

<mark>EF</mark>EITOS DA ADIÇÃO DE NANOPARTÍCULA COMO CATALISADOR NA GASOLINA BRASILEIRA: UM ESTUDO CINÉTICO POR MEIO DA ANÁLISE TERMOGRAVIMÉTRICA

Bárbara R. Vicensoni (G)¹, Natália R. S. Araujo (PG)¹, Mikaely V. S. Magalhães, Bárbara D. L. Ferreira (PG)¹, Fabrício J. P. Pujatti (PQ)², Rita C. O. Sebastião (PQ)¹*)

¹ Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais.

RESUMO

A busca por alternativas para reduzir a pegada de carbono no setor de transportes impulsiona o estudo de aditivos catalíticos aplicados a combustíveis fósseis. Este trabalho avalia a influência de um aditivo nanoparticulado comercial na gasolina comum brasileira, por meio de análises de vaporização (TG). Foram determinados a energia de ativação e o fator de frequência a partir das curvas TG por meio de redes neurais artificiais. Os resultados mostraram que o aditivo promoveu alterações significativas na cinética de vaporização, o que pode resultar em melhor desempenho no motor. Esses dados indicam a viabilidade técnica e ambiental da aditivação com nanopartículas.

Palavras-chave: nanopartículas, combustão, gasolina, termogravimetria, eficiência energética, gasolina aditivada.

Introdução

Apesar dos avanços em fontes renováveis, os combustíveis fósseis ainda representam a base energética no transporte (1). A adição de nanopartículas catalíticas a esses combustíveis surge como uma alternativa promissora para melhorar a combustão e reduzir as emissões. Este trabalho investiga a influência de um aditivo nanoparticulado na gasolina comum brasileira, com foco na análise da decomposição térmica, juntamente com a análise dos dados por meio de redes neurais artificiais (2).

Utilizou-se a termogravimetria pois a mesma permite obter de forma robusta o "tripleto cinético" (energia de ativação, fator de frequência e mecanismo) a partir da variação de massa com a temperatura em ensaios não-isotérmicos. A TG fornece curvas em diferentes taxas de aquecimento que, via métodos isoconversionais e de ajuste, reduzem suposições arbitrárias sobre o mecanismo e aumentam a confiabilidade da extração dos parâmetros cinéticos, além de possibilitar a verificação cruzada da consistência dos resultados e predições reacionais. Por isso, é uma técnica adequada para caracterizar a cinética de vaporização/decomposição do combustível aditivado e comparar com o combustível puro (3)

Experimental

As amostras de gasolina foram preparadas com e sem a adição do aditivo comercial nanoparticulados. A análise TG/DTG foi realizada em um equipamento Shimadzu DTG-60H, sob atmosfera de ar sintético (50 mL/min), utilizando cadinhos de alumina. A massa das amostras foi de aproximadamente 15 mg, com taxas de aquecimento de 10, 20 e 30 °C/min até 150 °C.

Resultados e Discussão

As Figuras 1 e 2 apresentam a decomposição térmica da gasolina pura e da gasolina aditivada. Observa-se que o processo de volatilização da amostra com nanopartícula ocorre de forma mais acelerada e com deslocamento dos eventos térmicos para temperaturas levemente superiores, indicando uma interação mais estável entre os componentes da mistura.

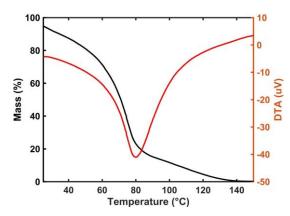
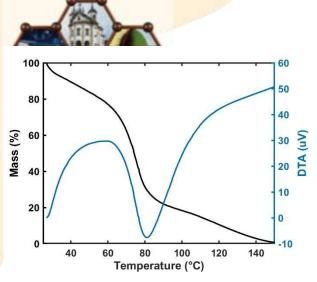
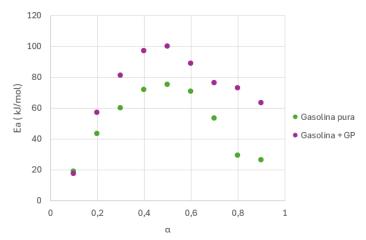




Figura 1. Curva termogravimétrica da gasolina brasileira.

