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Abstract: This paper addresses the semantic segmentation of road images, a critical task for autonomous 

vehicle navigation, particularly in non-urban environments that present significant challenges. While much 

research focuses on well-maintained roads in developed countries, this study confronts the complexities of real-

world conditions, such as those prevalent in developing nations, which feature vast networks of unpaved and 

poorly maintained roads. The core of our methodology is a neural network architecture that synergistically 

combines the encoder-decoder structure of U-Net with the feature extraction power of a ResNet backbone. The 

primary objective is the precise classification of each image pixel into one of four essential categories for 

navigation: background, asphalt, paved, and unpaved road. The model's training regimen involved exploring 

different ResNet versions (ResNet18, ResNet34, and ResNet50) as the encoder backbone to assess the impact of 

network depth. A key aspect of our approach was a progressive training strategy, where model versions were 

trained on images of varying resolutions. The results demonstrated a significant and somewhat counter-

intuitive finding: training the ResNet34-U-Net model with images at half the original resolution yielded the best 

overall performance, achieving the highest Dice and IoU scores. This suggests that reducing image resolution 

acts as an effective form of regularization, compelling the model to learn more general and robust features by 

ignoring minor, irrelevant details. This outcome not only enhances the model's generalization capabilities for 

diverse and imperfect road conditions but also carries a substantial practical advantage by reducing the 

computational cost of training and inference, a crucial factor for deployment on resource-constrained 

embedded systems in autonomous vehicles. 
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1. Introduction 

 

Detecting a navigable path is an important 

function in visual navigation systems, where 

several challenges must be considered, such as 

terrain variations, lighting changes, and the 

presence of potholes or water puddles. Data from 

the National Transport Confederation of 2022 [1] 

show that only 15.81% of the Brazilian road 

network consists of paved roads, highlighting the 

challenge for the widespread adoption of 

autonomous vehicles in regions distant from large 

urban centers. Studies of this kind often utilize 

road scenarios from developed countries, which 

typically exhibit little to no variation in terrain 

surface [2]. Some works involve systematic 

literature reviews: for instance, one 11-year 

review analyzed computer vision methods 

applied to this type of problem, emphasizing the 

surface types these methods address, their 

adaptability to surface changes, and their 

capability to distinguish potential road defects or 

changes, such as potholes, shadows, and water 

puddles [3]. Convolutional Neural Networks 

(CNNs), the U-Net architecture, and Residual 

Networks (ResNet) have emerged as prominent 

deep learning architectures employed in this 

context. Research has primarily focused on 

improving semantic segmentation accuracy, 

acknowledging the ongoing challenges in 

achieving reliable environmental perception 

under diverse and complex driving conditions 

[4]. Convolutional Neural Networks (CNNs) 

represent a class of deep learning models whose 
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fundamental architecture comprises 

convolutional layers, pooling layers, and 

activation functions. Convolutional layers act as 

feature extractors, learning hierarchical spatial 

patterns in the input data through the application 

of convolutional filters [4].  Pooling layers are 

responsible for reducing the spatial 

dimensionality of feature maps, providing 

translational invariance and decreasing 

sensitivity to minor input perturbations. 

Activation functions, such as ReLU (Rectified 

Linear Unit), introduce nonlinearity into the 

model, enabling it to learn complex relationships 

within the data [5]. As show in Figure 1, the U-

Net is a convolutional neural network 

architecture characterized by its encoder-decoder 

structure.  

Figure 1. U-Net network architecture [23] 

 

The architecture consists of a contracting path 

(encoder) and an expanding path (decoder). The 

contracting path follows the typical CNN 

architecture, comprising multiple convolutional 

layers followed by max-pooling layers. These 

progressively reduce the spatial resolution of the 

feature maps while increasing the number of 

feature channels. This process allows the encoder 

to capture high-level contextual information from 

the input image [5]. Residual Networks 

(ResNets) address the vanishing gradient 

problem that typically hinders the training of very 

deep networks [6]. The main contribution of 

ResNet is the introduction of residual blocks, 

which employ skip connections or residual 

connections, as shown in Figure 2.  

