

Variations of Architectures and Applications of Quantum Generative Adversarial Networks

André Saimon Santos Sousa^{1, 2, 3*}, Otto Menegasso Pires^{1, 2, 3}, Frank Acasiete^{1, 2, 3}, Oscar M. Granados⁴, Valéria Loureiro da Silva^{1, 3}, Hugo Saba^{1, 5, 6}

¹ Universidade SENAI CIMATEC, Programa de Pós-Graduação em Modelagem Computacional e Tecnologia Industrial, Salvador, Bahia, Brazil

⁵ Núcleo de Pesquisa Aplicada e Inovação—NPAI, Salvador, Brazil

⁶ Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia—UNEB, Salvador, Brazil *Corresponding author: Universidade SENAI CIMATEC; Avenida Orlando Gomes, 1845, Piatã, Salvador, Bahia, Brazil, Zipcode: 41650-010; andre.sousa@fbter.org.br

Abstract: Generative Adversarial Networks (GANs) are generative models that function as a minimax game, in which a generative network and a discriminative network compete against each other with the goal of creating data that convincingly resembles the real sample. With the advent of Quantum Computing and the development of Quantum Machine Learning (QML) models, Quantum Generative Adversarial Networks (QuGANs) have been increasingly studied due to the possible advantages this new type of architecture can offer, especially regarding performance improvements, scalability, and the exploration of new applications. In this context, this study's guiding question is: how were QuGANs developed between the years 2018 and 2025? To answer this question, the general objective of this work is to conduct a systematic literature review of QuGANs during the proposed period. Using a systematic literature review as the methodological basis, articles published and available on the online platforms Lens, Scopus, and Web of Science were selected, and the Rayyan tool was employed to identify duplicate works and those that did not specifically address QuGANs. As a result, a prevalence of hybrid models was observed, in which the developed architecture integrates quantum and classical characteristics in a complementary manner. Regarding the type of application, approaches involving theoretical foundations and image generation stand out as the most common. Other application areas are also explored (chemistry and pharmaceuticals, quantum error correction, high-energy physics, experimental implementation, medical applications, cloud computing, anomaly detection, telecommunications, biometrics, finance, physics and simulations, security and cryptography, software engineering, noise in QuGANs, and survey), demonstrating the broad potential of QuGANs across various research fields and industrial sectors.

Keywords: Generative Adversarial Networks. Quantum Generative Adversarial Network. Systematic Literature Review.

Abbreviations: D, Discriminator. GANs, Generative Adversarial Network. G, Generator. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses. QGANs, Quantum Generative Adversarial Networks. QML, Quantum Machine Learning.

Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Autoregressive Networks are classifications of generative models. [1]. GANs were developed in 2014 with the aim of improving the performance of generative models through the use of backpropagation to optimize the network's weights [2].

With their cost function operating as a minimax game, the generative network **G** and the discriminative network **D** that compose GANs compete against each other, such that the training of **G** is probabilistically maximized with the goal of causing **D** to make an error, while **D** learns to distinguish whether a data sample comes from **G** or from the real data distribution [2].

Universidade SENAI CIMATEC, LAQCC - Latin America Quantum Computing Center, Salvador, Bahia, Brazil
Universidade SENAI CIMATEC, QuIIN - Quantum Industrial Innovation, Salvador, Bahia, Brazil
Laboratorio de finanzas computacionales & Economía Digital. Universidad Jorge Tadeo Lozano, Bogotá, D.C.
Colombia

The optimization process of GANs initially proposed can be represented by the equation

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log D(x)] +$$

$$\mathbb{E}_{z \sim p(z)} \left[\log \left(1 - D(G(z)) \right) \right] \tag{1}$$

where x is the real sample, z is the random noise vector, G(z) corresponds to the generated data, \mathbb{E} is the expectation, D(x) is the probability that \mathbf{D} identifies x as coming from the real data, and D(G(z)) indicates the probability that \mathbf{D} classifies the data produced by \mathbf{G} [1]. \mathbf{G} and \mathbf{D} are updated as the training process progresses, leading the model to a global optimal solution when D(G(z)) = 0.5 and \mathbf{D} can no longer distinguish between the data distributions [1].

