

Produção de biocarvão para geração de bioenergia

Willian P. Costa¹(G), Ingrid E. A. Ferreira¹(G), Marina C. Patrocínio¹(G), Paloma C. Silva¹(G), Cristiane D. N. Araújo¹ (PQ), Evaneide N. Lima^{1*}(PQ), Robson P. Lima² (PQ).

- ¹ Departamento de Ciências Exatas, Universidade do Estado de Minas Gerais, João Monlevade, Minas Gerais, 35930-314, Brasil.
- ² Departamento de Geociências, Ciências Humanas e Linguagens, Universidade do Estado de Minas Gerais, João Monlevade, Minas Gerais, 35930-314, Brasil.

*E-mail: evaneide.lima@uemg.br

RESUMO

Este estudo avaliou a influência da temperatura de pirólise no poder calorífico (PCS) dos biocarvões produzidos a partir do bagaço de canade-açúcar. Os resultados mostraram que o teor de carbono aumentou com o incremento da temperatura de pirólise, enquanto o teor de oxigênio e o rendimento gravimétrico foram reduzidos. Os biocarvões produzidos a 400 °C apresentaram um PCS de 28,07 MJ/kg, seguido de um aumento para 28,97 MJ/kg a 600 °C, valor máximo observado neste estudo. A 800 °C, o PCS diminuiu para 27,23 MJ/kg e, finalmente, a 1000 °C, o valor foi reduzido para 25,42 MJ/kg. Esses dados indicam que o PCS tende a aumentar com a elevação da temperatura de pirólise até 600 °C, onde atinge o valor mais elevado. Esse comportamento pode ser atribuído à maior eliminação de compostos voláteis e ao teor mais elevado de carbono fixo em temperaturas intermediárias de pirólise, enquanto temperaturas mais elevadas podem promover a degradação das estruturas carbonáceas, reduzindo o PCS.

Palavras-chave: Biocarvão, energia, poder calorífico.

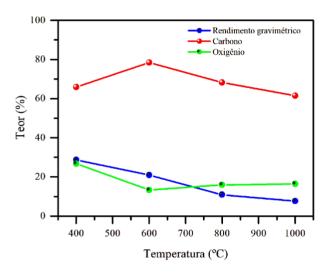
Introdução

O uso de combustíveis fósseis gera a emissão de gases poluentes, incluindo os gases de efeito estufa, contribuindo para as mudanças climáticas globais e o esgotamento dos recursos naturais. Nesse contexto, alternativas sustentáveis e economicamente viáveis têm sido investigadas para substituir os combustíveis fósseis. A biomassa é uma opção atrativa de energia, devido à sua alta versatilidade para atender diferentes demandas energéticas (1). No Brasil, o bagaço de cana-de-açúcar é amplamente utilizado pelas usinas para a geração de energia em caldeiras. No entanto, esse subproduto é frequentemente armazenado em grandes volumes nos pátios das usinas, ocupando espaço considerável e elevando o risco de incêndios.

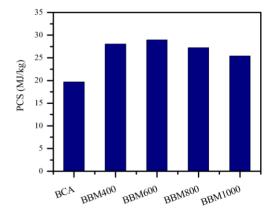
Outro problema diz respeito ao excedente de bagaço que não é aproveitado como fonte de energia e é, muitas vezes, descartado inadequadamente. A conversão do bagaço de cana-de-açúcar em biocarvão surge como uma solução promissora (2), ao reduzir o espaço necessário para armazenamento e agregar maior valor econômico ao material. Embora existam alguns estudos na literatura sobre o efeito da temperatura de pirólise no poder calorífico superior (PCS) do biocarvão de bagaço de cana-de-açúcar, ainda há lacunas, especialmente no que diz respeito à consolidação de dados em uma faixa mais ampla de temperaturas.

Neste contexto, este estudo avaliou a influência da temperatura de pirólise no PCS dos biocarvões produzidos a partir do bagaço de cana-de-açúcar.

