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Abstract: Generative Adversarial Networks (GANs) are generative models that function as a minimax game,
in which a generative network and a discriminative network compete against each other with the goal of
creating data that convincingly resembles the real sample. With the advent of Quantum Computing and the
development of Quantum Machine Learning (QML) models, Quantum Generative Adversarial Networks
(QuGANSs) have been increasingly studied due to the possible advantages this new type of architecture can
offer, especially regarding performance improvements, scalability, and the exploration of new applications.
In this context, this study's guiding question is: how were QuGANs developed between the years 2018 and
2025? To answer this question, the general objective of this work is to conduct a systematic literature review
of QuGANSs during the proposed period. Using a systematic literature review as the methodological basis,
articles published and available on the online platforms Lens, Scopus, and Web of Science were selected, and
the Rayyan tool was employed to identify duplicate works and those that did not specifically address
QuGAN:s. As a result, a prevalence of hybrid models was observed, in which the developed architecture
integrates quantum and classical characteristics in a complementary manner. Regarding the type of
application, approaches involving theoretical foundations and image generation stand out as the most
common. Other application areas are also explored (chemistry and pharmaceuticals, quantum error
correction, high-energy physics, experimental implementation, medical applications, cloud computing,
anomaly detection, telecommunications, biometrics, finance, physics and simulations, security and
cryptography, software engineering, noise in QuGANSs, and survey), demonstrating the broad potential of
QuGAN:s across various research fields and industrial sectors.

Keywords: Generative Adversarial Networks. Quantum Generative Adversarial Network. Systematic
Literature Review.

Abbreviations: D, Discriminator. GANs, Generative Adversarial Network. G, Generator. PRISMA,
Preferred Reporting Items for Systematic Reviews and Meta-Analyses. QGANs, Quantum Generative
Adversarial Networks. QML, Quantum Machine Learning.

Generative Adversarial Networks

(GANs),
(VAEs),

With their cost function operating as a minimax

Variational ~ Autoencoders and game, the generative network G and the

Autoregressive Networks are classifications of
generative models. [1]. GANs were developed in
2014 with the aim of improving the performance
of generative models through the wuse of
backpropagation to optimize the network's

weights [2].
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discriminative network D that compose GANs
compete against each other, such that the training
of G is probabilistically maximized with the goal
of causing D to make an error, while D learns to
distinguish whether a data sample comes from G

or from the real data distribution [2].
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The optimization process of GANSs initially

proposed can be represented by the equation

mGin max V(D,G) = Eyp,,.0llogD (x)] +

Eyepz) [1og (1 - D(G(z)))] (1)
where x is the real sample, z is the random noise
vector, G(z) corresponds to the generated data, [E
is the expectation, D(x) is the probability that D
identifies x as coming from the real data, and
D(G(z)) indicates the probability that D classifies
the data produced by G [1]. G and D are updated
as the training process progresses, leading the
model to a global optimal solution when D(G(z))
= 0,5 and D can no longer distinguish between the
data distributions [1].

GANs resemble a Nash equilibrium, where
minimizing the cost function is the objective of
each player, with D represented by J®(0®), 6(9),
G represented by JOOD), 09) and the point
0P, 09 corresponding to the equilibrium
reached, with J® at a minimum with respect to
0® and J© at a minimum with respect to 09 [3].
However, for the Nash equilibrium to be reached,
failures may occur when using gradient-based
cost minimization techniques, which can cause
the parameters of G to collapse and the result to
always converge to the same point [3].

In this context, other GAN-based models have
been created, optimizing their performance based
on architecture (e.g., convolutional GAN:S,
GAN:S,
GANSs) and cost function (e.g., unrolled GAN, f-
GAN, and WGAN) [1].

conditional and autoencoder-based
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The development of Quantum Computing began
in 1982 with Richard Feynman, who proposed
performing computations on computers using the
principles of quantum mechanics. [4]. Since then,
quantum algorithms have been developed with
the aim of solving problems challenging for
classical binary logic, such as the Deutsch,
Deutsch-Jozsa, Simon, Bernstein-Vazirani, and
Shor algorithms [5].

Quantum potential, characterized by quantum
speedup, highlights the fact that quantum
processors can produce statistical patterns that are
computationally hard to find using classical
computers, giving rise to Quantum Machine
Learning (QML) [6].