GANs resemble a Nash equilibrium, where minimizing the cost function is the objective of each player, with **D** represented by $J^{(D)}(\theta^{(D)}, \theta^{(G)})$, **G** represented by $J^{(G)}(\theta^{(D)}, \theta^{(G)})$ and the point $(\theta^{(D)}, \theta^{(G)})$ corresponding to the equilibrium reached, with $J^{(D)}$ at a minimum with respect to $\theta^{(D)}$ and $J^{(G)}$ at a minimum with respect to $\theta^{(G)}$ [3]. However, for the Nash equilibrium to be reached, failures may occur when using gradient-based cost minimization techniques, which can cause the parameters of **G** to collapse and the result to always converge to the same point [3].

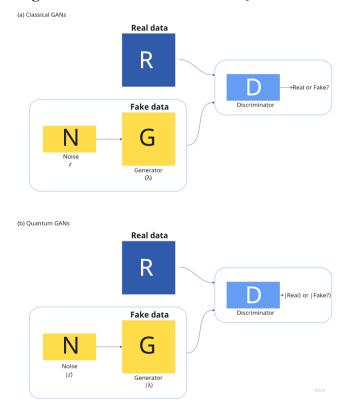
In this context, other GAN-based models have been created, optimizing their performance based on architecture (e.g., convolutional GANs, conditional GANs, and autoencoder-based GANs) and cost function (e.g., unrolled GAN, f-GAN, and WGAN) [1].

The development of Quantum Computing began in 1982 with Richard Feynman, who proposed performing computations on computers using the principles of quantum mechanics. [4]. Since then, quantum algorithms have been developed with the aim of solving problems challenging for classical binary logic, such as the Deutsch, Deutsch-Jozsa, Simon, Bernstein-Vazirani, and Shor algorithms [5].

Quantum potential, characterized by quantum speedup, highlights the fact that quantum processors can produce statistical patterns that are computationally hard to find using classical computers, giving rise to Quantum Machine Learning (QML) [6].

By introducing Quantum Generative Adversarial Networks (QuGANs), [7] show that when G and **D** are implemented with quantum information processors and the data correspond measurement samples taken from highdimensional spaces, QuGANs can demonstrate an exponential advantage compared to classical GANs. Using quantum circuits, it is possible to compute gradients and parametrize the QuGAN model, as illustrated in Figure 1 - General structure of the QuGAN, proposed by [8]. The generalization of the comparison between the classical model (GAN) and the quantum model (QuGAN) demonstrates the transformation of the network's processing steps into quantum states, enabling advantages in the execution of the defined architecture.

Figure 1. General structure of the QuGAN.



Just as new research has been developed to optimize classical GANs based on architecture and cost function, the same has occurred with QuGANs, aiming to achieve better results and evaluate applications across different data segments. Therefore, this study's guiding question is: how were QuGANs developed between the years 2018 and 2025?

The general objective of this research is to conduct a systematic literature review of QuGANs during the proposed period, with specific objectives defined as: a) to extract published articles addressing QuGANs within the defined timeframe; b) to compile the types of architectures and applications of QuGANs

among the selected works; and c) analyze the results based on this data.

Materials and Methods

Method

Following the guidelines of the PRISMA 2020 method (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [9], the systematic literature review was conducted through a search for articles listed in online scientific databases, applying a filter using search terms, covering the years from 2018 to 2025, and limited to articles written in English.