Experimental


O bagaço de cana-de-açúcar (BCA) foi obtido em uma usina no município de Frutal-MG, e triturado em Picador/Triturador Forrageiro TRF 90 TRAPP, passado em peneira com malha de 3 mm. Para produção do biocarvão, cerca de 2 kg de BC foi carbonizado em forno tipo mufla, com atmosfera inerte de nitrogênio por 90 min à temperatura de 300 °C e, posteriormente, acondicionado até atingir a temperatura ambiente. Esse procedimento foi repetido com as temperaturas de 400 °C, 600 °C, 800 °C e 1000 °C. Os biocarvões obtidos com as diferentes temperaturas foram denominados BBM300, BBM400, BBM600, BBM800 e BBM1000, respectivamente.

A composição química imediata e a análise elementar (CHN) foram determinadas (3) para aplicação em equações empíricas e estimativa do PCS (4). As amostras também foram caracterizadas em Microscópio Eletrônico de Varredura (Vega 3 LMU, TESCAN, Brno-Kohoutovice, República Tcheca) acoplado à Espectroscopia de Dispersão de Energia de Raios X (EDS, X-MaxN, Oxford Instruments, Oxford, Reino Unido).


Resultados e Discussão

Os resultados mostram que o teor de carbono aumentou com o incremento da temperatura de pirólise, exceto na temperatura de 1000 °C, enquanto o teor de oxigênio e o rendimento gravimétrico foram reduzidos (Fig. 1).

Figura 1. Relação entre o rendimento gravimétrico e os teores de oxigênio e carbono em função do aumento da temperatura de pirólise.

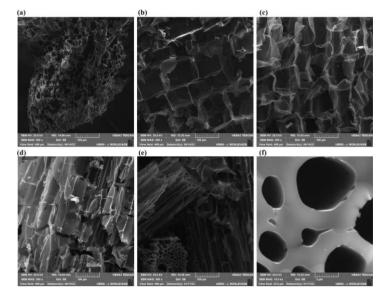

Os biocarvões produzidos a 400 °C apresentaram PCS de 28,07 MJ/kg, seguido de aumento para 28,97 MJ/kg a 600 °C, valor máximo observado neste estudo. A 800 °C, o PCS diminuiu para 27,23 MJ/kg, e, finalmente, a 1000 °C, o valor foi reduzido para 25,42 MJ/kg (Fig. 2)

Figura 2. Relação do aumento do PCS com o aumento das temperaturas de pirólise usando como referência o PCS do bagaço de cana-de-açúcar (BCA).

As micrografias evidenciaram modificações morfológicas com o aumento da temperatura de pirólise (Fig. 3), destacando-se a amostra BBM1000, cuja superfície apresentou estrutura em favo de mel, com macroporos de 1 a 45 μm de diâmetro.

Figura 3. Micrografias eletrônicas obtidas por Microscopia Eletrônica de Varredura (MEV) com detecção por elétrons secundários das amostras (a) BBM300, (b) BBM400, (c) BBM600, (d) BBM800, (e) BBM1000, com ampliações de 500 x e (f) BBM1000, com ampliação de 10.000 x.

Conclusões

Os resultados obtidos demonstram a relação não linear entre a temperatura de pirólise e o PCS. O PCS tende a aumentar com a elevação da temperatura de pirólise até 600 °C, onde atinge o maior valor. Dessa forma, a temperatura de 600 °C parece ser a mais adequada para maximizar o potencial energético do biocarvão de bagaço de cana-de-açúcar, considerando as faixas de temperaturas estudadas.

Agradecimentos

Os autores agradecem à FAPEMIG e à UEMG (PQ/UEMG) pelo apoio financeiro e bolsas concedidas.

Referências

- 1. R. O. Alves, Dissertação de Mestrado, Universidade Federal de Tocantis, 2024.
- 2. N. T. Miranda; I. L. Morra; R. M. Filho; M. R. W. Maciel, *Análises de Energia Renovável e Sustentável.* **2021**, 149, 111394.
- 3. S. A. Channiwala; P. P. Parikh, Fuel. 2002, 81, 1051-1063.
- G. Venkatesh; K. A. Gopinath; K. S. Reddy; B. S. Reddy; M. Prabhakar; C. Srinivasarao; V. V. Kumai; V. K. Singh, Sustainability. 2022, 14, 2295.