edge

represents a street. Vertex A serves as the start-

ing point, while vertex B marks the destination.

Within this structure, three distinct paths can be

identified between A and B: the first traverses seg-

ments s1 and s2, the second passes through s3 and

s4, and the third follows s3 and s5.

In this work, we consider a scenario with three ve-

hicles, each of which can select between two al-

ternative routes, both composed of two street seg-

ments s. The assignment of a vehicle to a route is

represented by a binary variable (which can also

be interpreted as a qubit) qi j, where i ∈ 1,2,3 de-
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notes the vehicle and j ∈ 1,2 denotes the chosen

route. Each route associated with a vehicle cor-

responds to a set of street segments, formally de-

fined as S= s1,s2,s3, . . . ,sk, where k represents the

number of segments in the route.

Figure 1: Model graph for optimization problem

First, we examine the vehicle routing optimization

model on unweighted graph segments, which pro-

vides insight into the formulation of the cost, con-

straint, and objective equations. We then extend

the model by introducing weights to the segments,

representing factors such as distance, road priority,

or traffic signal duration [5]. This extension incor-

porates the necessary modifications to the equa-

tions to account for these additional variables.

2.1. Model with unweighted segments

To describe a function proportional to the number

of cars occupying that segment, we need to iden-

tify every street s∈ S that is shared by the variables

qi j. Table 1 presents the routes qi j, each defined as

a set of street segments sk for vehicle i and route

options j. Car i = 1 traverses segments s1 and s2

when taking route j = 1, or segments s3 and s4

when taking route j = 2. Additionally, we observe

that the car i = 1 on route j = 1 and car i = 3 on

route j = 2 share segments s1 and s2. Since we

are interested in modeling congestion, we intro-

duce a variable Bs to identify all binary variables

qi j corresponding to routes that include the same

street segments. For example, Bs1 = {q11,q32}, as

both vehicle-route combinations include s1, note

that the same reasoning would apply to route s2

resulting in Bs2 = {q11,q32}.

Table 1: Selection of street segments Si j for each
vehicle i and route option j.

Vehicle Route j = 1 Route j = 2

i = 1 S11 = {s1,s2} S12 = {s3,s4}

i = 2 S21 = {s3,s4} S22 = {s3,s5}

i = 3 S31 = {s3,s5} S32 = {s1,s2}

Using Table 1, it is possible to determine all Bs for

the five segments. To model the congestion, we

define a cost function cost(s) that penalizes the si-

multaneous use of a street segment by multiple ve-

hicles. The idea in Equation 2 is to sum the binary

decision variables qi j ∈ Bs, and square the result to

increase the penalty.

cost(sm) =

(
∑

qi j∈Bs

qi j

)2

(2)

For example, we can apply the cost equation to the

segment s1, obtaining the cost cost(s1).
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cost(s1) =

 ∑
qi j∈Bs1

qi j

2

= (q11 +q32)
2

= q11 +q32 +2q11q32

(3)

The Equation 3 produces linear terms due to

the binary property x2 = x, with each term hav-

ing a coefficient of +1. Additionally, it gener-

ates quadratic (mixed) terms for each pair of dis-

tinct binary variables, each with a coefficient of

+2. Since multiple vehicle–route variables qi j

can share the same segment s, the number of lin-

ear and quadratic terms in the cost function de-

pends on the specific configuration under consid-

eration. Table 2 presents the cost functions for all

five segments, which are used to evaluate conges-

tion across the network.

Table 2: function cost for every segment sk.

Segment sk Function cost

s1 (q11 +q32)
2

s2 (q11 +q32)
2

s3 (q12 +q21 +q22 +q31)
2

s4 (q12 +q21)
2

s5 (q22 +q31)
2

For the QUBO formulation, we require a con-

straint function that evaluates to 1 only when ex-

actly one route option for a vehicle is active, and to

0 otherwise, as shown in Equation 4. By expand-

ing that equation, we obtain Equation 6, which de-

fines the relationship between the binary variables

in the constraint.