Data Collection

The material used for analysis was extracted from online scientific databases (Scopus: 75; Lens: 254; and Web of Science: 71), filtered using the search terms "quantum GAN" OR "QuGAN" OR "QGAN" OR "QGANs" OR "quantum generative adversarial network" OR "quantum generative networks." Scientific adversarial articles published between 2018 and 2025 were selected, considering the period from when the QuGANs concept was proposed until the time this research was conducted. The online platform Rayyan was used as a tool to apply exclusion criteria, enabling the identification of duplicate works and articles that did not specifically address QuGANs. After obtaining and selecting the remaining works, the software LibreOffice Calc was used to organize a spreadsheet containing the main information

from each work (title, authors, abstract, keywords, publication venue, and year). Out of the 400 materials extracted from the indicated scientific databases, 81 were selected for this analysis.

Results and Discussion

The results related to the search for articles in the selected online databases are discussed below, demonstrating selecting the process of publications and systematically analyzing their content based on title, abstract, and keywords. The approaches of the published works are related to research on variations of QuGAN architectures (fully quantum or quantumclassical/hybrid implementations), applications in different areas, optimization processes, and specifications of quantum computing techniques used (including hardware definition for testing and implementation methods).

Results of the Online Database Query

Among the 400 publications, 215 duplicates were removed, leaving 265 to be analyzed. After identifying duplicate works, those that did not directly address QuGANs were also removed based on an analysis of their titles, abstracts, and keywords. From the evaluated articles, 81 were selected to identify the themes, approaches, and contributions related to the use of QuGANs.

Figure 2 - Identification of publications according to the PRISMA 2020 method

illustrates the process of selecting the articles deemed most suitable for conducting this analysis. The number of research studies related to QuGANs has grown since their initial proposal, indicating a trend toward new investigations over the years. Figure 3 – Number of articles per year, shows the publication count over the years, with 2025 standing out as a notable year for this topic.

Figure 2. Identification of publications according to the PRISMA 2020 method.

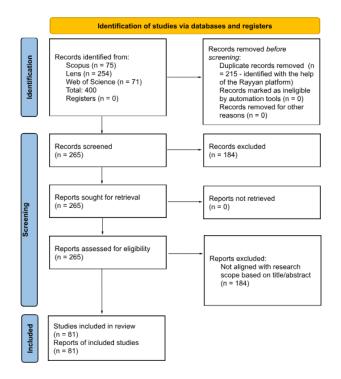
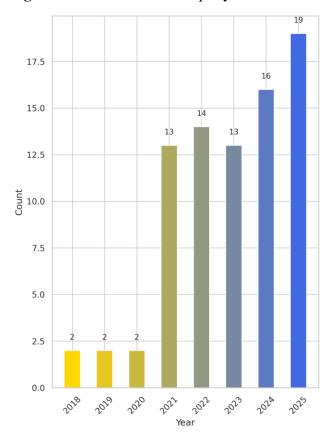


Figure 3. Number of articles per year.

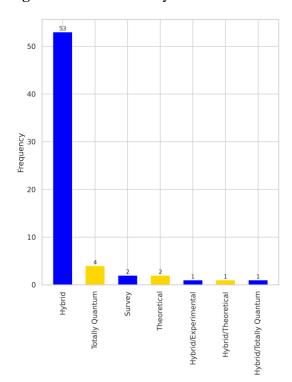


Results of the Analyses on the Approaches of the Published Works

In relation to the identification of QuGAN architecture variations (fully quantum implementation or quantum-classical / hybrid), 53 articles reported the use of hybrid approaches [10,11,12,13,14,15,16,17,18, 19, 20, 21, 22, 23,24,25,26,27,28,29,30,31,32,33,34,36,40,41,42,4 3,44,45,46,48,50,51,52,53,54,56,58,59,60,61,62, 64,66,67,68,69,70,71,73], while only 4 classified their architectures as fully quantum [35,37,38,49]. Figure 4 -Distribution by Architecture and Figure 5 - Distribution by Application Area compile the identified works, highlighting the type of architecture (fully

