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Abstract: Generative Adversarial Networks (GANs) are generative models that function as a minimax game, 

in which a generative network and a discriminative network compete against each other with the goal of 

creating data that convincingly resembles the real sample. With the advent of Quantum Computing and the 

development of Quantum Machine Learning (QML) models, Quantum Generative Adversarial Networks 

(QuGANs) have been increasingly studied due to the possible advantages this new type of architecture can 

offer, especially regarding performance improvements, scalability, and the exploration of new applications. 

In this context, this study's guiding question is: how were QuGANs developed between the years 2018 and 

2025? To answer this question, the general objective of this work is to conduct a systematic literature review 

of QuGANs during the proposed period. Using a systematic literature review as the methodological basis, 

articles published and available on the online platforms Lens, Scopus, and Web of Science were selected, and 

the Rayyan tool was employed to identify duplicate works and those that did not specifically address 

QuGANs. As a result, a prevalence of hybrid models was observed, in which the developed architecture 

integrates quantum and classical characteristics in a complementary manner. Regarding the type of 

application, approaches involving theoretical foundations and image generation stand out as the most 

common. Other application areas are also explored (chemistry and pharmaceuticals, quantum error 

correction, high-energy physics, experimental implementation, medical applications, cloud computing, 

anomaly detection, telecommunications, biometrics, finance, physics and simulations, security and 

cryptography, software engineering, noise in QuGANs, and survey), demonstrating the broad potential of 

QuGANs across various research fields and industrial sectors. 
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Literature Review. 
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Generative Adversarial Networks (GANs), 

Variational Autoencoders (VAEs), and 

Autoregressive Networks are classifications of 

generative models. [1]. GANs were developed in 

2014 with the aim of improving the performance 

of generative models through the use of 

backpropagation to optimize the network's 

weights [2]. 

        

With their cost function operating as a minimax 

game, the generative network G and the 

discriminative network D that compose GANs 

compete against each other, such that the training 

of G is probabilistically maximized with the goal 

of causing D to make an error, while D learns to 

distinguish whether a data sample comes from G 

or from the real data distribution [2]. 
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The optimization process of GANs initially 

proposed can be represented by the equation   

𝑚𝑖𝑛
𝐺

 𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑝data(𝑥)[log 𝐷 (𝑥)] +

𝔼𝑧∼𝑝(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]        (1) 

where x is the real sample, z is the random noise 

vector, G(z) corresponds to the generated data, 𝔼 

is the expectation, D(x) is the probability that D 

identifies x as coming from the real data, and 

D(G(z)) indicates the probability that D classifies 

the data produced by G [1]. G and D are updated 

as the training process progresses, leading the 

model to a global optimal solution when D(G(z)) 

= 0,5 and D can no longer distinguish between the 

data distributions [1]. 

GANs resemble a Nash equilibrium, where 

minimizing the cost function is the objective of 

each player, with D represented by J(D)(θ(D), θ(G)), 

G represented by J(G)(θ(D), θ(G)) and the point 

(θ(D), θ(G)) corresponding to the equilibrium 

reached, with J(D) at a minimum with respect to 

θ(D) and J(G) at a minimum with respect to θ(G) [3]. 

However, for the Nash equilibrium to be reached, 

failures may occur when using gradient-based 

cost minimization techniques, which can cause 

the parameters of G to collapse and the result to 

always converge to the same point [3].     

In this context, other GAN-based models have 

been created, optimizing their performance based 

on architecture (e.g., convolutional GANs, 

conditional GANs, and autoencoder-based 

GANs) and cost function (e.g., unrolled GAN, f-

GAN, and WGAN) [1].     

The development of Quantum Computing began 

in 1982 with Richard Feynman, who proposed 

performing computations on computers using the 

principles of quantum mechanics. [4]. Since then, 

quantum algorithms have been developed with 

the aim of solving problems challenging for 

classical binary logic, such as the Deutsch, 

Deutsch-Jozsa, Simon, Bernstein-Vazirani, and 

Shor algorithms [5]. 

Quantum potential, characterized by quantum 

speedup, highlights the fact that quantum 

processors can produce statistical patterns that are 

computationally hard to find using classical 

computers, giving rise to Quantum Machine 

Learning (QML) [6]. 

By introducing Quantum Generative Adversarial 

Networks (QuGANs), [7] show that when G and 

D are implemented with quantum information 

processors and the data correspond to 

measurement samples taken from high-

dimensional spaces, QuGANs can demonstrate 

an exponential advantage compared to classical 

GANs. Using quantum circuits, it is possible to 

compute gradients and parametrize the QuGAN 

model, as illustrated in Figure 1 – General 

structure of the QuGAN, proposed by [8]. The 

generalization of the comparison between the 

classical model (GAN) and the quantum model 

(QuGAN) demonstrates the transformation of the 

network’s processing steps into quantum states, 

enabling advantages in the execution of the 

defined architecture. 
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Figure 1. General structure of the QuGAN. 

