

Avaliação da sorção e dessorção do diclosulam em cinco solos distintos

Laryssa B. X. Silva (PQ)*; Lunna C. Silva (G); João Victor A. Freitas (PG), Yure M. Guidi (G), Ana Carolina P. Paiva (PQ)¹, Mariana B. T. Diniz (PQ)

¹ e-mail: <u>laryssa.b.silva@ufv.br</u>. Universidade Federal de Viçosa, Viçosa, MG, Brasil.

RESUMO

RESUMO - Herbicidas pré-emergentes, como o diclosulam, atuam no banco de sementes e no manejo de biótipos resistentes. Sua eficácia depende da biodisponibilidade no solo, regulada pelos processos de sorção e dessorção. A sorção-dessorção é um processo dinâmico que influencia diretamente a mobilidade, degradação e disponibilidade de compostos no solo, afetando o potencial de lixiviação dos herbicidas. Este estudo avaliou a sorção e dessorção do diclosulam em cinco solos agrícolas pelo método de equilíbrio em batelada. Os valores de K_f variaram de 7,63 a 13,49 μ mol (1-1/n), com destaque para BR3 e BR4, solos mais argilosos, ácidos e com maior teor de matéria orgânica. A dessorção não foi quantificável por estar abaixo do limite de quantificação (LQ), indicando alta retenção. Os resultados destacam a importância de entender o comportamento do herbicida no solo para uso eficiente e sustentável.

Palavras-chave: retenção; isoterma; herbicida.

Introdução

Herbicidas posicionados na pré-emergência das plantas daninhas, como o diclosulam, tem sua eficácia associada à sua biodisponibilidade na solução do solo, regulada principalmente pelos processos de sorção e dessorção, os quais dependem das propriedades físico-químicas do solo e do herbicida (1).

A sorção-dessorção é um processo dinâmico que influencia diretamente a mobilidade, degradação e disponibilidade de compostos no solo, afetando o potencial de lixiviação dos herbicidas (2). Assim, o objetivo deste trabalho foi avaliar a retenção do herbicida diclosulam em solos agrícolas com diferentes características físico-químicas.

Experimental

Caracterização dos solos utilizados

Cinco solos agrícolas foram coletados na camada de 0–10 cm, em áreas sem histórico da aplicação de herbicidas por três anos, e submetidos à caracterização físico-química.

Tabela 1. Solos utilizados no experimento.

Solos*	pН	CTC	MO	Areia	Silte	Argila
	H ₂ O %		%			
BR1	5,5	5,2	0,8	33,0	12,0	55,0
BR2	5,8	2,9	0,4	76,1	8,0	15,9
BR3	6,2	14,1	4,6	3,4	17,3	79,3
BR4	4,7	4,6	1,6	31,1	7,3	61,6
BR5	5,3	3,5	0,4	61,0	28,0	11,0

*Classificados pelo Sistema Brasileiro de Classificação de Solos (3).

CTC = capacidade de troca catiônica

MO = matéria orgânica

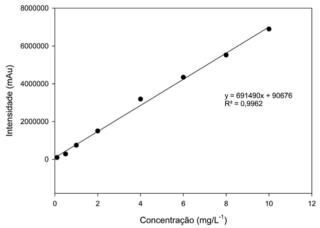
Análise cromatográfica

O estudo de sorção e dessorção seguiu as diretrizes da OCDE 106 – Adsorption–Desorption Using a Batch Equilibrium Method (4). O método foi validado de acordo com o Guia de Validação do INMETRO (5). A solução estoque de diclosulam (1000 mg L⁻¹), preparada a partir de padrão analítico (98% de pureza, Toronto Research Chemicals Inc., Canadá), foi diluída em solução de CaCl₂ 0,01 mol L⁻¹ para obtenção de cinco concentrações (0,5 a 6,0 mL g⁻¹).

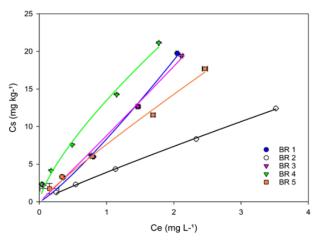
Para cada tratamento, 2 g de solo foram colocados em tubos tipo Falcon com 10 mL da solução de CaCl₂, em triplicata. As amostras foram agitadas por 4 h e centrifugadas a 4000 rpm por 7 min. O sobrenadante foi coletado (duas alíquotas de 1 mL, totalizando 2 ml por amostra) para quantificação por cromatografia líquida de alta eficiência (Shimadzu LC-20AT), com detector de matriz de fotodiodos (SPD-M20A), coluna C18 (250 × 4,6 mm), com comprimento de onda de 200nm.

Isotermas de sorção e dessorção

A concentração de diclosulam sorvida (mg kg⁻¹) foi determinada pela diferença entre a concentração inicial do herbicida na solução (Cs, mg L⁻¹) e a concentração na solução após o equilíbrio (Ce, mg L⁻¹), tanto para sorção quanto para dessorção. Os dados obtidos foram ajustados ao modelo da isoterma de Freundlich, conforme a Equação 1.


$$C_S = K_f \times C_e^{1/n}$$
 Eq.1

As isotermas de Freundlich foram expressas como média e desvio padrão (n = 3) e plotadas no software Sigma Plot (versão 15).