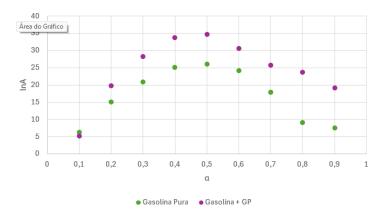

² Departamento de Engenharia Mecânica, Escola de Engenharia, Universidade Federal de Minas Gerais.

Figura 2. Curva termogravimétrica da gasolina brasileira com adição da nanopartícula.

Figura 3. Valores de Energia de ativação, Ea, para a decomposição térmica da gasolina com adição de nanopartícula comercial.

Figura 4. Valores do logaritmo do fator de frequência, lnA, para a decomposição térmica da gasolina com adição de nanopartícula comercial.

A análise TG revelou um perfil de vaporização diferente entre a gasolina pura e a aditivada. Os parâmetros cinéticos foram definidos através do metodologia em (2). A energia de ativação (Ea) foi maior na gasolina aditivada, indicando um aumento na barreira energética do processo, este fenômeno provavelmente está associado com a maior interação das moléculas devido a presença de nanoaditivos. O fator frequência (A) também aumentou,

reforçando o efeito catalítico do aditivo. O aumento do fator de frequência influenciou no aumento da constante de velocidade seguindo a equação de Arrhenius.

Esses resultados sugerem que a adição do aditivo nanoparticulado otimiza a decomposição da gasolina, tornando-a mais eficiente. Entende-se que com isso, haverá uma diminuição de produção de gases, consequentemente reduzindo os impactos ambientais.

Conclusões

A adição de nanopartículas à gasolina demonstrou efeitos positivos significativos na cinética de vaporização, promovendo simultaneamente um aumento na energia de ativação e no fator de frequência. À primeira vista, o aumento de Ea poderia ser interpretado como uma barreira maior ao processo; no entanto, de acordo com a equação de Arrhenius, a constante de velocidade depende de forma combinada tanto de Ea quanto de A. Assim, o aumento expressivo do fator de frequência compensou a elevação da barreira energética, resultando em um valor maior da constante de velocidade. Traduz-se que, mesmo exigindo mais energia para que a reação ocorra, a maior frequência e probabilidade de colisões eficazes entre as moléculas, proporcionadas pelas nanopartículas, favorecem a decomposição mais rápida do combustível. Esses resultados sugerem que as nanopartículas atuam como catalisadores térmicos, tornando as reações mais eficientes. Portanto, os dados obtidos ao longo deste estudo reforçam o potencial dos aditivos nanoparticulados como uma solução tecnológica viável e promissora para a otimização em motores convencionais. Essa estratégia representa um avanço importante na busca por alternativas que colaborem com a transição energética e com a redução dos impactos ambientais relacionados ao uso de combustíveis fósseis no setor automotivo. (4).

Agradecimentos

Os autores agradecem a ANP, PRH 1.1, LEC, CNPq. PPGQUI/UFMG PPGIT/UFMG e PPGMEC/UFMG.

Referências

- 1. FUNDAÇÃO GETÚLIO VARGAS; UNIVERSIDADE ESTADUAL DE CAMPINAS. Estudo avalia pegada de carbono de automóveis fabricados no Brasil. São Paulo: FGV EAESP, 2024. Disponível em: https://eaesp.fgv.br/noticias/estudo-avalia-pegada-carbono-auto moveis-fabricados-brasil. Acesso em: 30 jul. 2025.
- 2. Natalia R.S. Araujo, Rita C.O. Sebastião, Maria Betânia Freitas-Marques, Wagner da Nova Mussel, Maria Irene Yoshida, Luciano S. Virtuoso, Multilayer perceptron neural network applied to TG dynamic data of biopolymer chitosan A robust tool to study the kinetics of solid thermal decomposition, Thermal Science and Engineering Progress, Volume 36, 2022, 101490, ISSN 2451-9049,https://doi.org/10.1016/j.tsep.2022.101490.
- 3. Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520, 1–19. https://doi.org/10.1016/j.tca.2011.03.034
- 4. RAJENDRA, R. P. et al. Progress and recent trends in the application of nanoparticles as low carbon fuel additives—A state of the art review. Nanomaterials, v. 12, n. 9, p. 1515, 2022. Disponível em: https://doi.org/10.3390/nano120915.