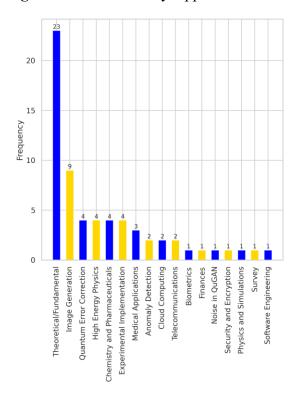
quantum and hybrid implementations) and their application areas. Articles in the area of foundation and theorization of QuGANs stood out in the analysis [11,15,16,18,20,27,28,30,34,35,37,38,39,47,49,5 2,54,55,63,65,66,67,68], followed by works in of the image generation areas [13,19,26,31,32,40,60,64,70], chemistry pharmaceuticals [12,17,22,33], quantum error correction [21,25,29,69], high-energy physics [41,51,57,61], experimental implementation [48,59,71,73], medical applications [42,44,62], cloud computing [24,56], anomaly detection [36,58], telecommunications [45,46], biometrics [10], finance [14], physics and simulations [23], security and cryptography [50], software engineering [43], noise in QuGANs [53], and surveys [72].

Figure 4. Distribution by Architecture.



ISSN: 2357-7592

Figure 5. Distribution by Application Area.



Conclusion

This study highlights how QuGANs are being researched and guides future work by revealing a predominance of hybrid architectures, applied in fields such as medicine, chemistry, finance, and security. The trend of increasing publications suggests that future analyses could group applications and architectures to better map the evolution of these networks. In 18 of the 81 articles, classification was not possible, requiring further investigation.

Acknowledgement

André Saimon Santos Sousa thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. This work has been partially funded by the project iNOVATeQ Lato Senso Especialização em

Computação Quântica - Pesquisador supported by QuIIN - EMBRAPII CIMATEC Competence Center in Quantum Technologies, with financial resources from the PPI IoT/Manufatura 4.0 of the MCTI grant number 053/2023, signed with EMBRAPII.

References

- 1. Pan Z, Yu W, Yi X, et al. Recent progress on generative adversarial networks (gans): A survey. *IEEE Access*, 7:36322–36333, 2019.
- 2. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. *Generative adversarial networks*. 2014.
- 3. Salimans T, Goodfellow I, Zaremba W, et al. *Improved techniques for training gans*, 2016.
- 4. Feynman RP. Simulating physics with computers. *International Journal of Theoretical Physics*, 21, 1982.
- Portugal R, Marquezino F. Introdução à programação de computadores quânticos. CSBC 2019 – 38° JAI. Belém – Pará, jul 2019.
- 6. Biamonte J, Wittek P, Pancotti N, et al. Quantum machine learning. *Nature* 549, 195–202, 2017. https://doi.org/10.1038/nature23474
- 7. Lloyd S, Weedbrook C. Quantum generative adversarial learning. *Phys. Rev. Lett.*, *American Physical Society*, v. 121, p. 040502, Jul 2018.
- 8. Dallaire-Demers PL, Killoran N. Quantum generative adversarial networks. *Phys. Rev. A, American Physical Society*, v. 98, p. 012324, Jul 2018.
- 9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ*, 2021, 372, n71.
- 10. Birir KS, Odoyo W, Akinyi L. The Quantum-Assisted Fingerprint Biometrics: a Novel Approach To Fast And Accurate Feature Extraction And Synthetic Generation. In: *International Conference on Informatics and Computational Sciences (IC-ITECHS)*. Bandung, Indonesia: Sekolah Tinggi Informatika dan Komputer Indonesia; 2022.
- 11. Leadbeater C, Sharrock L, Coyle B, et al. F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits. *Entropy*. 2021;23(10):1281.
- 12. Sikdar D, Cui M, Chau A, et al. Hybrid Quantum-Classical Generative Adversarial Network for synthesizing chemically feasible molecules. *J Emerg Investig.* 2023;6:1-8.
- 13. Pajuhanfard M, Kiani R, Sheng VS. Survey of Quantum Generative Adversarial Networks (QGAN) to Generate Images. *International Journal of Quantum Information*. 2024;12(23):3852.

