

Síntese de catalisadores de Pd^{II} derivados de tiossemicarbazonas para aplicação em polimerização de etileno.

Juliana Iris. P. Maia $(PG)^{1*}$, Patrik D. de S. Gois $(PG)^2$, Valdemiro P. C. Júnior $(PQ)^2$, Pedro Ivo da S. Maia $(PQ)^1$

*julianaarierpe@hotmail.com

¹Universidade Federal do Triângulo Mineiro-UFTM, Uberaba-MG, Brasil. ²Universidade Estadual Paulista-UNESP, Presidente Prudente-SP, Brasil.

RESUMO

Neste trabalho, foram sintetizados complexos de paládio com ligantes tiossemicarbazonas para aplicação como cocatalisadores na polimerização do etileno. A partir do precursor [PdCl₂(MeCN)₂], foram obtidos os complexos [PdCl(Hdmtsc)], [Pd(dmtsc)(4-APy)] e [{Pd(dmtsc)}₂(dppe)]. As caracterizações incluíram ponto de fusão, análise elementar, espectroscopias UV-vis e IV, RMN (¹H, ¹³C, ³¹P{H}), ESI-MS e difração de raios X em monocristal. Os complexos, ativados com MAO, foram testados na polimerização de etileno entre 30 e 70 °C sob 116 psi, apresentando atividade catalítica.

Palavras-chave: Catalisadores, paládio, tiossemicarbazonas.

Introdução

A crescente demanda da indústria de polímeros tem impulsionado a busca por métodos mais eficientes de síntese. Dentre os diversos polímeros produzidos, os derivados do etileno destacam-se por sua ampla aplicação. Nesse contexto, catalisadores à base de paládio, conhecidos por sua alta eficiência em processos catalíticos [1,2], tornam-se relevantes. Assim, este trabalho tem como objetivo a síntese de novos catalisadores de paládio derivados de tiossemicarbazonas para aplicação em reações de polimerização do etileno.

Experimental

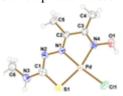
Síntese dos complexos metálicos derivados do ligante (H2dmtsc)

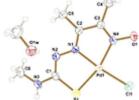
A síntese do complexo [PdCl(Hdmstsc)] foi obtida conforme o **Esquema de reação 1**, o produto obtido serviu de precursor para as reações mostradas no **Esquema de reação 2**.

Esquema 1- Reação de síntese do complexo [PdCl(Hdmtsc)] (Rendimento: 93 %).

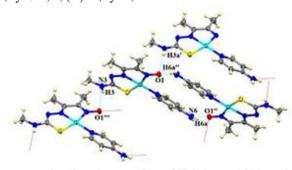
O ligante cloro no complexo [PdCl(Hdmtsc)] é lábio o suficiente para permitir reações de substituição em condições brandas. Para isso, foram empregados os ligantes neutros 4-aminopiridina (4-APy) e difenilfosfinaetano (dppe). As reações ocorreram somente após adição de uma base, que promoveu a desprotonação do grupo OH da tiossemicarbazona e a remoção do cloro na forma de Et₃NH⁺. Os complexos subsequentes foram obtidos a partir de [PdCl(Hdmtsc)], separadamente, conforme ilustrado no **Esquema 2.**

Esquema 2. Reações substituição do haleto do complexo [PdCl(Hdmtsc)] para formação dos complexos [Pd(dmtsc)(APy)] (Rendimento: 89 %) e [{Pd(dmtsc)}₂(dppe)] (Rendimento: 83,7 %).


Resultados e Discussão

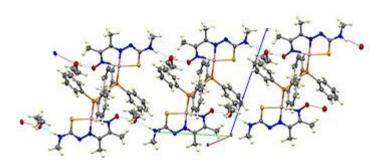

Os complexos foram caracterizados por espectroscopias nas regiões do IV e UV-vis. A coordenação do ligante H2dmtsc foi confirmada por RMN de ¹H e ¹³C. A espectrometria de massas de alta resolução

(HR-ESI+) confirmou a formação do complexo [{Pd(dmtsc)}₂(dppe)] com pico do íon molecular em m/z 983,0773 (calc. 983,0652). Para o complexo [Pd(dmtsc)(APy)], foi identificado o pico [M+H]+ em m/z 387,0181 (calc. 387,0219), confirmando sua estrutura. A estrutura cristalina do complexo [PdCl(Hdmtsc)] foi obtida com moléculas de H₂O e MeOH co-cristalizadas. O derivado 2·MeOH cristaliza no sistema triclínico, grupo espacial *Pī*, enquanto 2·H₂O cristaliza no sistema monoclínico, grupo *P2₁/n*. As moléculas de solvente são mantidas na rede cristalina por ligações de hidrogênio entre grupos NH e OH.