Figure 2. ResNet34 Network Architecture [7] 

 

Instead of directly learning the underlying 

mapping, the layers within a residual block learn 

a residual function with respect to the block's 

input. This residual function is then added to the 

original input via the skip connection. These skip 

connections allow gradients to flow more directly 

through the network during backpropagation, 

facilitating the training of networks with 

hundreds or even thousands of layers [7]. 

 

2. Related Works 

 

Semantic segmentation partitions an image into 

several semantically meaningful coherent parts 
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and classifies each part into one of the 

predetermined classes. Existing semantic 

segmentation methods are unreliable for 

autonomous driving systems, as they ignore the 

differing levels of importance of distinct classes 

for safe driving. For instance, pedestrians, cars, 

and cyclists in a scene are far more critical than 

the sky or buildings, so segmentation must be as 

precise as possible. To incorporate the 

importance of object class information, the work 

present in [8] develops an "Importance-Aware 

Loss" (IAL), which emphasizes objects critical 

for autonomous driving. The IAL operates under 

a hierarchical structure where classes with 

varying importance are located at different levels, 

thus assigning a distinct weight to them. 

Studies like [9] analyze semantic segmentation 

failures, which are crucial for autonomous 

driving systems, and detect failure cases in 

predicted segmentation maps by calculating the 

Mean Intersection over Union (mIoU). Authors 

developed a deep neural network to predict the 

segmentation map's mIoU without the ground 

truth, and introduced a new loss function to train 

on imbalanced data. Safety is an extremely 

critical factor in autonomous driving systems, 

where issues related to safety metrics for artificial 

neural networks [10], which are a type of 

artificial neuron architecture with functional 

similarities to biological neurons [11], have been 

extensively studied for semantic segmentation 

problems. The work presented in [12] categorizes 

road detection algorithms into three types 

considering different types of information: 

feature-based techniques, model-based 

techniques, and region-based techniques. 

Feature-based solutions are more effective, but 

they require roads with well-defined and easily 

identifiable markings; noise can disrupt the entire 

detection process. Model-based techniques are 

more robust; however, they are severely 

restricted by the geometry of the models. Region-

based techniques use machine learning 

approaches, enabling them to handle noise 

problems and constant changes in the 

environment. Research has largely overlooked 

the problems posed by paved roads and roads 

with many potholes, as well as unexpected 

pavement interruptions, conditions commonly 

found in developing countries and even in certain 

parts of urban areas, such as city outskirts. For an 

autonomous vehicle to operate successfully, it 

must be able to handle these conditions during its 

operation. The work [13] presents road marking 

methods (lane detection), a system that is now 

integrated into Advanced Driver Assistance 

Systems (ADAS). This work also discusses how 

road models are represented, presents methods 

for feature extraction (e.g., image intensities, 

edge magnitudes and orientations, comparative 

models), and discusses whether any type of post-

processing (e.g., Hough Transform) is employed. 

Although published in 2013, the work [14] 

reviews articles published only up to 2009, 

considering active vision sensors (LiDAR). The 

review also addresses the main challenges in road 

detection, such as weather and lighting 

conditions, the presence of shadows, other 
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vehicles, people, or objects, and different road 

geometries. The work by [15] presents a review 

of articles published between 2005 and 2010 and 

also considers active vision sensors. It is a study 

focused on road detection, particularly lanes. 

Finally, authors in [16] presents work focused on 

road markings, concentrating on feature-based 

approaches like lane detection, stereoscopic 

analysis and edge-based segmentation.  

