

CINÉTICA DE DECOMPOSIÇÃO TÉRMICA DE ETANOL COMBUSTÍVEL: UM ESTUDO COMPARATIVO PARA ESTABELECER OS EFEITOS DA ADIÇÃO DE NANOPARTÍCULAS

Mikaely V. S. Magalhães $(G)^1$, Natália R. S. Araujo $(PG)^1$, Bárbara R. Vicensoni $(G)^1$, Bárbara D. L. Ferreira $(PG)^1$, Fabrício J. P. Pujatti $(PQ)^2$, Rita C. O. Sebastião $(PQ)^{1*}$

- ¹ Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais.
- ² Departamento de Engenharia Mecânica, Escola de Engenharia, Universidade Federal de Minas Gerais.

RESUMO

A indústria automotiva demanda a redução das emissões de gases poluentes, visando mitigar impactos climáticos. Uma alternativa promissora, considerando a matriz energética brasileira, é o uso de biocombustíveis, especialmente o etanol. Substituir a gasolina por etanol pode reduzir em até 74% as emissões desses gases. A incorporação de nanopartículas (NPs) aos combustíveis busca melhorar sua qualidade e eficiência de combustão, reduzindo a emissão de poluentes. A análise termogravimétrica (TG) do etanol puro e aditivado mostrou que uma NP comercial aumentou os valores dos parâmetros cinéticos de constante de velocidade, energia de ativação e fator de frequência. Assim, os dados reforçam o potencial da adição de nps na melhoria das propriedades térmicas do etanol sem grandes variações da sua cinética de decomposição, sendo necessários mais testes para entender a influência de nano aditivos no combustível.

Palavras-chave: combustível; etanol; nanopartícula; termogravimetria; decomposição.

Introdução

O uso de etanol como biocombustível cresce no Brasil, devido à produção de cana-de-açúcar, à redução da dependência do petróleo e à menor emissão de GEE, com até 74% menos emissões que a gasolina (1). A indústria automotiva busca reduzir as emissões e o consumo de fósseis, e, no Brasil, o etanol é uma alternativa viável. As nanopartículas são amplamente estudadas por suas aplicações, inclusive em combustíveis (2). Sua adição visa aumentar o desempenho e reduzir emissões, sendo mais eficaz que modificações nos motores ou tratamentos de gases. Elas melhoram propriedades como cinética de vaporização e poder calorífico. A incorporação de NPs busca maior eficiência de combustão e menor emissão de poluentes.

A decomposição térmica do etanol é um processo essencial para entender o desempenho de motores Otto e otimizar o uso dele como combustível. A análise cinética dessa decomposição é fundamental para prever a estabilidade do etanol sob altas temperaturas, como as encontradas no interior dos motores. Além disso, esses estudos evidenciam a importância de compreender os parâmetros cinéticos dessas substâncias e desse processo de decomposição para melhorar a eficiência energética e reduzir a emissão de poluentes. Assim, o estudo da decomposição térmica do etanol não só contribui para a otimização dos motores, mas também para o desenvolvimento de estratégias para o uso mais sustentável e eficiente do combustível renovável (3).

Para isso, foi empregada a técnica analítica de análise

termogravimétrica (TGA). Essa metodologia permite uma caracterização térmica do sistema etanol-nanopartícula, fornecendo dados fundamentais para entender o papel desses aditivos em processos de combustão e seu potencial de aplicação prática em escala industrial.

Experimental

As amostras analisadas incluíram etanol puro e etanol com adição da nanopartícula comercial (obtida em uma franquia de postos de gasolina) (2% v/v), com o objetivo de comparar os efeitos da adição sobre a estabilidade térmica e o comportamento de decomposição. Para esse ensaio, utilizou-se cadinho de alumina com tampa e uma pequena alíquota (aproximadamente 20 mg, pesada de forma acurada) da substância (etanol puro e aditivado). A partir disso, as curvas TG/DTG e DTA foram obtidas simultaneamente no equipamento Shimadzu DTG60H. As razões de aquecimento para o etanol com e sem nanopartículas foram de β=10, 20 e 30 °C/min até 150°C, sob atmosfera controlada de 50 mL/min de ar sintético.