1 =

(
2

∑
j=1

qi j

)
(4)

0 =

(
2

∑
j=i

qi j −1

)2

(5)

0 =−qi1 −qi2 +2qi1qi2 +1 (6)

We can define the optimization model in a QUBO

form by combining the cost functions for all seg-

ments (Equation 2) with the constraint equation

(Equation 5) for all vehicles, which together form

the objective function shown in Equation 7. The

parameter λ , introduced as a Lagrange multiplier

(also known as a scaling parameter), is used to en-

sure a valid priority solution while meeting the op-

timal objective value.

Ob j = ∑
s∈S

cost(s)+

λ ∑
i

(
∑

j
qi j −1

)2

= ∑
s∈S

(
∑

qi j∈Bsm

qi j

)
+λ ∑

i

(
∑

j
qi j −1

)2

(7)

We can define the value of the Lagrange multiplier

λ based on Equation 2 by finding the maximum

number of times any vehicle i appears in the cost

terms, and assigning this value to λ .
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2.2. Model with weighted segments

A routing model defined on weighted segments

provides a more general framework, as the edge

weights can encode diverse physical characteris-

tics of the streets, such as speed bumps, construc-

tion work, or other localized conditions. Within

this formulation, the weight wk is specified by the

study parameters and may assume arbitrary real

values. To incorporate these factors into the ob-

jective, we augment the cost function by explic-

itly introducing the segment weight wk. Accord-

ingly, the cost function is expressed as a function

of both the vehicle density parameter sk and the

edge weight wk, thereby capturing their joint con-

tribution to the overall congestion cost. The result-

ing formulation serves as the basis for evaluating

and optimizing traffic flow under heterogeneous

street conditions. The following cost function ac-

counts for these two factors to evaluate the overall

congestion impact.

cost(sm) =

(
∑

qi j∈Bsm

wmqi j

)2

(8)

For example, we can calculated the cost function

for the segment s1 using the Equation 8. In the

Equation 9, we assume that the weight in the seg-

ment has a value of four. We can see that the

weight acts as a multiplicative coefficient in the

cost function.

cost(s1) =

(
∑

qi j∈BSm

wmqi j

)2

= (4q11 +4q32)
2

= 16q11 +16q32 +32q11q32

(9)

The constraint function will not be altered by the

addition of the weighted segments; therefore only

the cost function part in the objective function will

be altered, resulting in the following equation.

Ob j = ∑
s∈S

(
∑

qi j∈Bsm

wmqi j

)
+

λ ∑
i

(
∑

j
qi j −1

)2 (10)

This objective function can represent the overall

time in traffic for all vehicles that are considered

in the problem. Therefore, achieving lower values

means reducing traffic time and optimizing traffic

flow.

3. Results and Discussion

Initially, to calculate the objective function, we de-

fine the λ parameter as value two. Using Equa-

tion 10, we can simulate a model without weighted

segments by setting the weight of all street seg-

ments to one. Using this condition, the results ob-

tained for the optimization problem for the model

defined in Figure 1 are shown in Table 3 in ascend-

ing order.

From Table 3, we can observe that the two best

configurations for traffic flow are (q11, q21, q31)
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Table 3: Results for objective function by the
routes qi j for vehicle i and route option j for un-
weighted segments.

Binary variables Function

q11 q12 q21 q22 q31 q32 Obj

1 0 1 0 1 0 8

0 1 0 1 0 1 8

1 0 1 0 0 1 10

1 0 0 1 1 0 10

1 0 0 1 0 1 10

0 1 1 0 0 1 10

0 1 1 0 0 1 14

0 1 0 1 1 0 14

and (q12, q22, q32). These configurations prioritize

minimizing the number of street segments shared

by cars, thereby reducing congestion time. Since

all streets have the same weight (wk = 1), the only

factor to consider is ensuring that vehicles do not

share segments, and in both cases, only the street

s3 is shared by two cars.

The worst-case scenario is presented in the config-

uration (q12, q21, q32) and (q12, q22, q31), where

the three cars pass through street s3, increasing

the congestion time. Since the cost function is a

quadratic operation on the sum of the binary vari-

ables, having all cars travel along the same street

segment maximizes its value.

In this work, we will define arbitrary values for

the weights of the streets in the weighted model,

as we are not interested in specific physical condi-

tions for the segments. The first values defined are

shown in Table 4, and we call this set a. We can

see that the heaviest segment is s5, therefore is the

worst street for cars to choose.