By introducing Quantum Generative Adversarial
Networks (QuGANSs), [7] show that when G and
D are implemented with quantum information
and the data

processors correspond  to

measurement samples taken from high-
dimensional spaces, QuGANs can demonstrate
an exponential advantage compared to classical
GANSs. Using quantum circuits, it is possible to
compute gradients and parametrize the QuUGAN
model, as illustrated in Figure 1 — General
structure of the QuGAN, proposed by [8]. The
generalization of the comparison between the
classical model (GAN) and the quantum model
(QuGAN) demonstrates the transformation of the
network’s processing steps into quantum states,
enabling advantages in the execution of the

defined architecture.
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Figure 1. General structure of the QuGAN.
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Just as new research has been developed to
optimize classical GANs based on architecture
and cost function, the same has occurred with
QuGANs, aiming to achieve better results and
different data

evaluate applications across

segments. Therefore, this study’s
how were QuGANs developed

between the years 2018 and 2025?

guiding

question is:

The general objective of this research is to
conduct a systematic literature review of
QuGANs during the proposed period, with
specific objectives defined as: a) to extract
published articles addressing QuGANSs within the
defined timeframe; b) to compile the types of
of QuGANs

architectures and applications
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among the selected works; and c) analyze the

results based on this data.
Materials and Methods
Method

Following the guidelines of the PRISMA 2020

method  (Preferred Reporting Items  for
Systematic Reviews and Meta-Analyses) [9], the
systematic literature review was conducted
through a search for articles listed in online
scientific databases, applying a filter using search
terms, covering the years from 2018 to 2025, and

limited to articles written in English.

Data Collection

The material used for analysis was extracted from
online scientific databases (Scopus: 75; Lens:
254; and Web of Science: 71), filtered using the
search terms "quantum GAN" OR "QuGAN" OR
"QGAN" OR "QGANSs" OR "quantum generative
adversarial network" OR "quantum generative
adversarial networks."  Scientific  articles
published between 2018 and 2025 were selected,
considering the period from when the QuGANs
concept was proposed until the time this research
was conducted. The online platform Rayyan was
used as a tool to apply exclusion criteria, enabling
the identification of duplicate works and articles
that did not specifically address QuGANs. After
obtaining and selecting the remaining works, the
software LibreOffice Calc was used to organize a

spreadsheet containing the main information
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from each work (title, authors, abstract,
keywords, publication venue, and year). Out of
the 400 materials extracted from the indicated
scientific databases, 81 were selected for this

analysis.

Results and Discussion

The results related to the search for articles in the
selected online databases are discussed below,
demonstrating the process of selecting
publications and systematically analyzing their
content based on title, abstract, and keywords.
The approaches of the published works are
related to research on variations of QuGAN
architectures (fully quantum or quantum-
classical/hybrid implementations), applications
in different areas, optimization processes, and
specifications of quantum computing techniques
used (including hardware definition for testing

and implementation methods).

Results of the Online Database Query

Among the 400 publications, 215 duplicates were
removed, leaving 265 to be analyzed. After
identifying duplicate works, those that did not
directly address QuGANs were also removed
based on an analysis of their titles, abstracts, and
keywords. From the evaluated articles, 81 were
selected to identify the themes, approaches, and
contributions related to the use of QuGAN:S.
Figure 2 - Identification of publications
according to the PRISMA 2020 method

ISSN: 2357-7592

illustrates the process of selecting the articles
deemed most suitable for conducting this
analysis. The number of research studies related
to QuGANs has grown since their initial
trend toward new

proposal, indicating a

investigations over the years. Figure 3 - Number
of articles per year, shows the publication count
over the years, with 2025 standing out as a

notable year for this topic.

Figure 2. Identification of publications according

to the PRISMA 2020 method.

Identification of studies via databases and registers

Records removed before

screening:
Duplicate records removed (n
= 215 - identified with the help
of the Rayyan platform)
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Figure 3. Number of articles per year. quantum and hybrid implementations) and their
19 application areas. Articles in the area of

foundation and theorization of QuGANSs stood

16 out in the analysis
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the areas of image generation

[13,19,26,31,32,40,60,64,70], chemistry and
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pharmaceuticals [12,17,22,33], quantum error
correction [21,25,29,69], high-energy physics
[41,51,57,61], experimental implementation
[48,59,71,73], medical applications [42,44,62],
cloud computing [24,56], anomaly detection
[36,58], telecommunications [45,46], biometrics
[10], finance [14], physics and simulations [23],
& security and cryptography [50], software
engineering [43], noise in QuGANs [53], and

surveys [72].
Results of the Analyses on the Approaches of the

Published Works

Figure 4. Distribution by Architecture.
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Figure 5. Distribution by Application Area.
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Conclusion

This study highlights how QuGANs are being
researched and guides future work by revealing a
predominance of hybrid architectures, applied in
fields such as medicine, chemistry, finance, and
security. The trend of increasing publications
suggests that future analyses could group
applications and architectures to better map the
evolution of these networks. In 18 of the 81

articles, classification was not possible, requiring

further investigation.
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