

Efeito da temperatura e tempo de ativação de carvão vegetal com CO₂ para descontaminação de efluentes

Adriene M. Martins (PG)1*, Aline. Ap. Caetano (PQ)1 e Fabiano Magalhães (PQ)1

¹Universidade Federal de Lavras, Departamento de Química, Instituto de Ciências Naturais, Lavras, Minas Gerais, Brasil, 37200-900.

*adriene.martins1@estudante.ufla.br

RESUMO

O carvão vegetal (CV) desempenha um papel significativo na economia do Brasil, sendo grande parte produzida a partir de resíduos da indústria madeireira. Este trabalho aborda a produção de carvão ativado (CA), utilizando CV. A ativação do CV foi realizada utilizando CO₂ como agente ativante e o processo foi realizado variando a temperatura (800°C e 900°C) e tempo (1h e 2h). As amostras obtidas foram CA800_1h, CA800_2h, CA900_1h, CA900_2h. Testes preliminares de adsorção do azul de metileno (50 mg.L⁻¹), mostraram que CA900_1h e CA900_2h adsorveram 100% do corante, enquanto, CA800_1h e CA800_2h adsorveram 22 e 39%, respectivamente. Os resultados obtidos por análise térmica mostram que os carvões ativados apresentam maior estabilidade térmica do que o CV. Os resultados das isotermas de adsorção do AM pelas amostras CV, CA900_1h e CA900_2h, mostraram que a capacidade máxima de adsorção foram de 10, 150 e 180 mg.g⁻¹, respectivamente, comprovando a ativação dos carvões.

Palavras-chave: Carvão ativado, reaproveitamento, descontaminação, dióxido de carbono, azul de metileno.

Introdução

O carvão vegetal (CV) desempenha um papel significativo na economia do Brasil, sendo grande parte produzida a partir de resíduos da indústria madeireira, promovendo o reaproveitamento de biomassa e de resíduos florestais (1). O CV pode ser utilizado como matéria-prima sustentável para a produção de carvão ativado. O carvão ativado (CA) possui uma alta porosidade e área superficial, muito utilizado na adsorção de poluentes, especialmente corantes industriais (2). Este trabalho tem como objetivo obter carvão ativado para aplicação no tratamento de efluentes contaminados por corantes.

Experimental

Ativação de carvão vegetal comercial

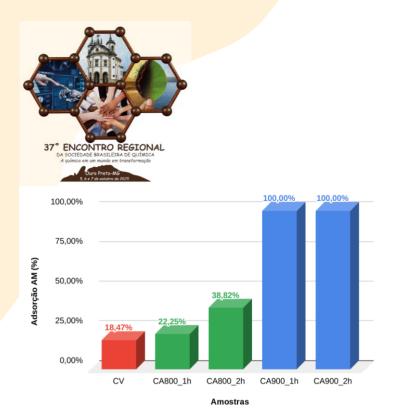
A ativação do CV, previamente triturado em almofariz e peneirado em peneira de 40 Mesh, foi realizada em um forno tubular horizontal, utilizando CO_2 como agente ativante. O processo de ativação envolveu temperaturas de 800°C e 900°C , com tempos de residência de 1 h e 2 h, sob fluxo constante de gás CO_2 (100 mL.min^{-1}). A massa inicial de CV utilizada no processo de ativação foi de 2 g, acondicionado em navículas de cerâmica.

Adsorção do corante azul de metileno (AM)

As isotermas de adsorção do CA900-1h, CA900-2h (melhores amostras) e CV foram obtidas pela adição de 10 mL de solução de AM em diferentes concentrações (25, 50, 100, 200, 400, 600 e 800 mg.L⁻¹) a 10 mg das amostras. Os sistemas foram mantidos sob agitação durante 24 h em temperatura ambiente (25 ± 2 °C). Posteriormente, foram centrifugadas, os sobrenadantes coletados e a absorbância foi quantificada, utilizando um espectrofotômetro UV-visível, com leitura no comprimento de onda de 665 nm. Antes de realizar as isotermas, testes rápidos de adsorção, seguindo a mesma metodologia, foram realizados com as amostras CA800-1h, CA800-2h, CA900-1h e CA900-2h e CV

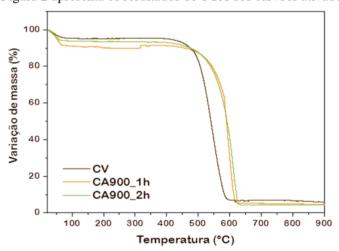
utilizando 10 mL solução de AM 50 mg.L⁻¹ e 10 mg de CA a fim de verificar a eficácia do processo.

A área superficial dos carvões foi estimada pela seguinte equação 1 (3):


 $S = S_{AM} x b$ Equação 1

Onde S =área superficial estimada, $S_{AM} =$ área superficial do azul de metileno (1,93 m².mg-¹), e b =capacidade máxima de adsorção do AM (mg.g-¹).

As amostras CA900-1h, CA900-2h e CV foram caracterizadas por análise térmogravimétrica (TGA).