Table 4: weight for the segments of the streets de-
fined for set a.

Segment sk weight wk

s1 1

s2 2

s3 2

s4 2

s5 3

This selection of segment weights favors the tra-

jectory consisting of streets s1 and s2, since the

total weight of this route is three. In contrast, the

trajectory consisting of segments s3 and s5 is the

most penalized, with a total route weight of five.

Even so, the configuration of car routes that mini-

mizes the total time of the trajectory is undefined.

Thus, optimization of the problem reveals the best

existing route selection configuration for each ve-

hicle, which can be impractical to determine with

an analytical method in more difficult scenarios.

The results for the objective function of the prob-

lem in set a are shown in Table 5, with the val-

ues arranged in ascending order. The best con-

figuration for set a is (q11, q21, q32), where cars

i = 1,3 travel through segments s1 and s2, while

car i = 2 go trough segments s3 and s4. In other

words, the segment s5 proves unnecessary to opti-

mize the traffic flow. This outcome is in line with

Braess’ Paradox, which states that adding an ex-
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tra street between an origin and a destination can

increase the overall travel cost for network users

[3].

Table 5: Results for objective function by the
routes qi j for vehicle i and route option j in set
a.

Binary variables Function

q11 q12 q21 q22 q31 q32 Obj

1 0 1 0 0 1 28

1 0 0 1 0 1 33

1 0 1 0 1 0 34

0 1 0 1 0 1 34

0 1 1 0 0 1 37

1 0 0 1 1 0 57

0 1 1 0 1 0 61

0 1 0 1 1 0 76

To test the Braess’ Paradox in this problem, we

will alter the weight in the segments, defining s1 as

the heaviest segment. This new set is called as set

b and is presented in Table 6. In this new config-

uration, the optimal route is defined as go through

segments s4 and s5.

Table 6: weight for the segments of the streets de-
fined for set a.

Segment sk weight wk

s1 3

s2 2

s3 2

s4 2

s5 1

The results for the objective function of the prob-

lem in set b are shown in Table 7, with the val-

ues arranged in ascending order. The best con-

figuration for set b are (q11, q22, q31), where cars

i = 2,3 share the streets s3 and s5, while car i = 1

go trough segments s1 and s2.

Once again a segment will not be necessary to

optimize the traffic flow. In this configuration of

weight (Table 6), the existence and use of street s4

increase the overall time. Therefore, the Braess’

Paradox reappears, showing that in certain config-

urations, the existence of an extra segment in the

routes is unnecessary.

Table 7: Results for objective function by the
routes qi j for vehicle i and route option j in set
b.

Binary variables Function

q11 q12 q21 q22 q31 q32 Obj

1 0 0 1 1 0 33

1 0 1 0 1 0 34

0 1 0 1 0 1 34

0 1 0 1 1 0 44

0 1 1 0 0 1 45

0 1 1 0 1 0 53

1 0 0 1 0 1 57

1 0 1 0 0 1 60

4. Conclusion

With this work, we observe that models based

on Quadratic Unconstrained Binary Optimization

(QUBO) represent a promising strategy for devel-

oping techniques to analyze traffic and conges-

tion problems and to propose formal solutions.
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The weighted scenarios addressed in this study re-

vealed that the presence of an extra segment does

not always lead to an improvement in traffic flow,

as showed in the Brass’ Paradox.

For scenarios with a limited number of vehicles,

routes, and segments, the QUBO functions pre-

sented in this work can be solved using simple

programs and minimal computational time. The

model used in this study is not directly applicable

to real traffic scenarios; however, the equations can

be applied to other graph compositions with more

complex and realistic structures. In such cases, the

use of quantum computational optimization meth-

ods, such as quantum annealing, proves to be es-

sential.

For future research, we propose refining the seg-

ment weight assignment to represent real-world

physical and operational conditions, such as road

length, capacity, speed limits, and dynamic traffic

factors. In addition, we intend to employ quan-

tum annealing to perform large-scale traffic flow

optimization, leveraging its potential for solving

combinatorial problems more efficiently than clas-

sical approaches. Finally, the proposed formu-

lation should be adapted for direct implementa-

tion on quantum annealing hardware, ensuring full

compatibility with quantum computational archi-

tectures.
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