- 14. Pires OM, Nooblath MQ, Silva YAC, et al. Synthetic data generation with hybrid quantum-classical models for the financial sector. *Eur Phys J B*. 2024;97:178.
- 15. Ma H, Ye L, Guo X, et al. Quantum Generative Adversarial Networks in a Silicon Photonic Chip with Maximum Expressibility. *Adv Quantum Technol*. 2024;2400171.
- 16. Gong C, Wen ZY, Deng YW, et al. Unrolled generative adversarial network for continuous distributions under hybrid quantum-classical model. *Laser Phys Lett.* 2024;21(12):125207.
- 17. Kao PY, Yang YC, Chiang WY, et al. Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry. *J Chem Inf Model*. 2023;63(11):3307–18.
- 18. Zoufal C, Lucchi A, Woerner S. Quantum generative adversarial networks for learning and loading random distributions. *npj Quantum Inf.* 2019;5(1):103.
- 19. Hu L, Wu S-H, Gao H. Hybrid quantum-classical generative adversarial networks for image generation via learning discrete distribution. *Quantum Sci Technol*. 2023;8(2):025015.
- 20. Zoufal C, Lucchi A, Woerner S. Quantum generative adversarial network for generating discrete distribution. *npj Quantum Inf.* 2019;5(1):103.
- Braccia P, Banchi L, Caruso F. Quantum Noise Sensing by Generating Fake Noise. *Phys Rev Appl*. 2022;17(2):024002.
 DOI:10.1103/PhysRevApplied.17.024002
- 22. Anoshin M, Sagingalieva A, Mansell C, et al. Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation. In: International Conference on Quantum Technologies and Applications. *Cham: Springer*; 2022. p. 147-58.
- 23. Huang YM, Li XY, Zhu YX, et al. Learning Unitary Transformation by Quantum Machine Learning Model. *Comput Mater Contin*. 2021;68(1):789-803.
- 24. Liu W, Zhang J, Wu Q. A hybrid quantum-classical conditional generative adversarial network algorithm for human-centered paradigm in cloud. *Multimed Tools Appl.* 2022;81:22179–96.
- 25. Tian Y, Tian C, Fan Z, et al. Quantum generative adversarial network with automated noise suppression mechanism based on WGAN-GP. *EPJ Quantum Technol*. 2025;12(1):80. DOI:10.1140/epjqt/s40507-025-00372-z.
- 26. Golchha R, Verma GK. Leveraging Quantum computing for synthetic image generation and recognition with Generative Adversarial Networks and Convolutional Neural Networks. *Int J Inf Technol* (Singapore). 2024;16(5):3149-62.
- 27. Liu W, Zhao J, Wu Q. A hybrid quantum-classical generative adversarial networks algorithm based on inherited layerwise learning with circle-connectivity circuit. *Quantum Inf Process.* 2022;21(11):340.
- 28. Letcher A, Woerner S, Zoufal C. Tight and Efficient Gradient Bounds for Parameterized Quantum Circuits. *Quantum*. 2024;8:1484.