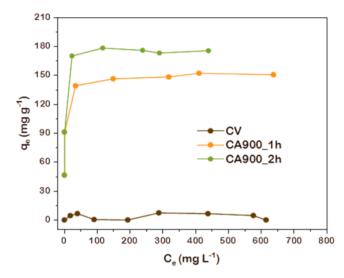

Resultados e Discussão

As amostras CA800-1h, CA800-2h, CA900-1h e CA900-2h, apresentaram os seguintes rendimentos após ativação: 22,4; 23,3; 22,2 e 21,0%, respectivamente. Os rendimentos entre as amostras foram similares, porém, nota-se que a uma tendência de diminuir os rendimentos com o aumento da temperatura e tempo de ativação. Isso ocorre devido ao maior consumo de carbono durante o processo de ativação, realizado em temperaturas mais altas e com tempos de residência maiores. A Figura 1 apresenta os testes de adsorção realizados com as amostras obtidas. Nota-se na Figura 1 que o CA800-1h absorveu muito pouco o AM, um resultado bem similar ao CV. Ao aumentar o tempo de ativação, nota-se que a amostra CA800-2h adsorveu um pouco melhor o AM, porém um valor (38,82%) ainda considerado baixo. Por outro lado, as amostras ativadas a 900 °C (CA900-1h e CA900-2h), adsorveram 100% do AM com concentração de 50 mg.L⁻¹, indicando que a ativação ocorreu de forma satisfatória nesta temperatura. Assim, 900 °C foi definida como a melhor temperatura e as amostras CA900-1h e CA900-2h foram caracterizadas e isotermas de adsorção foram obtidas.

Figura 1. Porcentagem do corante AM 50 mg.L⁻¹ adsorvido pelas amostras.

A Figura 2 apresenta os resultados de TGA dos carvões ativados.

Figura 2. Análise TGA do CA900-1h, CA900-2h e CV em atmosfera oxidante.


Nota-se que as curvas TG do CV e dos carvões ativados são muito semelhantes e apresentam dois eventos bem definidos. O primeiro, observado entre 50 e 100°C é relativo à perda de umidade (~4 a 10%). Um segundo evento observado entre 450 e 645 °C, que apresenta grande perda de massa (85 a 89%) está relacionado com a oxidação das amostras. Com esses resultados é possível inferir uma maior estabilidade térmica dos CA obtidos a 900 °C, uma vez que a perda de massa relativa à oxidação do carbono inicia a temperatura mais alta. Isso implica que ocorre a formação de carbono mais estável durante o tratamento térmico empregado na obtenção do CA.

A Figura 3 apresenta os resultados das isotermas de adsorção do corante AM pelas amostras CA900-1h, CA900-2h e CV. Os CA obtidos nas reações realizadas durante 1 e 2 h, apresentaram capacidades de adsorção de 150 e 180 mg.g⁻¹ respectivamente, indicando que o tempo necessário para uma melhor ativação foi de 2h. Este resultado certamente está relacionado com o aumento da área superficial, proveniente, do aumento do tempo de ativação.

A partir dos valores de capacidade máxima de adsorção do AM

pelas amostras, foi possível calcular a área superficial estimada. Os valores encontrados para as amostras CV, CA900-1h e CA900-2h são: 23,2; 298,5 e 347,4 m².g⁻¹, respectivamente. Estes resultados mostram que houve grande aumento de área superficial após o processo de ativação realizado a 900 °C, o que comprova a eficiência do CO₂ e importância da temperatura e do tempo de ativação.

Figura 3. Isotermas de adsorção do AM (50, 100, 200, 300, 500, 600 e 800 mg L⁻¹) pelas amostras CV, CA900-1h e CA900-2h.

Conclusões

Os resultados das caracterizações obtidas neste estudo indicam que o processo de ativação do carvão foi altamente eficiente a 900 °C. Ambos amostras obtidas de CA foram eficientes. Embora a amostra CA900-1h tenha apresentado resultados ligeiramente inferiores em comparação à CA900-2h, quando se considera o conceito de sustentabilidade e economia circular, que prioriza a obtenção de resultados satisfatórios com menor consumo de recursos, tempo e energia, a CA900-1h se torna uma alternativa mais vantajosa. O processo não apenas será otimizado e eficiente, mas também irá reduzir o impacto ambiental associado à produção de carvão ativado, ao aproveitar melhor a matéria-prima e minimizar o gasto energético. Assim, a escolha da CA900-1h exemplifica como alinhar desempenho técnico com práticas sustentáveis, promovendo a reutilização de materiais, a conservação de recursos naturais e a redução de resíduos.

Agradecimentos

Os autores agradecem à FAPEMIG, UFLA, DQI, FUNAPE, CAPES, CNPq e ao Laboratório de Microscopia e Microálise da UFLA, ao Laboratório de Análise e Prospecção Química – CAPQ da UFLA.

Referências

- 1. A.C.O. Carneiro; et al., Sustainability, 2025, 17, 3191.
- 2. C. W. Scheeren; T. P. Hartz, *Biomassa: Recursos, Aplicações e Tecnologias em Pesquisas*, **2022**, 1, 45–53
- 3. S.S. Brum, M.L. Bianchi, V.L. Silva, M.G. Gonçalves, M.C. Guerreiro, L.C.A. Oliveira, *Quim. Nova*, **2008**, 31, 1048-1052.