Figura 1. Representação ORTEP do complexo [PdCl(Hdmtsc)] ·H₂O (esquerda) e [PdCl(Hdmtsc)]·MeOH (central) com elipsoides termais com 50 % de probabilidade.

A estrutura cristalina do complexo [Pd(dmtsc)(4Apy)] (**Figura 2**), determinada por difração de raios X, revelou cristalização no sistema monoclínico, grupo espacial *P21/a*. O ligante tiossemicarbazona coordena-se ao paládio de forma tridentada, por nitrogênios (azometina e oxima) e enxofre tiolato, formando dois anéis quelatos de cinco membros e atuando como ligante dianiônico duplamente deprotonado. O complexo exibe ligações de hidrogênio intermoleculares entre o oxigênio da oxima e os grupos NH e NH₂ da tiossemicarbazona e da 4-aminopiridina, condizentes com sua forma dianiônica.

Figura 2. Ligações de hidrogênio intermoleculares envolvidas na estrutura cristalina do complexo [Pd(dmtsc)(4APy)]. [N3···O1''' = 2,919(3) Å, N(3)-H(3)···O1''' = $145,0^{\circ}$] e [N6···O1'' = 2,958(3) Å, N(6)-H(6a)···O1'' = $162,2^{\circ}$]. Operações de simetria usadas: ('') x+1/2, -y+3/2, z; ('') -x, -y+1, -z+1.



A estrutura cristalina do complexo [$\{Pd(dmtsc)\}2(dppe)\}$] também foi determinada por difração de raios X em monocristal. Comprimentos e ângulos de ligação foram determinados. O complexo se cristaliza em sistema cristalino triclínico, grupo espacial P $\overline{1}$ conforme **Figura 3.**

A unidade assimétrica é constituída apenas por 1/2 molécula, sendo a outra metade gerada por simetria. Ligações de hidrogênio intermoleculares também são observadas entre o complexo e uma molécula de etanol co-cristalizada.

Figura 3. Ligações de hidrogênio intermoleculares envolvidas na estrutura cristalina do complexo [{Pd(dmtsc)}₂(dppe)]. [O(2s)···O(1) = 2.723(7) Å, O(2s)·H(2s)···O(1) = 169.5 °], [N(3)···O(2s)' = 2.869(8) Å, N(3)-H(3)···O(2s)' = 169.2 °]. Operação de simetria usada: (') x-1,y-1,z.

Na aplicação dos complexos como pré-catalisadores, observou-se a formação de oligômeros nas temperaturas de 40 °C e 60 °C. A polimerização do etileno foi obtida a 50 °C utilizando o complexo [Pd(dmtsc)(4-APy)]. O complexo [{Pd(dmtsc)}₂(dppe)] apresentou baixa reatividade, com pequena quantidade de polímero formada a 60 °C e ausência de oligômeros, conforme a **Tabela 1**. Por sua vez, o complexo [PdCl(Hdmtsc)] resultou em baixa formação de polímeros em todas as temperaturas avaliadas.

Tabela 1. Dados de polimerização de etileno usando os pré catalisadores derivados do ligante tiossemicarbazona variando a temperatura e as concentrações [Al]/[Pd].

Ensaio	T (⁰ C)	[Al]/	Tempo	Massa (g) complexos Pd(dmtsc) +		
	(- /	[Pd]		(4-APy)	(dppe)	(Cl)
1	40	700	4	Oligômero ^a	ı	0,0130
2	50	700	4	0,12354	ı	0,0620
3	60	700	4	Oligômero ^a	0,09453	0,0460

Conclusões

Os omplexos de paládio foram sintetizados e caracterizados por ponto de fusão, análise elementar, espectroscopias UV-vis e IV, RMN (¹H, ¹³C, ³¹P{H}), ESI-MS e difração de raios X em monocristal. Além disso, foram testados como pré-catalisadores, mostrando-se ativos em reações de polimerização de etileno.

Agradecimentos

CAPES, CNPq, FAPESP, GMIT e FAPEMIG

Referências

Favero, C.; Closs, M. B.; Galland, G. B. et al. *J. Mol. Struct.* **2019**, *377*, 63.
Lima, J. L.; Maia, P. S.; Nascimento, R. D. et al. *J. Mol. Struct.* **2020**, *1199*, 126997.