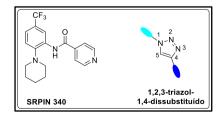


Derivados triazólicos inspirados no SRPIN340: Síntese e avaliação de atividade frente ao vírus *Oropouche orthobunyavirus* causador da Febre do Oropouche

Bianca Fernandes Moizés (PG)*1, Róbson Ricardo Teixeira (PQ)1, Ana Paula Martins de Souza (PQ)1, Adilson Vidal Costa (PQ)2, Samira Soares Santiago (PG)1

¹Universidade Federal de Viçosa, Departamento de Química, Viçosa; ²Universidade Federal do Espírito Santo, Departamento de Química e Física, Alegre, Espírito Santo.

*e-mail: bianca.moizes@ufv.br


RESUMO

A substância *N*-[2-(piperidin-1-il)-5-(trifluorometil)fenil)]isonicotinamida, também conhecida como SRPIN 340, é um inibidor das cinases SRPK1 e SRPK2. Esta amida possui variadas bioatividades relacionadas, dentre elas antiviral. Outra classe de compostos com reconhecida atividade antiviral associada são os 1,2,3-triazóis-1,4-dissubstituídos. Descreve-se neste trabalho a síntese de uma série de compostos 1,2,3-triazólicos inspirados no SRPIN 340 e os resultados da avaliação da atividade antiviral destes compostos frente ao *Oropouche orthobunyavirus*, o agente etiológico da Febre do Oropouche.

Palavras-chave: SRPIN340; Oropouche orthobunyavirs; Febre do Oropouche; Triazóis; Atividade antiviral; Reação CuAAC.

Introdução

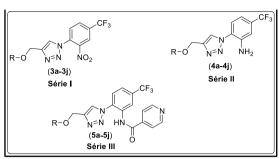
O composto SRPIN 340 (Figura 1) é um inibidor seletivo das proteínas cinases SRPK1 e SRPK2, envolvidas na fosforilação de proteínas SR, fundamentais no processamento de pré-mRNA em células eucarióticas⁽¹⁾. Inicialmente descrito como antiviral contra o HIV⁽²⁾, também demonstrou atividade frente a outros vírus, incluindo HCV, dengue e SARS-CoV-2, ao interferir em etapas cruciais da replicação viral⁽³⁻⁵⁾. Os 1,2,3-triazóis-1,4-dissubstituídos (Figura 1) são uma outra classe de compostos apresentando efeitos antivirais⁽⁶⁾.

Figura 1. Estrutura do SPRIN 340 e estrutura geral dos1,2,3-triazóis-1,4-dissubstituídos.

A Febre do Oropouche é causada pelo arvovírus *Oropouche orthobunyavirus*. Ele foi descrito em humanos pela primeira vez em 1955, em Trinidad e Tobago, e no Brasil foi isolado pela primeira vez em 1960, em Belém, estado do Pará, de um animal silvestre, a preguiça-de garganta-pálida⁽⁶⁾.

Desde então, casos isolados e surtos foram relatados no país, sobretudo na região amazônica, considerada endêmica⁽⁷⁾. Os sintomas são semelhantes aos da dengue e chikungunya, incluindo febre alta, dor de cabeça, dores musculares e articulares, tontura, náuseas e vômitos e não há vacinas ou antivirais disponíveis para o tratamento dos acometidos pela Febre do Oropouche⁽⁷⁾.

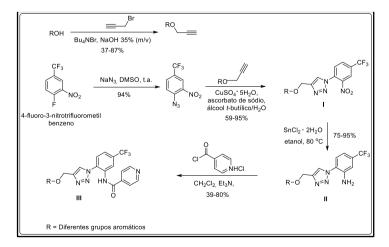
Considerando as premissas, este trabalho objetivou a síntese de uma série de derivados 1,2,3-triazólicos-1,4-dissubstituídos derivados do SPRIN 340 e avaliação de seus efeitos sobre o vírus causador da Febre do Oropouche visando identificar possíveis compostos que possam servir como modelos para o desenvolvimento de antivirais para o tratamento desta infecção.


Experimental

Síntese dos compostos triazólicos inspirados no SRPIN 340

Foram sintetizadas três séries (**I**, **II** e **III**) de compostos 1,2,3-triazólicos inspirados no SRPIN 340 (Figura 2). A série I (3a–3j) corresponde a nitrocompostos triazólicos contendo diferentes substituintes aromáticos benzílicos, como benzil, 4-fluorobenzil, 4-clorobenzil, 4-bromobenzil, 4-iodobenzil, 4-metilbenzil, 4-nitrobenzil, 2-clorobenzil, 3-clorobenzil e fenoximetil.

A série II (4a–4j) foi obtida por redução dos derivados da série I, e a série III (5a–5j e 5k–5t) corresponde às amidas triazólicas derivadas do SRPIN 340, preparadas por acilação das anilinas triazólicas.