 

3. Datasets for Autonomous Vehicle 

Navigation 

 

Several benchmark datasets for road detection 

were analyzed: KITTI dataset by [17], CaRINA 

dataset by [18], CamVid dataset by [19], 

CityScapes dataset by [20], RTK dataset, and 

OffRoadScene dataset by [21]. One of the most 

widely used and cited datasets in path detection 

articles is the KITTI dataset, from the Karlsruhe 

Institute of Technology, Germany, featuring 

rural, urban, and highway scenarios. It presents 

situations with varying illumination. Most 

captures are on paved roads and it contains 

scenarios with many vehicles and pedestrians, as 

well as scenarios with little movement. For this 

work, the RTK dataset was used due to its well-

curated road samples from Brazil, featuring 

different surface types such as asphalt variations, 

other types of pavements, and unpaved roads. It 

also includes situations with road damage (e.g., 

potholes). 

 

 

4. Materials and methods 

 

4.1. Dataset  

 

The proposed method in this study addresses the 

semantic segmentation of road images using a 

neural network architecture that combines U-Net 

and ResNet. The objective is to classify each 

image pixel into one of the following categories: 

background, asphalt road, paved road, and 

unpaved road. The RTK dataset was used, which 

contains road images with different surface types 

and conditions. This dataset was chosen because 

it already has segmentation masks defined for 

each class, considerably reducing the time 

required for creating a database of images and 

segmentation masks. The dataset was divided 

into three parts: training, validation, and test, to 

evaluate the model's performance. This division 

was performed randomly, ensuring that each part 

represented the diversity of the original dataset. 

 

4.2 Architecture 

 

The U-Net network was combined with a ResNet 

backbone, which acts as an encoder to extract 

relevant features from the images. ResNet, 

proposed by researchers from Microsoft 

Research, uses residual blocks and skip 

connections to mitigate the vanishing/exploding 

gradient problem, enabling the training of deeper 

and more effective networks [22]. Different 

versions of ResNet (ResNet18, ResNet34, 

ResNet50) were explored as the model's 
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backbone, allowing an evaluation of the impact 

of network depth on road segmentation. 

 

4.3 Preprocessing and Data Augmentation 

 

The images were resized to a standard resolution 

of 512 x 512 pixels, along with data augmentation 

techniques such as vertical and horizontal flips (at 

90º), rotations (at 30º), and {zooms (at 2x). These 

transformations aim to increase the variability of 

the training data, making the model more robust 

to different lighting, orientation, and scale 

conditions. 

 

4.4 Model Training 

 

Model training was initially performed with 

ResNet18, using the three-cycle training strategy 

proposed by fast.ai. This technique involves 

training the model on progressive image 

resolutions (1:8, 1:4, 1:2, and 1:1) over three 

phases. This procedure aims to initially train 

general features and shapes, followed by object 

features, and finally, object textures. Learning 

was optimized using the fast.ai’s fit one cycle 

method, which adaptively adjusts the learning 

rate and momentum. The learning rate was 

determined using the fast.ai learning rate find 

function, which helps identify the optimal 

learning rate for training. Finally, the loss 

function used was Cross Entropy Loss, suitable 

for multi-class classification problems, along 

with the Adam optimizer, known for its 

efficiency in training deep neural networks. 

4.5 Evaluation Metrics 

 

The model's performance was evaluated using the 

Dice and Jaccard metrics, which measure the 

similarity between the predicted segmentation 

masks and the ground truth masks. The Jaccard 

Coefficient, also known as Intersection over 

Union (IoU), is calculated as the ratio between 

the area of overlap and the area of union of the 

predicted and ground truth masks. The Dice 

metric is similar to IoU but gives more weight to 

true positives. In semantic segmentation tasks, 

the objective is to classify each pixel in an image, 

assigning it a label that represents the class of the 

object to which it belongs. To evaluate how well 

the model performs this task, metrics are used 

that compare the model's predicted segmentation 

with the actual segmentation (or ground truth). 