 

 

        

Just as new research has been developed to 

optimize classical GANs based on architecture 

and cost function, the same has occurred with 

QuGANs, aiming to achieve better results and 

evaluate applications across different data 

segments. Therefore, this study’s guiding 

question is: how were QuGANs developed 

between the years 2018 and 2025? 

The general objective of this research is to 

conduct a systematic literature review of 

QuGANs during the proposed period, with 

specific objectives defined as: a) to extract 

published articles addressing QuGANs within the 

defined timeframe; b) to compile the types of 

architectures and applications of QuGANs 

among the selected works; and c) analyze the 

results based on this data.   

Materials and Methods 

Method 

Following the guidelines of the PRISMA 2020 

method (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) [9], the 

systematic literature review was conducted 

through a search for articles listed in online 

scientific databases, applying a filter using search 

terms, covering the years from 2018 to 2025, and 

limited to articles written in English. 

        

Data Collection 

The material used for analysis was extracted from 

online scientific databases (Scopus: 75; Lens: 

254; and Web of Science: 71), filtered using the 

search terms "quantum GAN" OR "QuGAN" OR 

"QGAN" OR "QGANs" OR "quantum generative 

adversarial network" OR "quantum generative 

adversarial networks." Scientific articles 

published between 2018 and 2025 were selected, 

considering the period from when the QuGANs 

concept was proposed until the time this research 

was conducted. The online platform Rayyan was 

used as a tool to apply exclusion criteria, enabling 

the identification of duplicate works and articles 

that did not specifically address QuGANs. After 

obtaining and selecting the remaining works, the 

software LibreOffice Calc was used to organize a 

spreadsheet containing the main information 
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from each work (title, authors, abstract, 

keywords, publication venue, and year). Out of 

the 400 materials extracted from the indicated 

scientific databases, 81 were selected for this 

analysis. 

 

Results and Discussion 

 

The results related to the search for articles in the 

selected online databases are discussed below, 

demonstrating the process of selecting 

publications and systematically analyzing their 

content based on title, abstract, and keywords. 

The approaches of the published works are 

related to research on variations of QuGAN 

architectures (fully quantum or quantum-

classical/hybrid implementations), applications 

in different areas, optimization processes, and 

specifications of quantum computing techniques 

used (including hardware definition for testing 

and implementation methods). 

 

Results of the Online Database Query 

Among the 400 publications, 215 duplicates were 

removed, leaving 265 to be analyzed. After 

identifying duplicate works, those that did not 

directly address QuGANs were also removed 

based on an analysis of their titles, abstracts, and 

keywords. From the evaluated articles, 81 were 

selected to identify the themes, approaches, and 

contributions related to the use of QuGANs. 

Figure 2 – Identification of publications 

according to the PRISMA 2020 method 

illustrates the process of selecting the articles 

deemed most suitable for conducting this 

analysis. The number of research studies related 

to QuGANs has grown since their initial 

proposal, indicating a trend toward new 

investigations over the years. Figure 3 – Number 

of articles per year, shows the publication count 

over the years, with 2025 standing out as a 

notable year for this topic. 

Figure 2. Identification of publications according 

to the PRISMA 2020 method. 
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Figure 3. Number of articles per year. 

 

        

Results of the Analyses on the Approaches of the 

Published Works 

In relation to the identification of QuGAN 

architecture variations (fully quantum 

implementation or quantum-classical / hybrid), 

53 articles reported the use of hybrid approaches 

[10,11,12,13,14,15,16,17,18, 19, 20, 21, 22, 23, 

24,25,26,27,28,29,30,31,32,33,34,36,40,41,42,4

3,44,45,46,48,50,51,52,53,54,56,58,59,60,61,62,

64,66,67,68,69,70,71,73], while only 4 classified 

their architectures as fully quantum 

[35,37,38,49]. Figure 4 – Distribution by 

Architecture and Figure 5 – Distribution by 

Application Area compile the identified works, 

highlighting the type of architecture (fully 

quantum and hybrid implementations) and their 

application areas. Articles in the area of 

foundation and theorization of QuGANs stood 

out in the analysis 

[11,15,16,18,20,27,28,30,34,35,37,38,39,47,49,5

2,54,55,63,65,66,67,68], followed by works in 

the areas of image generation 

[13,19,26,31,32,40,60,64,70], chemistry and 

pharmaceuticals [12,17,22,33], quantum error 

correction [21,25,29,69], high-energy physics 

[41,51,57,61], experimental implementation 

[48,59,71,73], medical applications [42,44,62], 

cloud computing [24,56], anomaly detection 

[36,58], telecommunications [45,46], biometrics 

[10], finance [14], physics and simulations [23], 

security and cryptography [50], software 

engineering [43], noise in QuGANs [53], and 

surveys [72]. 

        

Figure 4. Distribution by Architecture. 
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Figure 5. Distribution by Application Area. 

 

Conclusion 

This study highlights how QuGANs are being 

researched and guides future work by revealing a 

predominance of hybrid architectures, applied in 

fields such as medicine, chemistry, finance, and 

security. The trend of increasing publications 

suggests that future analyses could group 

applications and architectures to better map the 

evolution of these networks. In 18 of the 81 

articles, classification was not possible, requiring 

further investigation. 
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