Resultados e Discussão

O método analítico apresentou boa linearidade $(0,1\ a\ 10\ mg\ L^{-1}$ de diclosulam; $R^2=0,99)$, conforme as normas do INMETRO (2018) (Figura 1). Os limites de detecção variaram entre $0,001\ e\ 0,006\ mg\ L^{-1}$, e os limites de quantificação entre $0,003\ e\ 0,022\ mg\ L^{-1}$.

Figura 1. Curva analítica do diclosulam (0,1, 0,5, 1,0, 2,0, 4,0, 6,0, 8,0 e 10 mg/L) em CaCl₂ 0,01 mol L⁻¹, obtida via cromatografia líquida de alta eficiência.

Dentre os solos estudados, BR1, BR3 e BR4 apresentaram maior sorção. Em relação à BR3 e BR4, este comportamento está associado à elevada MO nestes solos. Já BR1, apesar de possuiu baixa MO, apresenta elevada porcetagem de argila, a qual deve contribuir para a sorção do herbicida, ainda que o diclosulam esteja majoritariamente em sua forma aniônica (pH $_{\rm solos}$) pKa $_{\rm diclosulam}$ = 4,09; ácido fraco). Em contraste, os solos BR2 e BR5, que possuem baixa MO e argila, apresentaram menor sorção (Figura 2).

Figura 2. Isotermas de sorção do modelo de Freundlich do diclosulam aplicado em cinco solos agricultáveis. As barras verticais e horizontais de cada símbolo representam o desvio padrão das médias (n = 3) de Ce e Cs, respectivamente.

Entre os fatores que reforçam a maior sorção observada nos solos BR1, BR3 e BR4 destaca-se o coeficiente da isoterma de Freundlich (K_f), com valores de 8,35; 8,79 e 13,49 μ mol^(1-1/n), respectivamente (Tabela 2). Os valores de K_f variaram de 7,63 a

13,49 µmol^(1-1/n), indicando comportamento sortivo do diclosulam com os coloides de todos os solos avaliados.

Tabela 2. Parâmetros das isotermas de sorção do modelo de Freundlich para o diclosulam aplicado em cinco solos agricultáveis de texturas contrastantes.

Freundlich							
$\mathbf{K_f}$							
$(\mu mol^{(1\text{-}1/n)})$	1/n	\mathbb{R}^2					
$8,35 \pm 0,91$	$0,85 \pm 0,17$	0,97					
$3,90\pm0,07$	$1,09 \pm 0,01$	0,99					
$8,79 \pm 0,72$	$0,97 \pm 0,12$	0,98					
$13,49\pm0,53$	$1,36 \pm 0.07$	0,98					
$7,63 \pm 0,38$	$1,11 \pm 0,06$	0,99					
	K_f (μmol ^(1-1/n)) $8,35 \pm 0,91$ $3,90 \pm 0,07$ $8,79 \pm 0,72$ $13,49\pm 0,53$	K_f μ mol $(1-1/n)$ $1/n$ $8,35 \pm 0,91$ $0,85 \pm 0,17$ $3,90 \pm 0,07$ $1,09 \pm 0,01$ $8,79 \pm 0,72$ $0,97 \pm 0,12$ $13,49 \pm 0,53$ $1,36 \pm 0,07$					

A dessorção do diclosulam apresentou comportamento abaixo do limite de quantificação na maioria dos solos, impossibilitando o cálculo da histerese.

Conclusões

As características dos solos, como alto teor de matéria orgânica e argila favoreceram a sorção, com destaque para os solos BR3 e BR4. Os elevados valores de K_f (7,63 a 13,49 $\mu mol^{(1-1/n)}$) confirmam a alta afinidade do diclosulam pelos solos avaliados, com baixa reversibilidade da sorção.

Agradecimentos

Os autores agradecem ao CNPq, processo nº 140434/2021-6, pela concessão de bolsa à primeira autora.

Referências

- 1. LAVORENTI, A.; ROCHA, A.A.; PRATA, F.; REGITANO, J.B.; TORNISIELO, V.L.; PINTO, O.B. Comportamento do diclosulam em amostras de um latossolo vermelho distroférrico sob plantio direto e convencional. *Rev Bras Cienc Solo*, v. 27, n. 1, p. 183-190, **2003**.
- BARCELLOS JÚNIOR, L. H.; PEREIRA, G. A. M.; MATOS, C. C.; SOUZA, P. S. R.; AGAZZI, L. R.; SILVA, E. M. G.; SILVA, A. A. Influence of organic matter in sorption of the saflufenacil in ferralsols. *Bull Environ Contam Toxicol.* v. 107, n. 2, p. 263-268, 2021.
- 3. SANTOS, H. G.; et al. Sistema Brasileiro de Classificação de Solos. 5ª ed. Brasília, DF; Embrapa, **2018**.
- 4. OECD Organisation for Economic Co-Operation and Development. **Adsorption desorption** using a batch equilibrium method. Paris: OECD, 2000. 44 p. (OECD, 106).
- 5. INMETRO Instituto Nacional de Metrologia, Qualidade e Tecnologia. Orientações sobre validação de métodos analíticos: documento de caráter orientativo: DOQ-CGCRE-008: revisão 09-dez/2020.Rio de Janeiro, 2020. Disponível em: https://www.gov.br/cdtn/pt-br/assuntos/documentos-cgcre-abnt-nbr-iso-iec-17025/doq-cgcre-008/view. Acesso em 1 de julho de 2025.