In the context of image segmentation, these sets 

are the predicted segmentation mask (the model's 

output) and the ground truth segmentation mask. 

Mathematically, the IoU is defined as: 

 𝐼𝑜𝑈 =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (1) 

Where: 

• A represents the set of pixels belonging to 

a specific class in the predicted mask; 

• B represents the set of pixels belonging to 

the same class in the ground truth mask; 

• |𝐴 ∩ 𝐵| represents the number of pixels 

present in both A and B (the intersection); 

• |𝐴 ∪ 𝐵| represents the number of pixels 

present in A or in B or in both (the union). 
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The IoU measures the ratio between the area of 

overlap of the predicted and ground truth 

segmentations and the total area covered by both 

segmentations. An IoU of 1 indicates perfect 

overlap, while an IoU of 0 indicates no overlap. 

The Dice metric, also known as the Dice 

Coefficient, is another commonly used metric to 

evaluate the similarity between two images. It is 

very similar to IoU, but differs slightly in its 

formulation: 

 𝐷𝑖𝑐𝑒 =  
2 ⋅ |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (2) 

Where A, B, |𝐴 ∩ 𝐵|, |A| and |B| have the same 

meaning as in the IoU formula. The main 

difference between the Dice metric and IoU is 

that the Dice metric gives more weight to true 

positives (the correctly classified pixels. This is 

because the intersection is weighted twice as 

much, making it tend to be more sensitive to 

small details, and may be more appropriate when 

evaluating the segmentation accuracy of small 

objects. 

 

5. Results and Conclusion  

 

By comparing U-Net and ResNet architectures, 

as shown in Table 1, we demonstrated that the 

combination of a ResNet34 encoder with a U-Net 

decoder, trained on images at half the original 

resolution, yielded the best performance, 

achieving the highest Dice and IoU scores. This 

result indicates a robust capability for classifying 

pixels into essential categories such as asphalt, 

paved, and unpaved roads, as shown in Figures 3, 

4 and 5.  

Figure 3. Results for paved road 

 

 

 

Figure 4. Results for paved and unpaved road 

 

 

 

Figure 5. Results for asphalt and unpaved road 
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The finding that a lower image resolution 

produced superior results is a significant outcome 

of this work. By decreasing the level of detail, the 

model is forced to learn more general and robust 

features of the road, minor texture variations, or 

irrelevant details in the vegetation. This not only 

improves the model's generalization capacity for 

varied and poorly maintained roads but also 

offers a considerable practical advantage: it 

reduces the computational cost of both training 

and inference, a critical factor for real-time 

application in embedded systems with limited 

processing power. Future work will be directed 

towards two main fronts. First, the cross-

validation of the best-performing model 

(ResNet34 at 1/2 resolution) on a wider range of  

Table 1. Resolutions and performances 

Architecture Resolution Dice IoU 

ResNet18 1/8 0.615 0.607 

ResNet18 1/4 0.641 0.615 

ResNet18 1/2 0.654 0.633 

ResNet18 1/1 0.655 0.634 

ResNet34 1/8 0.616 0.610 

ResNet34 1/4 0.635 0.610 

ResNet34 1/2 0.656 0.635 

ResNet34 1/1 0.636 0.615 

ResNet50 1/8 0.622 0.619 

ResNet50 1/4 0.643 0.618 

ResNet50 1/2 0.646 0.625 

ResNet50 1/1 0.650 0.630 

 

datasets to ensure its robustness and reliability 

under different conditions. Second, the 

optimization of the architecture for deployment 

on embedded hardware, seeking a balance 

between accuracy and inference speed. As 

discussed in the literature, for safety-critical 

systems, understanding when the model is 

uncertain or likely to fail is as important as its 

accuracy. Implementing techniques to predict 

segmentation failures could significantly increase 

the safety and reliability of the autonomous 

navigation system, bringing it closer to practical 

and widespread use in challenging environments 

like those found in Brazil. 
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