- 29. Tian Y, Zhang Y, Zhang H. Transformer-based quantum error decoding enhanced by QGANs: towards scalable surface code correction algorithms. *EPJ Quantum Technol.* 2025;12(1):1.
- 30. Gong LH, Chen YQ, Zhou S, et al. Dual Discriminators Quantum Generation Adversarial Network Based on Quantum Convolutional Neural Network. In: 2023 International Conference on Computer, Information and Telecommunication Systems (CITS). Genoa, Italy: *IEEE*; 2023. p.1-6.
- 31. Chen ST, Lee CY, Hsieh MA, et al. HyperKING: Quantum-Classical Generative Adversarial Networks for Hyperspectral Image Restoration. *IEEE Trans Geosci Remote Sens.* 2025;63:1-15.
- 32. Tsang SL, West MT, Erfani SM, et al. Hybrid Quantum-Classical Generative Adversarial Network for High-Resolution Image Generation. *IEEE Trans Quantum Eng.* 2023;4:e124.
- 33. Li J, Topaloglu RO, Ghosh S. Quantum Generative Models for Small Molecule Drug Discovery. *IEEE Trans Quantum Eng.* 2021;2:3103308.
- 34. Anand A, Romero J, Degroote M, et al. Noise Robustness and Experimental Demonstration of a Quantum Generative Adversarial Network for Continuous Distributions. *Adv Quantum Technol*. 2021;4(5):2100069.
- 35. Ding Y, Li Z, Zhou N. Quantum generative adversarial network based on the quantum Born machine. *Adv Eng Inf*. 2025;68:103622.
- 36. Herr D, O'Malley P, Harrigan MP, et al. Anomaly detection with variational quantum generative adversarial networks. *Quantum Sci Technol*. 2021;6(4):045014.
- 37. Niu MY, Zlokapa A, Broughton M, et al. Entangling Quantum Generative Adversarial Networks. *Phys Rev Lett.* 2022;128(22):220505.
- 38. Rasmussen SE, Zinner NT. Multiqubit state learning with entangling quantum generative adversarial networks. *Phys Rev A*. 2022;106(6):062413.
- 39. Ngo TA, Nguyen T, Thang TC. A Survey of Recent Advances in Quantum Generative Adversarial Networks. *ACM Comput Surv.* 2023;55(6):1-37.
- 40. Sedrakyan T, Salavrakos A. Photonic quantum generative adversarial networks for classical data. *Optica Quantum*. 2024;2(6):458-67.
- 41. Chang SY, Li L, Valdez L, et al. Dual-Parameterized Quantum Circuit GAN Model in High Energy Physics. *IEEE Int Conf Quantum Comput Eng (QCE)*. 2023;660-70.
- 42. Qu Z, Shi W, Tiwari P. Quantum conditional generative adversarial network based on patch method for abnormal electrocardiogram generation. *Comput Biol Med.* 2023;166:107549.
- 43. Yallamati S, Srikanth V, Nalluri S. Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction. *Int J Intell Syst Appl Eng.* 2023;11(6s):581-90.
- 44. Bapu BRT, Sivamuni K, Samiappan D, et al. Advanced Detection of Diabetic Foot Ulcers Using Hamiltonian Quantum GANs and Cell Attention