Os dados obtidos permitiram identificar os eventos de perda de massa associados à evaporação e/ou decomposição dos componentes presentes. A análise dos dados foi possível através do uso de uma rede neural, acionada pelo programa MATLAB.

Resultados e Discussão

O estudo da cinética foi realizado a partir de dados termogravimetricos representados pela decomposição da massa em função da temperatura. Determinou-se a energia de ativação (Ea), fator de frequência (A) e mecanismo para descrever a decomposição térmica do combustível (4). As Figuras 1 e 2 apresentam a decomposição do etanol com e sem a adição da np.

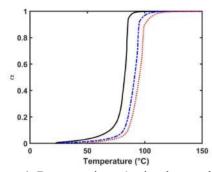
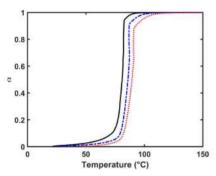
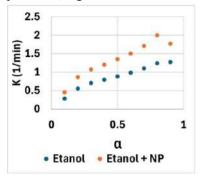
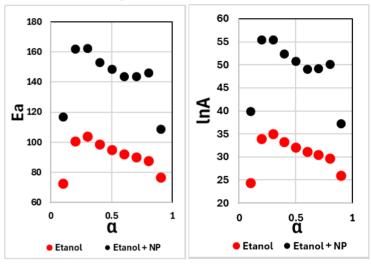




Figura 1. Decomposição térmica do etanol puro.


Figura 2. Decomposição térmica do etanol com adição de nanopartícula comercial.

A decomposição do etanol aditivado ocorreu em uma faixa de temperatura menor, um processo mais rápido em comparação com o etanol puro. Este comportamento está coerente com o estudo cinético, uma vez que os valores da constante de velocidade obtida pela equação de Arrhenius ao longo do processo foi maior para o etanol com nanopartículas, Figura 3..

Figura 3. Constante de velocidade para a decomposição térmica do etanol puro e com adição de nanopartícula comercial.

A amostra com a adição da nanopartícula apresentou maior energia de ativação, possivelmente devido a uma maior interação entre as partículas devido a adição de nanopartículas, considerando as propriedades delas. O aumento da constante de velocidade está associado ao elevado fator de frequência, provavelmente associado ao aumento da interação que também leva a uma maior molecularidade e choques efetivos.

Figura 4. Valores de Energia de ativação, Ea, e logaritmo do fator de frequência, lnA, para a decomposição térmica do etanol com adição de nanopartícula comercial.

Conclusões

Um maior valor de constante da velocidade no etanol com np pode estar associada com características de desempenho no motor como o aumento da eficiência de combustão (5), ainda que o aumento não seja significativo. Dessa forma, esses achados reforçam o potencial da adição de nanopartículas na melhoria das propriedades térmicas do etanol sem grandes comprometimentos da sua cinética de decomposição, sendo necessários mais testes para entender a influência de nano aditivos no combustível.

Agradecimentos

Os autores agradecem a ANP, PRH 1.1, CNPq, PRPq/UFMG, PPGIT/UFMG, PPGMEC/UFMG, LEC/UFMG.

Referências

1. FERREIRA, Ana. Estudo mostra que etanol de cana emite menos gás carbônico para a atmosfera do que a gasolina. Embrapa, 2009. Disponível em:

https://www.embrapa.br/busca-de-noticias/-/noticia/18044516/estud o-mostra-que-etanol-de-cana-emite-menos-gas-carbonico-para-a-at mosfera-do-que-a-gasolina.

- 2. J. Ampah; A. Yusuf; E. Agyekum; S. Afrane; C. Jin; H. Liu; I. Fattah; P. Show; M. Shouran; M. Habil; S. Kamel. Nanomaterials. 2025.
- 3. L. Quiroga; J. Balestieri; I, Ávila. Applied Thermal Engineering. 2017, 115, 99-110.
- 4. N. Araujo; R. Sebastião; M. Freitas-Marques; W. Mussel; Maria I. Yoshida; L. Virtuoso. Thermal Science and Engineering Progress.
- 5. N. Araujo; F. Carvalho; L. Amaral; J. Braga; F. Pujatti; R.Sebastião. Fuel, 2025.