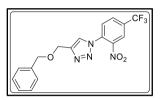

Figura 2. Estruturas dos compostos sintetizados neste trabalho. R = benzil (3a), 4-F-benzil (3b), 4-Cl-benzil (3c), 4-Br-benzil (3d), 4-I-benzil (3e), 4-CH₃-benzil (3f), 4-NO₂-benzil (3g), 2-Cl-benzil (3h), 3-Cl-benzil (3i), fenoximetil (3j).

Para a síntese dos compostos foram empregadas reações substituição nucleofílica aromática, reações de alquilação via catálise de transferência de fases, reação de cicloadição 1,3-dipolar entre um alcino e uma azida orgânica catalisada por Cu(I) (reação CuAAC, também conhecida como reação "click"), reações de redução e reações de acilação. Os compostos sintetizados foram purificados por cromatografia em coluna de sílica-gel e caracterizados via espectroscopia no IV e de RMN de ¹H e de ¹³C.

Para os ensaios in vitro foram utilizadas células de linhagem contínua de rim de macaco verde africano, Vero (ATCC CCL-81) e a cepa BeAn19991 do vírus *O. orthobunyavirus* isolado de preguiça (*Bradypus tridactylus*). O vírus já se encontrava crescido e titulado previamente e mantido em freezer -80 °C até o momento de uso.

Resultados e Discussão

As etapas sintéticas envolvidas na preparação dos compostos é mostrada na Figura 3.


Figura 3. Rota sintética envolvida na preparação dos trinta derivados inspirados no SRPIN 340.

Todos os trinta derivados triazólicos sintetizados foram avaliados quanto à citotoxicidade e atividade antiviral frente ao O. orthobunyavirus.

De modo geral, apresentaram baixa citotoxicidade contra células Vero (CC $_{50} > 100~\mu mol~L^{-1}$) e não exibiram atividade antiviral significativa (EC $_{50} > 300~\mu mol~L^{-1}$). Quando avaliados contra o vírus

causador da Febre do Oropouche, verificou-se que o composto mais ativo correspondeu ao derivado 4-((benzoiloximetil)-1-(2-nitro-4-(trifluorometil)fenil)-1H-1,2,3-triazol (Figura 4), apresentando EC_{50} média de $162,64\pm11,18~\mu mol~L^{-1}$ e CC_{50} correspondente a $382,28\pm35,41~\mu mol~L^{-1}$. Assim, o índice de seletividade, calculado pela razão (CC_{50}/EC_{50}), foi igual a 2,35. Esses resultados indicam que a presença conjunta dos grupos nitro e trifluorometil, associados ao fragmento benzoiloximetil, favoreceu a atividade antiviral, enquanto os demais substituintes aromáticos testados não tiveram efeito relevante.

Figura 4. Estrutura do composto mais ativo frente ao vírus causador da Febre Oropouche.

Conclusões

Os compostos, de maneira geral, apresentaram baixa citoxicidade em células Vero ($CC_{50} > 100~\mu mol~L^{-1}$). A análise de estrutura-atividade mostrou que a maioria dos substituintes aromáticos testados não conferiu atividade antiviral significativa. No entanto, observou-se que a presença conjunta dos grupos nitro e trifluorometil, associados ao fragmento benzoiloximetil, favoreceu interações importantes com o alvo viral. Esse resultado indica potenciais pontos de modificação estrutural que podem ser explorados em futuros estudos para o desenvolvimento de análogos mais potentes e seletivos contra o *O. orthobunyavirus*.

Agradecimentos

CAPES, CNPQ, FAPEMIG, UFV.

Referências

- ANWAR, A.; HOSOYA, T.; LEONG, K. M.; ONOGI, H.; OKUNO, Y.; HIRAMATSU, T.; KOYAMA, H.; SUZUKI, M.; HAGIWARA, M.; BLANCO, M. A. G. Plos One, 2011,
- 2. DONG, Z.; NODA, K.; KANDA, A.; FUKUHARA, J.; ANDO, R.; MURATA, M.; SAITO, W.; HAGIWARA, M.; ISHIDA, S. Molecular Vision, **2013**, 19, 536-543.
- 3. HAGIWARA M, FUKUHARA T, SUZUKI M, HOSOYA T. European patente application. WO 2005/063293, **2006**.
- 4. HEATON, B. E., TRIMARCO, J. D., HAMELE, C. E., HARDING, A. T., TATA, A., ZHU, X., TATA, P. R., SMITH, C. M., HEATON, N. S. Biorxiv, **2020**.
- HUANG, J.; ZHOU, Y.; XUE, X.; JIANG, L.; DU, J.; CUI, Y.; ZHAO, H. Biochemical and Biophysical Research Communications, 2019, 510, 97-103.
- FONSECA, L. M. S., CARVALHO, R. H., BANDEIRA, A. C., SARDI, S. I., CAMPOS, G. S. Japanese Journal of Infectious Disease, 2020, 73, 164–165.
- 7. Ministério da Saúde. Febre do Oropouche: entenda o que é e como se prevenir. Brasília, **2025**.