- Networks, with Genghis Khan Shark Optimization. *Biomed Mater Devices*. 2025; [DOI:10.1007/s44174-025-00332-2].
- 45. Barik B, Sairam MVS, Naresh N, et al. Channel Estimation for Massive MIMO-OFDM Systems Using Heterogeneous Edge-Enhanced Graph Hamiltonian Quantum Generative Adversarial Networks with Imperfect Channel State Information. *Trans Electr Electron Mater*. 2025.
- 46. Ting L, Jinbiao Z. A Novel Broadband Channel Estimation Technique Based on Dual-Module QGAN. KSII Trans Internet Inform Syst. 2024;18(5):1369-89.
- 47. Kasture S, Kyriienko O, Elfving VE. Protocols for classically training QGMs. *Phys Rev A*. 2023;108:042406.
- 48. Hu L, Wu SH, Cai W, et al. Quantum generative adversarial learning in a superconducting quantum circuit. *Sci Adv*. 2019;5(10):eaav2761.
- 49. Niu MY, Broughton M, et al. Quantum generative adversarial networks with provable convergence. *APS March Meeting*. 2021.
- 50. Luo J, Zhou R, Li Y, et al. Information Hiding Scheme Based on Quantum Generative Adversarial Network. *Journal*. 2021;33.
- 51. Chang SY, Agnew E, et al. Running the Dual-PQC GAN on noisy simulators and real quantum hardware. *J Phys Conf Ser*. 2022;2438(1):012062.
- 52. Lloyd S, De Palma G, Kiani BT, et al. Applications and experimental realizations of quantum generative adversarial networks. *APS March Meeting*, 2021.
- 53. Borras K, Chang SY, Funcke L, et al. Impact of quantum noise on the training of quantum Generative Adversarial Networks. *J Phys Conf Ser.* 2022;2438:12093.
- 54. Pan J. Stabilizing quantum GANs. *Nat Mach Intell*. 2022;2(8):710-8.
- 55. Ikeda K. Quantum extensive-form games. Quantum *Inf Process*. 2023;22:13.
- 56. Selvam PMS, Begum SS, Pingle Y, et al. Optimized Self-Guided Quantum Generative Adversarial Network Based Scheduling Framework for Efficient Resource Utilization in Cloud Computing to Enhance Performance and Reliability. *Trans Emerg Telecommun Technol.* 2025;36(4):e70120.
- 57. Agliardi G, Grossi M, Pellen M, et al. Quantum integration of elementary particle processes. *Phys Lett B*. 2022;832:137228.
- 58. Kalfon B, Cherkaoui S, Laprade JF, et al. Successive data injection in conditional quantum GAN applied to time series anomaly detection. *IET Quantum Comm*. 2024;5(3):269-81.
- 59. Wang Y, Xue S, Wang Y, et al. Quantum generative adversarial learning in photonics. *Opt Lett.* 2023;48(20):5197-200.
- 60. Sedrakyan T, Salavrakos A. Photonic Quantum Generative Adversarial Networks for Classical Data. *Optica Quantum*. 2024;2(6):458-67.
- 61. Chang SY, Herbert S, Vallecorsa S, et al. Dual-Parameterized Quantum Circuit GAN Model in High

- Energy Physics. *IEEE Quantum Comput Eng (QCE)*. 2023;2023(660–670).
- 62. Qu Z, Shi W, Tiwari P. Quantum conditional generative adversarial network based on patch method for abnormal ECG generation. *Comput Biol Med.* 2023;166:107549.
- 63. Riofrio CA, Mitevski O, et al. A characterization of quantum generative models. *ACM Trans Quantum Comput.* 2024;5(2):15.
- 64. Zhou NR, Zhang TF, et al. Hybrid quantum-classical GANs for image generation via learning discrete distribution. *Signal Process Image Commun*. 2023;110:116891.
- 65. Zhu EY, Johri S, et al. Generative quantum learning of joint probability distribution functions. *Phys Rev Res*. 2022;4(4):043092.
- 66. Agliardi G, Prati E. Optimal tuning of quantum GANs for multivariate distribution loading. *Quantum Rep.* 2022;4(1):75-105.
- 67. Situ H, He Z, et al. QGAN for generating discrete distribution. *Inf Sci.* 2020;538:193-208.
- 68. Liu L, Song T, et al. Quantum generative adversarial networks based on Rényi divergences. *Physica A*. 2022;607:128169.
- 69. Zhao RS, Ma HY, et al. Quantum generative adversarial networks based on a readout error mitigation method with fault tolerant mechanism. *Chinese Phys B*. 2024;33(4):044202.
- 70. Ren W, Li Z, et al. Quantum generative adversarial networks for learning and loading quantum image in noisy environment. *Mod Phys Lett B*. 2021;35(21):2143043.
- 71. Huang K, Wang ZA, et al. Quantum generative adversarial networks with multiple superconducting qubits. *npj Quantum Inf*. 2021;7(1):74.
- 72. Li T, Zhang S, Xia JY. Quantum generative adversarial network: A survey. *Comput Mater Contin.* 2020;64(1):401-438.
- 73. Huang HL, Du Y, et al. Experimental Quantum Generative Adversarial Networks for Image Generation. *Phys Rev Appl.* 2021;16(2):024051.